Acta Universitatis Apulensis

No. 36/2013
ISSN: 1582-5329

pp. 267-277

ON A NEW SUBCLASS OF MEROMORPHIC HARMONIC FUNCTIONS WITH FIXED RESIDUE α

R. EZHILARASI, T.V. SUDHARSAN, K.G. SUBRAMANIAN, D. BREAZ

ABSTRACT. In this paper, we obtain some properties such as coefficient conditions, distortion theorem and extreme points for a certain subclass of meromorphic harmonic functions with fixed residue α , $0 \le \alpha < 1$.

2000 Mathematics Subject Classification: 30C45.

Keywords: Univalent functions, harmonic functions, meromorphic functions and extreme points.

1. Introduction

The important study initiated by Clunie and Sheil-Small [3] on the class H consisting of complex valued harmonic sense-preserving univalent functions f in a simply connected domain $D \subseteq C$ defined on the open unit disc $\Delta = \{z : |z| < 1\}$ and normalized by $f(0) = f_z(0) - 1 = 0$ formed the basis for various studies related to different subclasses of harmonic univalent functions. It is known that [3] each function $f \in H$ can be expressed as $f = h + \overline{g}$, where h and g are analytic in D. In fact H reduces to g, the class of normalized univalent functions if the co-analytic part of f is zero. A compact survey on harmonic univalent functions is given by Ahuja [1].

Jinxi Ma [8] considered the class S_p of functions f which are meromorphic and univalent in the unit disc Δ normalized by f(0) = 0, f'(0) = 1 and $f(p) = \infty$, with 0 .

Observe that in the annulus $\{z: p < |z| < 1\}$ each function h in S_p admits an expansion written as

$$h(z) = \frac{\alpha}{z - p} + \sum_{n=1}^{\infty} a_n z^n \tag{1}$$

where $\alpha = Res(f, p)$ with $0 < \alpha \le 1, z \in \Delta \setminus \{p\}$.

Jinxi Ma [8] and also Ghanim and Darus [4, 6] have made use of the function h given in (1) and studied some properties.

Let HS_p denote the class of functions $f = h + \bar{g}$ that are harmonic univalent and sense preserving in the punctured unit disk $\Delta \setminus \{p\}$.

For $f = h + \bar{g}$, we may write the analytic function h as in (1) and g as

$$g(z) = \sum_{n=1}^{\infty} b_n z^n.$$

Then we have

$$f(z) = h(z) + \overline{g(z)} = \frac{\alpha}{z - p} + \sum_{n=1}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n},$$
 (2)

where $\alpha = Res(f, p)$, with $0 < \alpha \le 1, z \in \Delta \setminus \{p\}$.

Let \overline{HS}_p be a subclass of HS_p consisting of function of the form

$$f(z) = h(z) + \overline{g(z)} = \frac{\alpha}{z - p} + \sum_{n=1}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n}, \quad (a_n, b_n \ge 0)$$
 (3)

where $\alpha = Res(f, p)$, with $0 < \alpha \le 1$, $z \in \Delta \setminus \{p\}$, which are univalent harmonic in the punctured unit disk $\Delta \setminus \{p\}$. The functions h and g are analytic in $\Delta \setminus \{p\}$ and Δ respectively and h has a simple pole at the point p with residue α .

For $\alpha = 1$ and p = 0, the function f defined in (3) was studied by Bostanci, Yalcin and Öztürk [2].

In [4, 5, 6] Ghanim et al. defined the operator I^k on the class HS_p as follows:

$$I^{0}f(z) = f(z),$$

 $I^{k}f(z) = I^{k}h(z) + \overline{I^{k}g(z)}, \quad k = 1, 2, 3, ...,$ (4)

where,

$$I^{k}h(z) = z(I^{k-1}h(z))' + \frac{\alpha(2z-p)}{(z-p)^{2}} = \frac{\alpha}{z-p} + \sum_{n=1}^{\infty} n^{k}a_{n}z^{n}$$

and

$$I^{k}g(z) = z(I^{k-1}g(z))' = \sum_{n=1}^{\infty} n^{k}b_{n}z^{n}.$$

Motivated by the earlier works of [2, 6, 7, 9], we now introduce a new subclass $HS_p^*(k,\alpha,\beta,\mu)$ using the differential operator I^k .

