http://www.uab.ro/auajournal/

No. 46/2016

pp. 53-64

doi: 10.17114/j.aua.2016.46.05

ON $\alpha\omega$ -OPEN SETS AND α -LINDELÖF SPACES

A. Al-Omari, T. Noiri and M. S. M. Noorani

ABSTRACT. In this paper, we introduce and investigate a new class of sets called $\alpha\omega$ -open sets which are weaker than both ω -open sets and α -open sets. Moreover, we obtain a characterization and preserving theorems of α -Lindelöf spaces and decompositions of continuity.

2010 Mathematics Subject Classification: 54C05, 54C08, 54C10.

Keywords: α -open set, ω -open set, α -Lindelöf space.

1. Introduction

Throughout this paper, (X,τ) and (Y,σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. Many topologists are focusing their recearch to introduce and investigate a weak form of open sets in topological spaces. Let (X,τ) be a space and S a subset of X. A subset S is said to be α -open [7] (resp. semiopen [6], preopen [10], semi-preopen [2]) if $S \subset Int(Cl(Int(S)))$ (resp. $S \subseteq Cl(Int(S)), S \subseteq Int(Cl(S)), S \subseteq Cl(Int(Cl(S)))$. Since the advent of these notions, several research papers with interesting results in different respects came to existence see [8, 9]. The family of all α -open sets in a space X is denoted by τ^{α} . It is shown in [7] that τ^{α} is a topology on X and that $\tau \subset \tau^{\alpha}$. The complement of an α -open set is said to be α -closed. The intersection of all α -closed sets of X containing A is called the α -closure of S and is denoted by $\alpha Cl(S)$. The union of all α -open sets of X contained in S is called the α -interior of A and is denoted by $\alpha Int(A)$. The family of all α -open (resp. α -closed, regular open) subsets of a space X is denoted by $\alpha O(X)$ (resp. $\alpha C(X)$, RO(X)) and the collection of all α -open subsets of X containing a fixed point x is denoted by $\alpha O(X,x)$.

A point $x \in X$ is called a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is said to be ω -closed [3] if it contains all its condensation points. The complement of an ω -closed set is said to be ω -open. It is well known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open subsets of a space (X, τ) , denoted by τ_{ω} or $\omega O(X)$, forms a topology on X finer than τ . The ω -closure and ω -interior, that can be defined in the same way as Cl(A) and Int(A), respectively, will be denoted by $\omega Cl(A)$ and $\omega Int(A)$, respectively. Several characterizations of ω -closed subsets were provided in [1, 5].

The fundamental relationships between the various types of sets considered above can be summarized in the following diagram.

The following implications hold:

DIAGRAM I

We observe that none of the implications in the above diagram can be reversed in general.

In this paper, we introduce a new class of sets called $\alpha\omega$ -open sets which is a new generalization of both ω -open sets and α -open sets and investigate some properties of this set. Moreover, by using $\alpha\omega$ -open sets we obtain a characterization and preserving theorems of α -Lindelöf spaces and decompositions of continuity.

2. $\alpha\omega$ -open sets

In this section we introduce the following notion:

Definition 1. A subset A of a space X is said to be $\alpha\omega$ -open if for every $x \in A$, there exists an α -open subset $U_x \subseteq X$ containing x such that $U_x - A$ is countable. The complement of an $\alpha\omega$ -open subset is said to be $\alpha\omega$ -closed.

The family of all $\alpha\omega$ -open subsets of a space (X, τ) is denoted by $\alpha\omega O(X)$ or $\tau^{\alpha\omega}$.

Lemma 1. For a subset A of a topological space (X, τ) both ω -openness and α -openness imply $\alpha\omega$ -openness.

Proof. (1) Assume A is ω -open. Then for each $x \in A$, there is an open set U_x containing x such that $U_x - A$ is a countable set. Since every open set is α -open, A is $\alpha\omega$ -open.

(2) Let A be α -open. For each $x \in A$, there exists an α -open set $U_x = A$ such that $x \in U_x$ and $U_x - A = \phi$. Therefore, A is $\alpha \omega$ -open.

The following diagram shows the implications for properties of subsets

DIAGRAM II

The converses need not be true as shown by the following examples.

Example 1. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}, \{b\}, \{a, b\}\}$. Then $\{c\}$ is ω -open (since X is a countable set) and it is not α -open.

