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1. INTRODUCTION

Let A denote the class of functions of the form

f(z) :z—l—iakzk
k=2

which are analytic in the open unit disk U = {z € C' : |z| < 1}. For f(2)

belongs to A, Salagean [12]| has introduced the following operator called the
Salagean operator :

D°f(z) = f(2)

D'f(2) = Df(z) = 2f'(2)
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an(z) = D(Dn_lf(z)) ;n € No= {0} U {1’27 o }

Let S, (p > 1) denote the class of functions of the form f(z) = 2 +
300 | Ap+n 2P that are holomorphic and p-valent in the unit disk U.

Also, let A,(n) denote the subclass of S, (p > 1) consisting of functions
that can be expressed in the form

f(z)=2F— i am2™ ; am, > 0. (1)

m=p+n

We can write the following equalities for the functions f(z) belonging to the
class A,(n):

D°f(z) = f(2)

D'f(2) = Df(2) = zf'(2) = pz¥ — Z ma,z"

m=p+n

D f(2) = D(D 1 f(2)) = p*aP — Z m a,z™ ;A€ Nog = {0} UN.

m=p+n

Denote by S the class of functions of the form f(z) = z+a2?+ ..., analytic
and univalent, by S7 («) subclass consisting of starlike and univalent of order
aand by k — ST (0 < k < 00) a class of k—starlike univalent functions in U,
introduced and investigated Lecko and Wisniowska in [1].

It is known that every f € k — ST has a continuous extension to U, f(U)
is bounded and f(0U) is a rectifiable curve [2].

In the present paper, a subclass (k,n,p, a, A\) — ST of starlike functions in
the open unit disk U is introduced. A functions f(z) € A,(n) is said to be in
the class (k,n,p,a, \) — ST if it is satisfies

Re {g + _gff(z‘;c(z))/} > a 2)
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for some a (0 < v < p) and z € U.

We note that

i)(0,1,1,,0) — ST = T*(«) was introduced by Silverman [3],

ii)(k,1,1,0,0) — ST = k — ST was introduced by Lecko and Wisniowska
1),
iii)(k, 1,1, ,0) — ST = k — ST () was studied by Baharati et.al. [5],
iv)(k,n,1,a,0) — ST = (k,n,a) — ST was studied by Guney et.al [4],
v)(k,1,1,0,1) = ST = (k, 1, —1,a) —UCY = k —UCV () was investigated
by Baharati et.al [5]. Also, the class (k, A, B,a) — UCV was introduced by
Guney et al.[6].

2.SOME RESULTS OF THE CLASS (k,n,p,a,\) — ST

THEOREM 2.1 A function f € Ay(n) is in the class (k,n,p,a, \) —ST iff

i m*k(m — 1) + m — oa, < pp —a)+p k(p —1). (3)

m=p+n
Proof. Let (k,n,p,a,\) —ST. Then we have from (2)

Re{S+ EQD )

2T T DV

o0 oo
Cpkzp—l_i_p/\ﬁ—lzp_CpA-klzp—l+< Z (mA+1_mA)amZm—l_ Z m>\+1amzm
=Re RN e > Q.

pAzP— Z mAamz™
m=p+n

If we choose z and ( real and z — 1~ and { — —k™, we get,

Ckp? 4 M kM 4k § (m* — m*)a,, — § ma,,

m=p+n m=p+n

00 2 (6%
pPr= X miay
m=p+n
or
o0
S mAk(m — 1) +m — alan, < pMp —a) +p k(p — 1)
m=p+n
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which is equivalent to (3).
Conversely, assume that (3) is true. Then

o0
(2—¢) <p>‘+1z171_ 3 m)\+1amzm1)

m=p+n

¢ EQWMEYY _ )¢
{Z + DAf(Z) } B Z + p)‘zp— i TTZ)‘amzm

m=p+n

=) =)
Cp)\zp—l+pk+lzp7<p/\+lzp—l+<~ Z (m/\+17m/\)amzm—17 Z m)\+1amzm
— m=p+n m=p+n > Q

pAaP— i mAamz™
m=p+n
for |z| < 1. If we choose z — 1~ and ¢ — —k™ through real values, we obtain

N P-4+ = % mAk(m — 1)+ mla,
- {c <z—<xD&ﬂa>}::

24 m=p+n
: DA1(z) P S ma,
m=p+n
(4)
If (3) is rewritten as
> mPk(m —1) +mlay, <M —pra+pk(p—1)+a Y miam,
m=p+n m=p+n

and (4) is used, then we obtain

: DVf(2)

e{C 4 =D

Thus f € (k,n,p,a, \) — ST.
THEOREM 2.2 If f € (k,n,p,a,\) — ST, then for |z| =r < 1 we obtain

p_ pp—a)+pkp—1) ptn .
il o T ey RN M Ol

» Pp—a)+pkp-1) i,
e P Y (R Ty ey oy L

and
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A A
1 p(p—a)+pkp—1) pinl < (| <
S o A Rt —k—a | SWEIs
< gy Pr-—a)+pklp=1)

(p+n) A+ k)(p+n)—k—q

All inequalities are sharp.