Definition 1. A function $f \in HS_p^*(k, \alpha, \beta, \mu)$, if it satisfies

$$\left| \frac{H(z)}{\mu H(z) + (1-\mu)} + 1 \right| \le \left| \frac{H(z)}{\mu H(z) + (1-\mu)} + 2\beta - 1 \right| \tag{5}$$

where $H(z) = \frac{z(I^k h(z))' + \overline{z(I^k g(z))'}}{I^k f(z)}$, $(k \in N_0 = N \cup \{0\}), \ 0 \le \beta < 1, \ 0 \le \mu < 1$ and for all z in $\Delta \setminus \{p\}$.

Remark 1. $HS_{p}^{*}(k, \alpha, \beta, 0) = SH_{p}^{*}(k, \alpha, \beta)$ [6].

Also

$$HS_p^*[k,\alpha,\beta,\mu] = HS_p^*(k,\alpha,\beta,\mu) \cap \overline{HS}_p.$$

We now obtain the coefficient estimates for the classes $HS_p^*(k,\alpha,\beta,\mu)$ and $HS_p^*[k,\alpha,\beta,\mu]$.

2. Main Results

A sufficient coefficient condition for functions analytic in $\Delta \setminus \{p\}$ to be in $HS_p^*(k, \alpha, \beta, \mu)$ is now derived.

Theorem 1. Let $f(z) = h(z) + \overline{g(z)}$ be given by (2). If

$$\sum_{n=1}^{\infty} n^{k} [(n+\beta) + \beta(n-1)\mu] (1-p)^{2} (|a_{n}| + |b_{n}|)$$

$$\leq \alpha (1-\beta) [(1-p) - \mu(2-p)], \tag{6}$$

where $0 \leq \beta < 1$, $k \in N_0$, then f is sense preserving in $\Delta \setminus \{p\}$ and $f \in HS_p^*(k, \alpha, \beta, \mu)$.

Proof. Assume that (6) holds true for $0 \le \beta < 1$. Then by (5) we have

$$\left| \frac{H(z)}{\mu H(z) + (1-\mu)} + 1 \right| < \left| \frac{H(z)}{\mu H(z) + (1-\mu)} + 2\beta - 1 \right|$$

This gives

$$\left| [z(I^k h(z))' + \overline{z(I^k g(z))'}](1+\mu) + I^k f(z)(1-\mu) \right|
< \left| [z(I^k h(z))' + \overline{z(I^k g(z))'}](1+\mu(2\beta-1)) + (2\beta-1)(1-\mu)I^k f(z) \right|.$$

Let

$$M(z) = \left| [z(I^k h(z))' + \overline{z(I^k g(z))'}](1+\mu) + I^k f(z)(1-\mu) \right| - \left| [z(I^k h(z))' + \overline{z(I^k g(z))'}](1+\mu(2\beta-1)) + (2\beta-1)(1-\mu)I^k f(z) \right|.$$

Then, for |z|=r, and since $|z-p| \ge |z|-p=r-p$, we have

$$\begin{split} M(z) &= \left| (1+\mu) \left[-\frac{\alpha z}{(z-p)^2} + z \sum_{n=1}^{\infty} n^{k+1} a_n z^{n-1} + z \sum_{n=1}^{\infty} n^{k+1} \overline{b_n z^{n-1}} \right] \right. \\ &+ (1-\mu) \left[\frac{\alpha}{z-p} + \sum_{n=1}^{\infty} n^k a_n z^n + \sum_{n=1}^{\infty} n^k \overline{b_n z^n} \right] \right| \\ &- \left| (1+\mu(2\beta-1)) \left[-\frac{\alpha z}{(z-p)^2} + z \sum_{n=1}^{\infty} n^{k+1} a_n z^{n-1} + z \sum_{n=1}^{\infty} n^{k+1} \overline{b_n z^{n-1}} \right] \right. \\ &+ (2\beta-1)(1-\mu) \left[\frac{\alpha}{z-p} + \sum_{n=1}^{\infty} n^k a_n z^n + \sum_{n=1}^{\infty} n^k \overline{b_n z^n} \right] \right|. \end{split}$$