Example 2. Let X be an uncountable set and let A, B, C and D be subsets of X such that each of them is uncountable and the family $\{A, B, C, D\}$ is a partition of X. We defined the topology $\tau = \{\phi, X, \{A\}, \{B\}, \{A, B\}, \{A, B, C\}\}\}$. Then $\{A, B, D\}$ is an α -open set which is not ω -open.

Theorem 2. Let (X, τ) be a topological space. Then $\tau^{\alpha\omega} = \alpha\omega O(X)$ is a topology for X such that $\tau \subset \tau^{\alpha} \subset \tau^{\alpha\omega}$ and $\tau \subset \tau_{\omega} \subset \tau^{\alpha\omega}$.

Proof. (1): We have $\phi, X \in \alpha \omega O(X)$.

(2): Let $U,V\in\alpha\omega O(X)$ and $x\in U\cap V$. Then there exist α -open sets $G,H\in X$ containing x such that $G\setminus U$ and $H\setminus V$ are countable.

$$(G \cap H) \setminus (U \cap V) = (G \cap H) \cap [X - (U \cap V)]$$

$$= (G \cap H) \cap [(X - U) \cap (X - V)]$$

$$= [(G \cap H) \cap (X - U)] \cap [G \cap H) \cap (X - V)]$$

$$\subseteq [G \cap (X - U)] \cap [H \cap (X - V)]$$

$$= (G - U) \cap (H - V).$$

Thus $G \cap H \setminus U \cap V$ is countable and $G \cap H$ is an α -open set containing x. Hence $G \cap H \in \alpha \omega O(X)$.

(3): Let $\{U_i : i \in I\}$ be a family of $\alpha\omega$ -open subsets of X and $x \in \bigcup_{i \in I} U_i$. Then $x \in U_j$ for some $j \in I$. This implies that there exists an α -open subset V of X containing x such that $V \setminus U_j$ is countable. Since $V \setminus \bigcup_{i \in I} U_i \subseteq V \setminus U_j$, then $V \setminus \bigcup_{i \in I} U_i$ is countable. Thus $\bigcup_{i \in I} U_i \in \alpha\omega O(X)$.

Theorem 3. If (X, τ) is a locally countable space, then $\tau_{\omega} = \omega O(X)$ is the discrete topology.

Proof. Let $A \subseteq X$ and $x \in A$. Then there exist a countable neighborhood U_x of x and an open set G_x containing x such that $G_x \subseteq U_x$. We have $G_x \setminus A \subseteq U_x \setminus A \subseteq U_x$. Thus $G_x \setminus A$ is countable and A is ω -open. Hence, $\omega O(X)$ is the discrete topology.

Corollary 4. If (X, τ) is a locally countable space, then $\tau^{\alpha\omega} = \alpha\omega O(X)$ is the discrete topology.

Corollary 5. If (X, τ) is a countable space, then $\alpha \omega O(X)$ is the discrete topology.

Proof. Since every countable space is locally countable, the proof is obvious.

Lemma 6. A subset A of a space X is $\alpha\omega$ -open if and only if for every $x \in A$, there exist an α -open subset U containing x and a countable subset C such that $U - C \subseteq A$.

Proof. Let A be $\alpha\omega$ -open and $x \in A$, then there exists an α -open subset U_x containing x such that $U_x - A$ is countable. Let $C = U_x - A = U_x \cap (X - A)$. Then $U_x - C \subseteq A$. Conversely, let $x \in A$. Then there exist an α -open subset U_x containing x and a countable subset C such that $U_x - C \subseteq A$. Thus $U_x - A \subseteq C$ and $U_x - A$ is a countable set.

Theorem 7. Let X be a space and $C \subseteq X$. If C is $\alpha \omega$ -closed, then $C \subseteq K \cup B$ for some α -closed subset K and a countable subset B.

Proof. If C is $\alpha\omega$ -closed, then X-C is $\alpha\omega$ -open and hence for every $x\in X-C$, there exists an α -open set U containing x and a countable set B such that $U-B\subseteq X-C$. Thus $C\subseteq X-(U-B)=X-(U\cap(X-B))=(X-U)\cup B$. Let K=X-U. Then K is an α -closed set such that $C\subseteq K\cup B$.

The intersection of all $\alpha\omega$ -closed sets of X containing A is called the $\alpha\omega$ -closure of A and is denoted by $\alpha\omega Cl(A)$. And the union of all $\alpha\omega$ -open sets of X contained in A is called the $\alpha\omega$ -interior and is denoted by $\alpha\omega Int(A)$.