Proof From (3), we have

i o < pp—a)+pk(p—1)

and
00 A o )\k -1
S may, < pA(_p1 a) +ptk(p —1) .
Thus - -
FR) <P+ > apr™ <P P >, <
m=p+n m=p+n
ey P=a)+PRp- L,
- (p+n)AMA+k)(p+n)—k—q
and
lf(2)| > rP — Z ™ > rP — Pt Z Qppy >
m=p+n m=p+n
p P +pkp-1) L,

(p+n) A+ E)(p+n)—k—a

which prove that the assertion (5) of Theorem 2.2.
Furthermore, for |z] =7 < 1 and (6), we have

If'(2)| < prPt + Z Myt < prp=l 4 prtn-l Z ma,,

m=p+n m=p+n
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< gy Pr-—a)+rklp=1)
N (p+n* A+ F)(p+n) —k—df
and
[F() =t = 37 magr™ Tt > prt Tt =P N may,
m=p+n m=p+n
> prol Pr-—)+pklp=1)

(p+n) A+ k)(p+n)—k—q

which prove that the assertion (6) of Theorem 2.2.
The bounds in (5) and (6) are attained for the function f given by

_ o Ph-a)+pkp-1)
S = = P U+ R +n) —k—a ©)

THEOREM 2.3 Let the functions
f)=2"— Y anz™an >0.
m=p+n
and
g(z)=2"— > bz by > 0.
m=p+n
be in the class (k,n,p,a, \) —ST. Then for 0 < p <1,
hiz)=Q—=p)f(z)+pg(z) =2"— D cmz™cm > 0.
m=p+n
is in the class (k,n,p,a,\) — ST.
Proof. Assume that f,g € (k,n,p,a,\) — S7T.

Then we have from Theorem 2.1

i m [k(m — 1) +m — aa, <p*(p— )+ p'k(p — 1)

m=p+n
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and

o0

> mAk(m — 1) +m — alb, < pMp— )+ p k(p - 1).

m=p+n

Therefore we can see that

i m Mk(m — 1) +m — ale, =
= _i m [k(m — 1) +m —a][(1 = p)am + pbp] < p*(p — @) +p*k(p — 1)

which completes the proof of Theorem 2.3.

DEFINITION 2.1 The Modified Hadamard Product f x g of two functions

f(2)=2"— > anz™am >0

m=p+n

and

g(z) =2 — Z bz™; by >0

m=p+n
are denoted by
(fx9)(2) =22 = > apbnz™.
m=p+n

THEOREM 2.4 If f. g € (k,n,p,a,\) =87 then fxg € (k,n,p,5,\) =87,

where

/6:/6(k:7n7p7a’A):

(P +p k(= 1))+ )M (1 +k)(p+n) =k —af?
P+n)MI+E)(p+n)—k—a? =@ Np—a)+pk(p—1))?

(PMp—a)+pk(p—1))*[(1+F)(p+n) — k]
PMo+n)MNA+E)(p+n) —k—al2= @ p—a)+pk(p—-1))*
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The result is sharp for f(z) and g(z) given by

Pp—a)+pklp-1) .,
p+n)MA+E)(p+n)—k—a

f6) = 0(s) =2 —
where 0 < a < p and 0 < k < oco.