Also we notice that

$$M(r) \leq \frac{\alpha p + \mu(2\alpha r - \alpha p)}{(r - p)^2} + \sum_{n=1}^{\infty} n^k [(n+1) + \mu(n-1)] [|a_n|r^n + |b_n|r^n]$$

$$- \frac{[2\alpha r - 2\alpha\beta r + 2\alpha\beta p - \alpha p + \mu[4\alpha\beta r - 2\alpha r - 2\alpha\beta p + \alpha p]]}{(r - p)^2}$$

$$+ \sum_{n=1}^{\infty} n^k [(n+2\beta-1) + \mu(2\beta-1)(n-1)] [|a_n|r^n + |b_n|r^n]$$

$$= -\frac{2\alpha(1-\beta)}{r-p} + \frac{2\alpha\mu(2r-p)(1-\beta)}{(r-p)^2}$$

$$+ \sum_{n=1}^{\infty} n^k [2(n+\beta) + 2\beta(n-1)\mu] [|a_n| + |b_n|]r^n.$$

In other words

$$(r-p)^{2}M(r) \leq \sum_{n=1}^{\infty} n^{k} [2(n+\beta) + 2\beta(n-1)\mu] [|a_{n}| + |b_{n}|](r-p)^{2}r^{n}$$
$$-2\alpha(1-\beta)(r-p) + 2\alpha\mu(2r-p)(1-\beta) \tag{7}$$

The inequality in (7) holds true for all r ($0 \le r < 1$). Therefore letting $r \to 1$ in (7), we obtain

$$(1-p)^{2}M(r) \leq \sum_{n=1}^{\infty} 2n^{k} [(n+\beta) + \beta(n-1)\mu] (1-p)^{2} [|a_{n}| + |b_{n}|]$$
$$-2\alpha(1-\beta)(1-p) + 2\alpha\mu(2-p)(1-\beta).$$

By the hypothesis (6), it follows that (5) holds, so that $f \in HS_p^*(k, \alpha, \beta, \mu)$. We observe that f is sense-preserving in $\Delta \setminus \{p\}$. This is because

$$|h'(z)| \ge \frac{1}{|z-p|^2} - \sum_{n=1}^{\infty} n|a_n||z|^{n-1}$$

$$\ge \frac{1}{|z|^2} - \sum_{n=1}^{\infty} n|a_n||z|^{n-1}$$

$$\ge \frac{1}{r^2} - \sum_{n=1}^{\infty} n|a_n|r^{n-1}$$

$$\ge 1 - \sum_{n=1}^{\infty} n|a_n|$$

$$\ge 1 - \sum_{n=1}^{\infty} n[(n+\beta) + \beta(n-1)\mu](1-p)^2|a_n|$$

$$\ge \sum_{n=1}^{\infty} n[(n+\beta) + \beta(n-1)\mu](1-p)^2|b_n|$$

$$\ge \sum_{n=1}^{\infty} n|b_n| \ge \sum_{n=1}^{\infty} n|b_n| |z|^{n-1} \ge |g'(z)|.$$

Hence the theorem.

Letting $k = \beta = 0$ and $p \to 0$ in Theorem 1, then we have the next corollary:

Corollary 2. If $f(z) = h(z) + \overline{g(z)}$ is of the form (2) and satisfies the condition

$$\sum_{n=1}^{\infty} n(|a_n| + |b_n|) \le \alpha(1 - 2\mu)$$

then f is sense preserving in $\Delta \setminus \{0\}$ and $f \in HS_0^*(0, \alpha, 0, \mu)$.

Remark 2. Let $k = \beta = \mu = 0$ and $p \to 0$ in Theorem 1, then we have a result obtained by Ghanim and Darus [6].

Remark 3. Let $\mu = k = \beta = 0$, $\alpha = 1$ and $p \to 0$ in Theorem 1, then we have a result obtained by Bostanci, Yalcin and Öztürk [2].