Lemma 8. Let A be a subset of a space X. Then

- 1. A is $\alpha \omega$ -closed in X if and only if $A = \alpha \omega Cl(A)$.
- 2. $\alpha \omega Cl(X \setminus A) = X \setminus \alpha \omega Int(A)$.
- 3. $\alpha \omega Cl(A)$ is $\alpha \omega$ -closed in X.
- 4. $x \in \alpha \omega Cl(A)$ if and only $A \cap G \neq \phi$ for each $\alpha \omega$ -open set G containing x.

Definition 2. [11] A function $f: X \to Y$ is said to be quasi α -open if the image of each α -open set in X is open in Y.

Proposition 1. If $f: X \to Y$ is quasi α -open, then the image of an $\alpha \omega$ -open set of X is ω -open in Y.

Proof. Let $f: X \to Y$ be quasi α -open and W an $\alpha \omega$ -open subset of X. Let $y \in f(W)$, there exists $x \in W$ such that f(x) = y. Since W is $\alpha \omega$ -open, there exists an α -open set U such that $x \in U$ and U - W = C is countable. Since f is quasi α -open, f(U) is open in Y such that $y = f(x) \in f(U)$ and $f(U) - f(W) \subseteq f(U - W) = f(C)$ is countable. Therefore, f(W) is ω -open in Y.

3. α -LINDELÖF SPACES

Definition 3. [4] (1) A space X is said to be α -Lindelöf if every α -open cover of X has a countable subcover.

(2) A subset A of a space X is said to be α -Lindelöf relative to X if every cover of A by α -open sets of X has a countable subcover.

Theorem 9. If X is a space such that every α -open subset of X is α -Lindelöf relative to X, then every subset is α -Lindelöf relative to X.

Proof. Let B be an arbitrary subset of X and let $\{U_i : i \in I\}$ be a cover of B by α -open sets of X. Then the family $\{U_i : i \in I\}$ is an α -open cover of the α -open set $\cup \{U_i : i \in I\}$. Hence by hypothesis there is a countable subfamily $\{U_{i_j} : j \in \mathbb{N}\}$ which covers $\cup \{U_i : i \in I\}$. This subfamily is also a cover of the set B.

Theorem 10. For any space X, the following properties are equivalent:

- 1. X is α -Lindelöf;
- 2. Every $\alpha \omega$ -open cover of X has a countable subcover.

Proof. (1) \Rightarrow (2): Let $\{U_{\alpha}: \alpha \in \Lambda\}$ be any $\alpha\omega$ -open cover of X. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in U_{\alpha(x)}$. Since $U_{\alpha(x)}$ is $\alpha\omega$ -open, there exists an α -open set $V_{\alpha(x)}$ such that $x \in V_{\alpha(x)}$ and $V_{\alpha(x)} \setminus U_{\alpha(x)}$ is countable. The family $\{V_{\alpha(x)} | x \in X\}$ is an α -open cover of X and X is α -Lindelöf. There exists a countable subset, says $\alpha(x_1), \alpha(x_2), \cdots \alpha(x_n), \cdots$ such that $X = \bigcup \{V_{\alpha(x_i)} | i \in \mathbb{N}\}$. Now, we have

$$X = \bigcup_{i \in \mathbf{N}} \left\{ (V_{\alpha(x_i)} \backslash U_{\alpha(x_i)}) \cup U_{\alpha(x_i)} \right\}$$

= $[\bigcup_{i \in \mathbf{N}} (V_{\alpha(x_i)} \backslash U_{\alpha(x_i)})] \cup [\bigcup_{i \in \mathbf{N}} U_{\alpha(x_i)}].$

For each $\alpha(x_i)$, $V_{\alpha(x_i)} \setminus U_{\alpha(x_i)}$ is a countable set and there exists a countable subset $\Lambda_{\alpha(x_i)}$ of Λ such that $V_{\alpha(x_i)} \setminus U_{\alpha(x_i)} \subseteq \bigcup \{U_{\alpha} | \alpha \in \Lambda_{\alpha(x_i)}\}$. Therefore, we have $X \subseteq [\bigcup_{i \in \mathbb{N}} (\bigcup \{U_{\alpha} | \alpha \in \Lambda_{\alpha(x_i)}\})] \cup [\bigcup_{i \in \mathbb{N}} U_{\alpha(x_i)}]$.

