SUFFICIENT CONDITIONS FOR HAMILTONIANCITY OF CERTAIN SPECIAL GRAPHS

D.O. Ajayi and T.C. Adefokun

Abstract. In this article, Ore-type conditions for certain class of graphs, G, to be Hamiltonian are established. It involves partitioning vertex set $V(G)$ of G into two subvertices, with specific conditions on the degrees of their of vertices such that for several distance-2 vertices $v, u \in V(G)$, $d(v) + d(u)$ can be much less than the order of G, particularly as $|V(G)| \to \infty$.

2000 Mathematics Subject Classification: 05C45

Keywords: Hamiltonian graphs, Ore conditions, partitions.

1. Preliminaries

Here we present the existing results and some definitions needed in the work.

Theorem 1. (Dirac [1]): If G is a simple graph with n vertices, where $n \geq 3$ and $\delta(G) \geq \frac{n}{2}$, then G is Hamiltonian.

This result by Dirac was improved by Ore in the next result.

Theorem 2. (Ore [4]). Let G be a simple graph with n vertices and u,v be distinct nonadjacent vertices of G with $d(u) + d(v) \geq n$, then G is Hamiltonian.

More recently, Li et. al.[3] presented a result that improved Ore’s result for certain graphs.

Theorem 3. Let G be a 2-connected graph with $n \geq 3$ vertices. If $d(u) + d(v) \geq n - 1$ for every pair of vertices u and v with $d(u,v) = 2$, then G is Hamiltonian unless n is odd and $G \in L_n$

For the definition of L_n, see [3].
We define $[a, b]$ as the set of integers $\{a, a + 1, a + 2, ..., b\}$
2. Main Results

We begin with the next lemma.

Lemma 4. Let G be a simple connected graph with $|V(G)| \leq \infty$. If G is a 2-regular graph, then G is a cycle.

Proof. Let $n \geq 3$ be a positive integer and $|V(G)| = n$. For $u_0, u_1 \in V(G)$, let $u_0u_1 \in E(G)$. Since G is a simple and 2-regular, then there exists $u_2 \in V(G)$ such that $u_2 \neq u_0$, such that $u_1u_2 \in E(G)$. Since G is connected and 2-regular, and with an iteration based on the last statement, there exist a path $P_n = v_0v_1v_2...v_{n-1}$ in G and it consists of all the vertices in G. Now, for all $v_i \in V(P_n), i \neq 0, n - 1, d(v_i) = 2$. Now, since G is 2-regular then $u_0u_i \notin E(G)$ for all $i \neq 1, n - 1$. Since $u_{n-2}u_{n-1} \in E(G)$, then $u_0u_{n-1} \in E(G)$ and thus, G is a cycle.

Using the lemma, we obtain the main results:

Theorem 5. Let G be a simple connected graph with $|V(G)| \geq 3$, and $|V(G)| \equiv 0 \pmod{3}$. Suppose $V(G)$ is partitioned into V and U with $|U| = \lfloor \frac{|V|}{2} \rfloor$ for each $u_i \in U$, $V \subseteq N_G(u_i)$. Suppose further that for $V = u_0, u_1, ..., u_{n+1}$, there exist a $E(V) = \{u_0u_1, u_2u_3, ..., u_{m-2}u_{m-1}\} \subseteq E(G)$, such that $|E(V)| = |U|$, then G is Hamiltonian.

Proof. From the hypothesis, $d(u_i) \geq |V|$ for all $u_i \in U$ since $N_G(u_i) = |V|$. Therefore each $u_i \in U$ is incident to all $e_i \in E(V)$. Thus, suppose $U = \{u_0, u_1, ..., u_{n-1}\}$ and $V = \{v_0, v_1, ..., v_{m-1}\}$. For each $u_i \in U, i \in [1, n - 2]$, let $u_iv_{2i-1} \in E(G)$ and also $u_iv_{2(i+1)} \in E(G)$. Likewise, for some $u_0 \in U, u_0v_0, u_0v_2 \in E(G)$ and $u_{n-1}v_{m-3}, u_{n-1}v_{m-1} \in E(G)$. Thus each vertex on every member of $E(V)$ is incident to some vertex in U and suppose every other edge in G is deleted, the resultant graph say, G', remains connected and for every $v \in V(G')$, $d(v) = 2$. Thus by Lemma 4, G' is a spanning cycle of G and hence, G is Hamiltonian.

Since $|V(G)| \equiv 0 \pmod{3}$ in Theorem 5 above, it is easy to see that $|V(G)| - |U|$ is even. Thus, the vertices in V can be paired into edges in $E(V)$. The next results take care of situations that are different.

Theorem 6. Let G be a connected graph of order $|V(G)|$ with $|V(G)| \equiv 1 \pmod{3}$ and let $V(G)$ be partitioned into U and V with $|U| = \left\lfloor \frac{|V(G)|}{3} \right\rfloor$ with $V \subseteq N_G(u_i)$ for all $u_i \in U$. Suppose there exists a path $P_3 \subseteq G$ such that $V(P_3) \subseteq V$, and suppose V' is defined as $V' = \{v_0, v_1, ..., v_{k-1}\} = V \setminus V(P_3)$. If for all $v_i \in V'$, there exists $E(V') = \{v_0v_1, v_2v_3...v_{k-2}v_{k-1}\} \subseteq E(G)$, then G is Hamiltonian.
We should note that since for any positive integer \(p \), \(|V(G)| = 3p + 1 \) then,
\[|U| = \left\lfloor \frac{|V(G)|}{3} \right\rfloor = p. \] Therefore \(|V(G)| - |U| \) is odd. However, \(|V(P_3)| = 3 \) and since \(V' = V\backslash V(P_3) \), then \(k \) is even and thus members of \(V' \) can be paired.