Letting k = 1, $\beta = 0$ and $p \to 0$ in Theorem 1, then we have the next corollary:

Corollary 3. If $f(z) = h(z) + \overline{g(z)}$ is of the form (2) and satisfies the condition

$$\sum_{n=1}^{\infty} n^2(|a_n| + |b_n|) \le \alpha(1 - 2\mu)$$

then f is sense preserving in $\Delta \setminus \{0\}$ and $f \in HS_0^*(1, \alpha, 0, \mu)$.

Remark 4. Let k = 1, $\beta = 0$, $\alpha = 1$, $\mu = 0$ and $p \to 0$ in Theorem 1, then we have a result due to Bostanci, Yalcin and Öztürk [2].

Next we obtain a necessary and sufficient condition for a function $f \in \overline{HS}_p$ given by (3) to be in $HS_p^*[k, \alpha, \beta, \mu]$.

Theorem 4. Let $f \in \overline{HS}_p$ be given by (3). Then $f \in HS_p^*[k, \alpha, \beta, \mu]$ if and only if

$$\sum_{n=1}^{\infty} n^k [(n+\beta) + \beta(n-1)\mu] (1-p)^2 (a_n + b_n) \le \alpha (1-\beta) [(1-p) - \mu(2-p)] \quad (k \in N_0) \quad (8)$$

is satisfied. The estimate (8) is sharp and the equality is attained for the function

$$f(z) = \frac{\alpha}{z-p} + \frac{\alpha(1-\beta)[(1-p) - \mu(2-p)]}{n^k[(n+\beta) + \beta(n-1)\mu](1-p)^2} z^n + \frac{\alpha(1-\beta)[(1-p) - \mu(2-p)]}{n^k[(n+\beta) + \beta(n-1)\mu](1-p)^2} \overline{z}^n.$$

Proof. The if part follows from Theorem 1. Hence, it suffices to show that the 'only if' part is true.

Assume that $f \in HS_p^*[k, \alpha, \beta, \mu]$. Then

$$\left| \frac{\frac{H(z)}{\mu H(z) + (1-\mu)} + 1}{\frac{H(z)}{\mu H(z) + (1-\mu)} + 2\beta - 1} \right|$$

$$= \frac{\frac{-\alpha p - \alpha \mu (2z - p)}{(z - p)^{2}} + \sum_{n=1}^{\infty} n^{k} [(n+1) + \mu(n-1)] (a_{n}z^{n} + \overline{b_{n}z^{n}})}{\frac{-2\alpha z + 2\alpha \beta z - 2\alpha \beta p + \alpha p - \mu [4\alpha \beta z - 2\alpha z - 2\alpha \beta p + \alpha p]}{(z - p)^{2}} + \sum_{n=1}^{\infty} n^{k} [(n+2\beta - 1) + \mu(2\beta - 1)(n-1)] [a_{n}z^{n} + \overline{b_{n}z^{n}}]}$$

$$\leq 1, \tag{9}$$

 $z\in\Delta\backslash\{p\}.$

Since $Re(z) \leq |z|$ for all z it follows from (9) that

$$Re \left\{ \frac{\frac{-\alpha p - \alpha \mu (2z - p)}{(z - p)^{2}} + \sum_{n=1}^{\infty} n^{k} [(n+1) + \mu(n-1)] (a_{n}z^{n} + \overline{b_{n}}z^{n})}{\frac{-2\alpha [(1-\beta)z + \beta p] + \alpha p - \mu [4\alpha\beta z - 2\alpha z - 2\alpha\beta p + \alpha p]}{(z - p)^{2}} + \sum_{n=1}^{\infty} n^{k} [(n+2\beta - 1) + \mu(2\beta - 1)(n-1)] [a_{n}z^{n} + \overline{b_{n}}z^{n}]} \right\}$$

$$\leq 1, \ z \in \Delta \setminus \{p\}.$$
(10)

Choosing the values z on the real axis and upon clearing the denominator in (10) and letting $z \to 1$ through real values, we obtain

$$\sum_{n=1}^{\infty} n^{k} [(n+1) + \mu(n-1)] (1-p)^{2} (a_{n} + b_{n})$$

$$\leq 2\alpha (1-\beta)(1-p) - 2\alpha \mu(2-p)(1-\beta)$$

$$-\sum_{n=1}^{\infty} n^{k} [(n+2\beta-1) + \mu(2\beta-1)(n-1)] (1-p)^{2} (a_{n} + b_{n})$$

which immediately yields the required condition (8).