 $(2) \Rightarrow (1)$: Since every α -open is $\alpha \omega$ -open, the proof is obvious.

Definition 4. A function $f: X \to Y$ is said to be $\alpha \omega$ -continuous if $f^{-1}(V)$ is $\alpha \omega$ -open in X for each open set V in Y.

Theorem 11. Let f be an $\alpha\omega$ -continuous function from a space X onto a space Y. If X is α -Lindelöf, then Y is Lindelöf.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be an open cover of Y. Then $\{f^{-1}(V_{\alpha}) : \alpha \in \Lambda\}$ is an $\alpha\omega$ -open cover of X. Since X is α -Lindelöf, by Theorem 10, X has a countable subcover, say $\{f^{-1}(V_{\alpha i})\}_{i=1}^{\infty}$ and $V_{\alpha i} \in \{V_{\alpha} : \alpha \in \Lambda\}$. Hence $\{V_{\alpha i}\}_{i=1}^{\infty}$ is a countable subcover of Y. Hence Y is Lindelöf.

Definition 5. A function $f: X \to Y$ is said to be α -continuous [9] (resp. ω -continuous [5]) if $f^{-1}(V)$ is α -open (resp. ω -open) for each open set V in Y.

Corollary 12. Let f be an α -continuous (or ω -continuous) function from a space X onto a space Y. If X is α -Lindelöf, then Y is Lindelöf.

Definition 6. A function $f: X \to Y$ is said to be $\alpha^*\omega$ -continuous if $f^{-1}(V)$ is $\alpha\omega$ -open in X for each α -open set V in Y.

Now we state the following theorem whose proof is similar to Theorem 11.

Theorem 13. Let f be an $\alpha^*\omega$ -continuous function from a space X onto a space Y. If X is α -Lindelöf, then Y is α -Lindelöf.

Proposition 2. An $\alpha\omega$ -closed subset of an α -Lindelöf space X is α -Lindelöf relative to X.

Proof. Let A be an $\alpha\omega$ -closed subset of X. Let $\{U_{\alpha}: \alpha \in \Lambda\}$ be a cover of A by α -open sets of X. Now for each $x \in X - A$, there is an α -open set V_x such that $V_x \cap A$ is countable. Since $\{U_{\alpha}: \alpha \in \Lambda\} \cup \{V_x: x \in X - A\}$ is an α -open cover of X and X is α -Lindelöf, there exists a countable subcover $\{U_{\alpha_i}: i \in \mathbb{N}\} \cup \{V_{x_i}: i \in \mathbb{N}\}$. Since $\cup_{i \in \mathbb{N}} (V_{x_i} \cap A)$ is countable, so for each $x_j \in \cup (V_{x_i} \cap A)$, there is $U_{\alpha(x_j)} \in \{U_{\alpha}: \alpha \in \Lambda\}$ such that $x_j \in U_{\alpha(x_j)}$ and $j \in \mathbb{N}$. Hence $\{U_{\alpha_i}: i \in \mathbb{N}\} \cup \{U_{\alpha(x_j)}: j \in \mathbb{N}\}$ is a countable subcover of $\{U_{\alpha}: \alpha \in \Lambda\}$ and it covers A. Therefore, A is α -Lindelöf relative to X.

Corollary 14. If a space X is α -Lindelöf and A is ω -closed (or α -closed), then A is α -Lindelöf relative to X.

Definition 7. A function $f: X \to Y$ is said to be $\alpha \omega$ -closed if f(A) is $\alpha \omega$ -closed in Y for each α -closed set A of X.

Theorem 15. If $f: X \to Y$ is an $\alpha \omega$ -closed surjection such that $f^{-1}(y)$ is α -Lindelöf relative to X and Y is α -Lindelöf, then X is α -Lindelöf.