Now we proceed to proof Theorem 6.

Proof. It is easy to see from the hypothesis that \(|V'| = |U| - 1 \). Now, suppose that path \(P_3 = v_1v_{i+1}v_{i+2} \), where \(\{v_{i+j}\}_{j=0}^{2} \subseteq V \) is a set of arbitrary vertices in \(V \). Obviously, since \(U \subseteq N_G(v_{i+1}) \), \(d(v_{i+1}) = 2 + |U| \). Let \(E(v_{i+1}) \) be the set of all edges associated with \(v_{i+1} \) and let \(E'(v_{i+1}) = E(v_{i+1}\backslash \{v_1v_{i+1}, v_{i+1}v_{i+2}\}) \). Now suppose we delete \(E'(v_{i+1}) \) then \(d(v_{i+1}) = 2 \). Thus, if there exists a spanning cycle \(C_{|V(G)|} \) in \(G\backslash E'(v_{i+1}) \), then \(P_3 \subseteq C_{|V(G)|} \). Thus, we 'shunt' \(P_3 \) into edge \(v_iv_{i+2} \) such that \(E(V') \cup v_iv_{i+2} = E(V'') \). Clearly, \(|E(V'')| = |U| \). Thus the claim follows from Lemma 4 and Theorem 5.

It should be noted, however, that there is an interesting relationship between the length of the path and the order of \(|U| \) in 6. This is expressed in the following corollary.

Corollary 7. Let \(G \) be as in 6. If \(|U| \) is reduced to \(|U| - r \) as \(r \rightarrow |U| - 2 \), and path \(P_3 \) extends to \(P_{3+r} \) also \(r \rightarrow |U| - 2 \), then \(G \) is Hamiltonian. Furthermore, if \(|U| = 2 \), then \(G \) is a cycle.

In the next theorem, we consider the second situation where \(|V(G)| \equiv 2 \mod 3 \).

Theorem 8. Let \(G \) be a connected graph of order \(|V(G)| \) with \(|V(G)| \equiv 2 \mod 3 \) and let \(V(G) \) be partitioned into \(U \) and \(V \) with \(|U| = \left\lfloor \frac{|V(G)|}{3} \right\rfloor \) with \(V \subseteq N_G(u_i) \) for all \(u_i \in U \). Suppose that, except for some \(v_k \in V \), for all \(v_i \in V' = \{v_0, v_1, \ldots, v_m-1\} = V\backslash v_k \), there exist \(E(V') = \{v_0v_1, v_2v_3, \ldots, v_{m-2}v_{m-1}\} \subset E(G) \). Then \(G \) is Hamiltonian.

Clearly, for any positive integer \(q \), \(|V(G)| = 3q + 2 \) and thus, \(\left\lfloor \frac{|V(G)|}{3} \right\rfloor = q + 1 \). Therefore, \(|V(G)| - |U| \) is odd and thus, \(|V'| = |V\backslash v_k| \) is even. By this then, the members of \(V' \) can be paired to form \(E(V') \).

Proof. It is easily verifiable that \(|E(V')| = |U| - 1 \). Now, let \(v_k \in V \) such that there is no such vertex \(v_j \in U \) such that \(v_kv_j \in E(G) \). Since \(V \subseteq N_G(u_i) \) for all \(u_i \in U \), then there exist \(u_a, u_b \in U \) such that \(u_kv_ku_b \) form a path \(P_3 \in G \). Clearly of all the \(q + 1 \) vertices in \(U \), two vertices \(u_a, v_b \) are already incident to \(v_k \). Now, we can imagine 'fusing' \(v_a, v_b \) into a single vertex \(v_{ab} \in U \) and therefore for the new \(U \), say, \(U' \backslash U' = q \). So for \(E(V') \), with \(|E(V')| = q \). The claim follows directly from Lemma 4 and Theorem 5.
3. Implication of the Results

It is clear from Theorem 5 that for every pair \(v_1, v_2 \in V \), \(d(v_1, v_2) \leq 2 \) and in many cases, equality holds. Since \(U \subset N_G(v_i), v_i \in V \), and \(v_i, v_{i+1} \in E(V) \), then \(d(v_i) \geq \frac{|V(G)|}{3} + 1 \). Thus \(d(v') + d(v'') \geq \frac{3}{2}(|V(G)| + 1) \) for cases where \(d(v', v'') = 2 \). Likewise, in Theorems 6 and 8, \(d(v') + d(v'') \geq \frac{3}{2}(|V(G)| + 2) \) and \(d(v') + d(v'') \geq \frac{3}{2}(|V(G)| + 4) \) respectively. This is a significant improvement over the result in Theorem 2 for this class of graphs. It is especially obvious as the order of \(G \) increases.

References

Deborah Olayide Ajayi
Department of Mathematics,
University of Ibadan,
Ibadan, Nigeria
email: olayide.ajayi@mail.ui.edu.ng; adelaidelajayi@yahoo.com

Tayo Charles Adefokun
Department of Computer and Mathematical Sciences,
Crawford University,
Nigeria
email: tayo.adefokun@gmail.com

304