3. Distortion Theorem

We now prove the following distortion theorem for functions in the class $HS_p^*[k,\alpha,\beta,\mu]$.

Theorem 5. If the function f defined by (3) is in the class $HS_p^*[k, \alpha, \beta, \mu]$, then for |z| = r, we have

$$|f(z)| \le \frac{\alpha}{r-p} + \frac{\alpha(1-\beta)(1-p) - \alpha\mu(2-p)(1-\beta)}{(1+\beta)(1-p)^2}r$$

Proof. Let $f \in HS_p^*[k, \alpha, \beta, \mu]$, taking the absolute value of f we obtain

$$|f(z)| \leq \frac{\alpha}{r-p} + \sum_{n=1}^{\infty} (a_n + b_n) r^n$$

$$\leq \frac{\alpha}{r-p} + \frac{[\alpha(1-\beta)(1-p) - \alpha\mu(2-p)(1-\beta)]}{(1+\beta)(1-p)^2}$$

$$\sum_{n=1}^{\infty} n^k \frac{[(n+\beta) + \beta(n-1)\mu](1-p)^2}{\alpha(1-\beta)(1-p) - \alpha\mu(2-p)(1-\beta)} (a_n + b_n) r$$

$$\leq \frac{\alpha}{r-p} + \frac{\alpha(1-\beta)(1-p) - \alpha\mu(2-p)(1-\beta)}{(1+\beta)(1-p)^2} r.$$

The functions

$$f(z) = \frac{\alpha}{z - p} + \frac{\alpha(1 - \beta)(1 - p) - \alpha\mu(2 - p)(1 - \beta)}{(1 + \beta)(1 - p)^2}z$$

and

$$f(z) = \frac{\alpha}{z - p} + \frac{\alpha(1 - \beta)(1 - p) - \alpha\mu(2 - p)(1 - \beta)}{(1 + \beta)(1 - p)^2} \overline{z}$$

for $0 \le \alpha < 1$ and $0 \le \beta < 1$, $0 \le \mu < 1$ show that the bound given in Theorem 5 are sharp in $\Delta \setminus \{p\}$.

Theorem 6. Let

$$h_0(z) = \frac{\alpha}{z - n}, \qquad g_0(z) = 0,$$

for $n = 1, 2, 3, \dots$,

$$h_n(z) = \frac{\alpha}{z - p} + \frac{\alpha(1 - \beta)(1 - p) - \alpha\mu(2 - p)(1 - \beta)}{n^k[(n + \beta) + \beta(n - 1)\mu](1 - p)^2} z^n$$
(11)

and

$$g_n(z) = \frac{\alpha(1-\beta)(1-p) - \alpha\mu(2-p)(1-\beta)}{n^k[(n+\beta) + \beta(n-1)\mu](1-p)^2} \overline{z}^n$$
 (12)

Then $f \in HS_p^*[k, \alpha, \beta, \mu]$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=0}^{\infty} (\lambda_n h_n + \gamma_n g_n)$$
 (13)

where $\lambda_n \geq 0$, $\gamma_n \geq 0$ and $\sum_{n=0}^{\infty} (\lambda_n + \gamma_n) = 1$. In particular, the extreme points of $HS_p^*[k, \alpha, \beta, \mu]$ are $\{h_n\}$ and $\{g_n\}$.

Proof. From (11), (12) and (13), we have

$$f(z) = \sum_{n=0}^{\infty} (\lambda_n h_n + \gamma_n g_n)$$

$$= \sum_{n=0}^{\infty} (\lambda_n + \gamma_n) \frac{\alpha}{z - p} + \sum_{n=1}^{\infty} \frac{\alpha (1 - \beta)(1 - p) - \alpha \mu (2 - p)(1 - \beta)}{n^k [(n + \beta) + \beta (n - 1)\mu](1 - p)^2} \lambda_n z^n$$

$$+ \sum_{n=0}^{\infty} \frac{\alpha (1 - \beta)(1 - p) - \alpha \mu (2 - p)(1 - \beta)}{n^k [(n + \beta) + \beta (n - 1)\mu](1 - p)^2} \gamma_n \overline{z}^n.$$