Proof. Let $\{U_{\alpha}: \alpha \in \Lambda\}$ be any α -open cover of X. For each $y \in Y$, $f^{-1}(y)$ is α -Lindelöf relative to X and there exists a countable subset $\Lambda_1(y)$ of Λ such that $f^{-1}(y) \subset \bigcup \{U_{\alpha}: \alpha \in \Lambda_1(y)\}$. Now we put $U(y) = \bigcup \{U_{\alpha}: \alpha \in \Lambda_1(y)\}$ and V(y) = Y - f(X - U(y)). Then, since f is $\alpha \omega$ -closed, V(y) is an $\alpha \omega$ -open set in Y containing y such that $f^{-1}(V(y)) \subset U(y)$. Since V(y) is $\alpha \omega$ -open, there exists an α -open set W(y) containing y such that W(y) - V(y) is a countable set. For each $y \in Y$, we have $W(y) \subset (W(y) - V(y)) \cup V(y)$ and hence

$$f^{-1}(W(y)) \subset f^{-1}(W(y) - V(y)) \cup f^{-1}(V(y))$$

$$\subset f^{-1}(W(y) - V(y)) \cup U(y).$$

Since W(y) - V(y) is a countable set and $f^{-1}(y)$ is α -Lindelöf relative to X, there exists a countable set $\Lambda_2(y)$ of Λ such that

$$f^{-1}(W(y) - V(y)) \subset \bigcup \{U_{\alpha} : \alpha \in \Lambda_2(y)\}\$$

and hence

$$f^{-1}(W(y)) \subset [\cup \{U_\alpha : \alpha \in \Lambda_2(y)\}] \cup [U(y)].$$

Since $\{W(y): y \in Y\}$ is an α -open cover of the α -Lindelöf space Y, there exist countable points of Y, say, $y_1, y_2, ..., y_n$, ... such that $Y = \bigcup \{W(y_i): i \in N\}$. Therefore, we obtain

$$X = \bigcup_{i \in N} f^{-1}(W(y_i)) = \bigcup_{i \in N} [\bigcup_{\alpha \in \Lambda_2(y_i)} U_\alpha) \cup (\bigcup_{\alpha \in \Lambda_1(y_i)} U_\alpha)]$$

= $\bigcup \{U_\alpha : \alpha \in \Lambda_1(y_i) \cup \Lambda_2(y_i), i \in N\}.$

This shows that X is α -Lindelöf.

4. Decompositions of continuity

A topological space X is said to be anti-locally countable (see [1]) if every non-empty open set is uncountable. Note that \mathbb{R} with the usual topology is anti-locally countable.

Lemma 16. A topological space (X, τ^{α}) is anti-locally countable space if and only if $(X, \alpha \omega O(X))$ is anti-locally countable.

Proof. Let $A \in \alpha \omega O(X)$ and $x \in A$. Then by Lemma 6, there exist an α -open subset $U \subseteq X$ containing x and a countable set C such that $U \setminus C \subseteq A$. Thus A is uncountable and $(X, \alpha \omega O(X))$ is anti-locally countable.

Theorem 17. Let (X, τ^{α}) be an anti-locally countable space. If A is $\alpha \omega$ -open, then $\alpha \omega Cl(A) = \alpha Cl(A) = Cl(A)$.

Proof. Clearly $\alpha \omega Cl(A) \subseteq Cl(A)$. Let $x \in Cl(A)$ and B be an $\alpha \omega$ -open subset containing x. Then by Lemma 6, there exists an α -open subset V containing x and a countable set C such that $V \setminus C \subseteq B$. Thus $(V \setminus C) \cap A \subseteq B \cap A$ and so $(V \cap A) \setminus C \subseteq B \cap A$. Since $x \in V$ and $x \in Cl(A)$, $V \cap A \neq \phi$. Since V and A are $\alpha \omega$ -open, $V \cap A$ is $\alpha \omega$ -open and as (X, τ^{α}) is an anti-locally countable space, by Lemma 16, $V \cap A$ is uncountable and so is $(V \cap A) \setminus C$. Then

 $B \cap A$ is uncountable. Therefore, $B \cap A \neq \phi$ and hence $x \in \alpha \omega Cl(A)$. Hence, $\alpha \omega Cl(A) = \alpha Cl(A) = Cl(A)$.

Corollary 18. Let (X, τ^{α}) be an anti-locally countable space. If A is $\alpha \omega$ closed, then $\alpha \omega Int(A) = \alpha Int(A) = Int(A)$.

Theorem 19. Let (X, τ^{α}) be an anti-locally countable space. Then $RO(X, \tau^{\alpha}) = RO(X, \alpha \omega O(X))$.

Proof. If $A \in RO(X, \tau^{\alpha})$, then $A = \alpha Int(\alpha Cl(A))$. Since A is $\alpha \omega$ -open, and by Theorem 17, we have $A = \alpha Int(\alpha \omega Cl(A))$ and as $\alpha \omega Cl(A)$ is $\alpha \omega$ -closed, Then $A = \alpha \omega Int(\alpha \omega Cl(A))$ and hence $A \in RO(X, \alpha \omega O(X))$.