Proof. From Theorem 2.1, we have

> mMk(m —1)+m — q

>

magin PM(0 — ) + p k(p — 1)

ay <1

and

i mk[k(m—1)+m—a]bm<1‘

mSn PN — ) +pk(p—1) " T
We have to find the largest 3 such that

> mMk(m —1)+m — f]
D ey L

m=p+n

(10)

(11)

(12)

From (10) and (11) we obtain, by means of Cauchy-Schwarz inequality,that

f’: m Mk(m — 1) +m — af

min (P — @) + pk(p — 1)
Therefore, (12) is true if

Am by < 1.

m Mk(m — 1) +m — 3

mrMk(m —1)+m—a] ——
pMp—B)+pk(p — 1)ambm = PMp—a)+pk(p—1) (b

or

[P p = B) + pk(p — 1)][k(m — 1) + m — o
[Prp —a) +pk(p = D][k(m —1) +m — 5]

Note that from (13)

Uy by, <

[PMp — @) + p k(p — 1)]
mAMk(m —1)+m —a]

mbm —

Thus if
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P —a) +p*k(p = 1)) _ [P = B) +p*k(p = D]lk(m —1) + m — a
mAk(m — 1) +m—a] = [pMp — ) +pk(p — D)][k(m — 1) + m — f]

or, equivalently, if

5< (P + p k(p — 1))mA (1 + Fym — k — of?
—“pmMA+E)m—k—a]2— (pMp—a)+pk(p—1))?

B (PP —a) +pk(p = 1)*[(1 + k)m — ]
prmA(L+k)m —k —a? = (pMp — @) + p*k(p — 1))?

then (12) satisfied. Defining the function ®(m) by

B(m) = (PN 4+ k(p — 1))mA[(L+ k)m — k — af?
pPmA(14k)ym —k — af2 — (pM(p — ) + p*k(p — 1))?
B (P — ) +p*k(p — 1))*[(A + k)m — k]
pPmA(1+k)ym —k —al> — (pp — a) + prk(p — 1))*

We can see that ®(m) is increasing function of m. Therefore,

_ P+ p k(e = 1))+ n)NA+E)(p+n) =k — of?
0= ) = X L+ W+ 1) — k- af — (A p — ) + PR — D)?

pMp —a) +pk(p —1)*[(1 4+ k)(p + n) — K]
Pe+n)AMA+E)(p+n)—k—al>—=(\p—a) +pk(p—1))*

which completes the assertion of theorem.

3. EXTREME POINTS FOR (k,n,p,a,\) — ST

A(p—a)+p k(p—1) _m
THEOREM 3.1 Let f,i,—1(2) = 2P and f,,(2) = Zp—fn?[’k(njff)fff_i])z , m=

p+n,p+n+1,... Then If f € (k,n,p,a, \) — ST iff it can be expressed in
the form
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[ = S Euful2)

m=p+n+1

where &, > 0 and § & = 1.

m=p+n—1

Proof. Assume that

[ = S Euful2)

Then
F(2) = Epno fyens(2) + f; b fnl2) =
_ PR o Pl—a)+pk(p-1) .,
= pin-12" + mZme $m [ mAMk(m — 1) +m — qf
& b —a)+pkp-1) ,
- <mzf’”> %f’" \k(m— 1)+ m—al
) +pklp—1) ,
mzp+f"‘ k1) fm o]
Thus
Pp—a)+pklp—1)\ (m k(m =1) +m —
—zp;ngm ( AMk(m —1) +m—04> (p*(p—oo +prk(p — )

= Z gm_ngrnfl:l_émgl-

m=p+n—1
Hence f € (k,n,p,a,\) — ST.
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Conversely, suppose that f € (k,n,p,a,\) — ST . Since

pp—a)+pkip—1)

am| < mA[k(m — 1) +m — o

m=p+n,p+n+1,..,

we can set

m Mk(m — 1) +m — af

5m:pA(p—Oé)ﬂLp”f(p—1)am’ mEpEmpa
and -
gp—&-n—l =1- Z Em.-
m=p+n
Then

N g N PPk 1),
) == 2, an" = 2 m’\[k(m—l)+m—a]§m

m=p+n m=p+n

S e o) = (1— 5 Sm) 24 S Gl

m=p+n m=p+n m=p+n

TS (2 = EertSaiet ()£ S Enn()

m=p+n m=p+n

m=p+n—1

This completes the assertion of theorem.
COROLLARY 3.1 The extreme points of (k,n,p,a, \) — ST are given by
fpin-1(z) = 2

and

A A

pp—a)+pk(p—1)
m = 1,....

k(m—1) +m—a] @ MTPTmpERAL

fm(z) =2 —
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4. DEFINITIONS AND APPLICATIONS OF THE FRACTIONAL CALCULUS

In this section, we shall prove several distortion theorems for functions to
general class (k,n,p, o, \) —S7 . Each of these theorems would involve certain
operators of fractional calculus we find it to be convenient to recall here the
following definition which were used recently by Owa [7] (and more recently,
by Owa and Srivastava [3], and Srivastava and Owa [8] and Srivastava and
Owa [9] ; see also Srivastava et all. [10] )

DEFINITION 4.1. The fractional integral of order X\ is defined, for a func-
tion f , by

gy = L f©)
D" f(2) Nm O/(z—C)l—HdC (n >0) (14)

where f is an analytic function in a simply connected region of the z -plane
containing the origin, and the multiplicity of (z—C)*~t is removed by requiring
log (z — () to be real when z — ¢ > 0.