Then

$$\sum_{n=1}^{\infty} n^{k} [(n+\beta) + \beta(n-1)\mu] (1-p)^{2} \frac{\lambda_{n}}{n^{k} [(n+\beta) + \beta(n-1)\mu] (1-p)^{2}}$$

$$+ \sum_{n=0}^{\infty} n^{k} [(n+\beta) + \beta(n-1)\mu] (1-p)^{2} \frac{\gamma_{n}}{n^{k} [(n+\beta) + \beta(n-1)\mu] (1-p)^{2}}$$

$$= \sum_{n=1}^{\infty} (\lambda_{n} + \gamma_{n}) - \lambda_{0} = 1 - \lambda_{0} \le 1$$

So $f \in HS_p^*[k, \alpha, \beta, \mu]$.

Conversely, suppose that $f \in HS_p^*[k, \alpha, \beta, \mu]$. Set

$$\lambda_n = \frac{n^k [(n+\beta) + \beta(n-1)\mu](1-p)^2}{\alpha(1-\beta)(1-p) - \alpha\mu(2-p)(1-\beta)} a_n, \quad n \ge 1$$

and

$$\gamma_n = \frac{n^k [(n+\beta) + \beta(n-1)\mu](1-p)^2}{\alpha(1-\beta)(1-p) - \alpha\mu(2-p)(1-\beta)} b_n, \quad n \ge 0$$

Then, by Theorem 4, $0 \le \lambda_n \le 1$ (n = 1, 2, ...) and $0 \le \gamma_n \le 1$, (n = 0, 1, 2, ...).

Define

$$\lambda_0 = 1 - \sum_{n=1}^{\infty} \lambda_n - \sum_{n=0}^{\infty} \gamma_n$$

and note that, by Theorem 4, $\lambda_0 \geq 0$.

Consequently, we obtain

$$f(z) = \sum_{n=0}^{\infty} (\lambda_n h_n + \gamma_n g_n),$$

as required.

References

- [1] O.P. Ahuja, *Planar harmonic univalent and related mappings*, JIPAM, 6, No. 4 (2005), Article 122, 18pp.
- [2] H. Bostanci, S. Yalcin, M. Öztürk, On meromorphically harmonic starlike functions with respect to symmetric conjugate points, J. Math. Anal. Appl., 328, No. 1 (2007), 370–379.
- [3] J. Clunie, T. Sheil-Small, *Harmonic Functions*, Ann. Acad. Sci. Fenn. Ser. A, 1. Math, 9 (1984), 3–25.
- [4] F. Ghanim and M. Darus, On certain subclass of meromorphic univalent functions with fixed residue α , Far East J. Math. Sci. (FJMS), 26, No. 1 (2007), 195–207.
- [5] F. Ghanim and M. Darus, A new subclass of uniformly starlike and convex functions with negative coefficients II, International J. of Pure and Appl. Maths., Vol. 45, No. 4 (2008), 559–572.
- [6] F. Ghanim, M. Darus and G.S. Sălăgean, Oncertain subclass of meromorphic harmonic functions with fixedresidue α , Bulletin of Mathematical Analysis and Applications, Vol. 2, Issue 4 (2010),122 - 129.
- [7] J.M. Jahangiri and H. Silverman, *Harmonic univalent functions with varying arguments*, Int. J. Appl. Math., 8, No. 3 (2002), 267–275.
- [8] Jinxi Ma, Extreme points and minimal outer area problem for meromorphic univalent functions, J. Math. Anal. Appl., 220, No. 2 (1998), 769–773.
- [9] G. Schober, *Univalent Functions Selected Topics*, Lecture Notes in Math., Vol. 478, Springer-Verlag, New York and Berlin, 1975.

R. Ezhilarasi, T.V. Sudharsan Department of Mathematics, SIVET College, Chennai - 600 073, India email: ezhilarasi2008@ymail.com, tvsudharsan@rediffmail.com

K.G. Subramanian School of Computer Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia email: kgsmani1948@yahoo.com

Daniel Breaz

Department of Mathematics, "1 Decembrie 1918" University of Alba Iulia Alba-Iulia, Romania

email: dbreaz@uab.ro