Conversely, let $A \in RO(X, \alpha \omega O(X))$. We have $A = \alpha \omega Int(\alpha \omega Cl(A))$. Since A is $\alpha \omega$ -open, by Theorem 17, $A = \alpha \omega Int(\alpha Cl(A))$. Since $\alpha Cl(A)$ is $\alpha \omega$ -closed, then $A = \alpha Int(\alpha Cl(A))$. Thus $A \in RO(X, \tau^{\alpha})$.

Theorem 20. Let (X, τ) be a topological space. Then $RO(X, \tau^{\alpha}) = RO(X, \tau)$.

Proof. Let $A \in RO(X, \tau)$, then A = Int(Cl(A)),

$$\alpha Cl(A) = A \cup Cl(Int(Cl(A))) = A \cup Cl(A) = Cl(A) \text{ and}$$

$$\alpha Int(\alpha Cl(A)) = \alpha Int(Cl(A)) = Cl(A) \cap Int(Cl(Int(Cl(A))))$$

$$= Cl(A) \cap Int(Cl(A)) = Int(Cl(A)) = A$$

Thus $A \in RO(X, \tau^{\alpha})$.

Conversely, Let $A = \alpha Int(\alpha Cl(A))$ i.e. $A \in RO(X, \tau^{\alpha})$. Since A is α -open,

$$A \subseteq Int(Cl(Int(A))) \subseteq Int(Cl(A))......(1). \text{ On the other hand,}$$

$$A = \alpha Int(\alpha Cl(A)) = \alpha Int[A \cup Cl(Int(Cl(A)))]$$

$$\subseteq \alpha Int[Cl(Int(Cl(A)))]$$

$$\subseteq Int(Cl(Int(Cl(A)))) = Int(Cl(A)).....(2)$$

By (1) and (2), we have Int(Cl(A)) = A.

Theorem 21. If A is an $\alpha\omega$ -open subset of (X,τ) , then $(\tau^{\alpha\omega})_{|A} \subseteq (\tau_{|A})^{\alpha\omega}$

Proof. Let $G \in (\tau^{\alpha\omega})_{|A}$. Then $G = H \cap A$ for some $\alpha\omega$ -open subset H. For every $x \in G$, there exist $V_H, V_A \in \tau^{\alpha}$ containing x and countable sets C_H and C_A such that $V_H \setminus C_H \subseteq H$ and $V_A \setminus C_A \subseteq A$. Therefore $x \in A \cap (V_H \cap V_A) \in \tau^{\alpha}_{|A}$, $C_H \cup C_A$ is countable and $A \cap (V_H \cap V_A) \setminus (C_H \cup C_A) \subseteq (V_H \cap V_A) \cap (X \setminus C_H) \cap (X \setminus C_A) = (V_H \setminus C_H) \cap (V_A \setminus C_A) \subseteq H \cap A = G$. Therefore, $G \in (\tau_{|A})^{\alpha\omega}$

Definition 8. A subset A of a topological space $(X.\tau)$ is said to be:

- 1. an $(\alpha \omega, \omega)$ -set if $\alpha \omega Int(A) = \omega Int(A)$.
- 2. an $(\alpha \omega, \alpha)$ -set if $\alpha \omega Int(A) = \alpha Int(A)$.
- 3. an $(\alpha \omega, O)$ -set if $\alpha \omega Int(A) = Int(A)$.

Remark 1. 1. Every ω -open set is an $(\alpha \omega, \omega)$ -set.

- 2. Every α -open set is an $(\alpha \omega, \alpha)$ -set.
- 3. Every open set is an $(\alpha\omega, O)$ -set.

The above implications are not reversible as shown in the following examples.

Example 3. In Example 2, if $H = \{A, B, D\}$ then, $Int(H) = \omega Int(H) = \{A, B\}$, $\alpha \omega Int(H) = \alpha Int(H) = H$. Thus H is $(\alpha \omega, \alpha)$ -set but it is not $(\alpha \omega, \omega)$ -set and $(\alpha \omega, O)$ -set.