DEFINITION 4.2. The fractional derivative of order p s defined, for a
function f, by

DEf(z) = mr—s ! dd/ A0 < < 1) (15)

where f 1s constrained, and the multiplicity of (z — ()" is removed, as in
Definition 1.

DEFINITION 4.3. Under the hypotheses of Definition 2, the fractional
derivative of order (n+ ) is defined by

LD 0<p <) (16)

where 0 <p < 1 andn € INg =INU{0}.
From Definition 4.2, we have

DI f(z) =

Dl f(z) = f(2) (17)
which, in view of Definition 4.3 yields,
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D p(z) = L pop() = (). (18)

dam
Thus, it follows from (17) and (18) that

lim D2 f(2) = ()

and
lim DI [(2) = [(2).

THEOREM 4.1. Let the function f defined by

f(z)=2"—= > anz™ ; a, >0

m=p+n

be in the class (k,n,p,a, \) — ST . Then

DD f(2))] = |27+

{ P(p+1)  T+n+l) Pp—a) +pk(p—1) ‘Z|n}
Fp+p+1) Tp+n+p+1)@E+n)*1+k)(p+n) —k—q )
and
DD f(2)] < [P
.{ Pp+1)  T+n+l) Pp o) +pk(p ~ 1) ,d%
Fp+p+1) Tlp+nt+p+1)p+n)[(1+Ek)(p+n)—k—a &)

for p>0,0<i<X\andze€U. The equalities in (19) and (20) are attained
for the function f(z) given by

Pp—a)+pkip—1) Lt

[(1+k)(p+n)—k—a](p+n)> (21)

fl2) = -
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Proof.  'We note that

Clp+p+1) o oy o= T+ DIp+p+1)
fpry ° PPIE == Y S D a )"

Defining the function ¢(m)

T(m+1)T(p+p+1)
Fp+1)T(m+pu+1)

p(m) =

We can see that ¢(m) is decreasing in m, that is

Fp+n+Dl(p+p+1)
Fp+1)l(p+n+p+1)

0<p(m)<plp+n)=

On other hand, from [11]

oo A _ A _
S iy < prp—a)+pkp—1)

ARG k=@t 0=ish

m=p+n

Therefore,
F(p + /*L + ]') — - j - j
—— LD HMD f(2)| > 2P — p(p +n)|z|PT m'a,,
motes D] 2 1 = el e P S

Tlp+n+DI(p+p+1)pMp—a) +p k(p —1)

2 R T n e+ pr ) ki — 1) T m =]

(p+ 1) OO

and

|F(p+u+1)

T(p+ 1) z‘“D;“(D"f(z))‘§|z|p+¢(p+n>|z|p+" S ma,

m=p+n

Pp+n+1)I(p+p+1)p*(p—a)+pkp—1)

-+ —(A—1) P+n‘
T(p+ Dl(p+ntput)mk(m—1)+m—aq (p+n) El

< [2P +

which completes the proof of theorem.

Next, we prove
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THEOREM 4.2. Let the function [ defined by

f(z):Zp_ Z amzm; U 2> 0

m=p+n

be in the class (k,n,p,a, \) — ST . Then

[DED f(2))] > |27+

. { Pp+1)  T(p+n) Pp—a) +pk(p—1) 27
Fp—p+1) Tlp+n—p+1) @+ A +E)(p+n)—k—qa 29)
and
[DE(Df(2))| < |2
.{ Lp+1) . Tlp+n) Pp o) +pk(p~ 1) |w}
Fp—p+1) Tlp+n—p+1)(p+n) 1 +Ek)(p+n)—k—a 23)

for0 < pu<1,0<i<X—1and z € U. The equalities (22) and (23) are
attained for the function f(z) given by (21).

Proof. Using similar argument as given by Theorem 4.1, we can get result.

REMARK. Letting p — 0 and ¢ = 0 in Theorem 4.1 and taking p — 1
and i = 0 in Theorem 4.2, we obtain the inequalities (5) and (6) in Theorem
2.2, respectively.
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