Example 4. In Example 2, if $H = \{C\}$ then, $Int(H) = \alpha Int(H) = \omega Int(H) = \alpha \omega Int(H) = \phi$. Thus H is $(\alpha \omega, \omega)$ -set, $(\alpha \omega, \alpha)$ -set and $(\alpha \omega, O)$ -set. But it is not ω -open, α -open and open.

Example 5. In Example 1, if $A = \{b\}$ then, $Int(A) = \alpha Int(A) = \phi$, $\omega Int(A) = \alpha \omega Int(A) = A$. Thus A is $(\alpha \omega, \omega)$ -set but it is not $(\alpha \omega, \alpha)$ -set and $(\alpha \omega, O)$ -set.

Proposition 3. Let A be a subset of a space X. The following are equivalent:

- 1. A is ω -open;
- 2. A is $\alpha\omega$ -open and an $(\alpha\omega, \omega)$ -set.

Proof. (1) \Rightarrow (2): It follows form the fact that every ω -open set is $\alpha\omega$ -open. (2) \Rightarrow (1): Let A be $\alpha\omega$ -open and an $(\alpha\omega, \omega)$ -set. Then $A = \alpha\omega Int(A) = \omega Int(A)$. This shows that A is ω -open.

Proposition 4. Let A be a subset of a space X. The following are equivalent:

- 1. A is α -open;
- 2. A is $\alpha\omega$ -open and an $(\alpha\omega, \alpha)$ -set.

Proof. (1) \Rightarrow (2): It follows form the fact that every α -open set is $\alpha\omega$ -open. (2) \Rightarrow (1): Let A be $\alpha\omega$ -open and an $(\alpha\omega, \alpha)$ -set. Then $A = \alpha\omega Int(A) = \alpha Int(A)$. This shows that A is α -open.

Proposition 5. Let A be a subset of a space X. The following are equivalent:

- 1. A is open;
- 2. A is $\alpha\omega$ -open and an $(\alpha\omega, O)$ -set.

Proof. (1) \Rightarrow (2): It follows form the fact that every open set is $\alpha\omega$ -open. (2) \Rightarrow (1): Let A be $\alpha\omega$ -open and an $(\alpha\omega, O)$ -set. Then $A = \alpha\omega Int(A) = Int(A)$. This shows that A is open.

Definition 9. A function $f: X \to Y$ is said to be $(\alpha\omega, \omega)$ -continuous (resp. $(\alpha\omega, \alpha)$ -continuous, $(\alpha\omega, O)$ -continuous) if $f^{-1}(V)$ is $(\alpha\omega, \omega)$ -set (resp. $(\alpha\omega, \alpha)$ -set, $(\alpha\omega, O)$ -set) for each open set V in Y.

Theorem 22. A function $f: X \to Y$ is continuous (resp. α -continuous, ω -continuous) if and only if f is $\alpha\omega$ -continuous and $(\alpha\omega, O)$ -continuous (resp. $(\alpha\omega, \alpha)$ -continuous, $(\alpha\omega, \omega)$ -continuous)

Proof. This is an immediate consequence of Propositions 3, 4 and 5.

References

- [1] A.Al-Omari and M.S.M.Noorani, Regular generalized ω -closed sets, Internat. J. Math. Math. Sci. vol. 2007, Article ID 16292, 11 page.
 - [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32.
 - [3] H.Z. Hdeib, ω -closed mapping, Rev. Colomb. Mat. 16 (1-2) (1982), 65-78.

- [4] S. Jafari and T. Noiri, On α -quasi irresolute functions, Rend. Circ. Mat. Palermo (2) 50 (2001), 137-152.
 - [5] H.Z. Hdeib, ω -continuous functions, Dirasat 16 (2) (1989), 136-142.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [7] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [8] T. Noiri, On α -continuous functions, Časopis Pěst. Mat. 109 (1984), 118-126.
- [9] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar. 41 (1983), 213-218.
- [10] A.S. Mashhour, M.E. Abd El-Monsef and S.N.El-Deeb, *On precontinuous and weak precontinuous functions*, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [11] M.L. Thivagar, Generalization of pairwise α -continuous function, Pure and Appl. Math. Sci. 33 (1-2) (1991), 55-63.

Ahmad Al-Omari Al al-Bayt University, Faculty of Sciences, Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan email: omarimutah1@yahoo.com

Takashi Noiri 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 , Japan email: t.noiri@nifty.com

Mohd. Salmi Md. Noorani School of Mathematical Sciences Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia email: msn@ukm.my