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Abstract. In this paper, we introduce a new type of generalized invexity,
namely (p, r)-ρ-(η, θ)-invexity, for set-valued optimization problems. We establish
the sufficient optimality conditions and duality results of Mond-Weir type (MWD)
under the stated (p, r)-ρ-(η, θ)-invexity assumptions. As a special case, our results
reduce to the existing ones of scalar valued optimization problems.
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1. Introduction

Convex Analysis has a vital role in investigating the solutions of vector optimization
problems. To relax convexity assumptions, various notions of generalized convex-
ity have been introduced. In 1981, Hanson [7] introduced the notion of invexity.
Later, many authors have studied further generalizations of invexity. One of such
generalizations is (p, r)-invexity introduced by Antczak [1, 2]. He established the suf-
ficient optimality conditions and duality results under (p, r)-invexity assumptions in
nonlinear multiobjective programming problems. Recently, Mandal and Nahak [9]
introduced generalized (p, r)-invexity, namely (p, r)-ρ-(η, θ)-invexity, in vector opti-
mization. They established the sufficient optimality conditions and duality results
of Mond-Weir type under (p, r)-ρ-(η, θ)-invexity assumptions.

Recently, there has been an increasing interest in the extension of vector opti-
mization problems to set-valued optimization problems, where the objective func-
tion and functions attached to constraints are set-valued maps. It has huge ap-
plications in economics, management science, and engineering. The derivative of
set-valued maps is an important tool for set-valued optimization problems. An-
bin and Frankowska [3] introduced the notion of contingent derivative of set-valued
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maps. For single-valued map, contingent derivative coincides with Frechet deriva-
tive (Remark 15.2. in [8]). In 1987, Corley [4] established the generalized Fritz John
necessary optimality conditions for the maximization of set-valued maps in terms
of contingent derivative. He also proved the generalized Fritz John sufficient condi-
tions of set-valued optimization problems where the objective function and functions
attached to constraints are cone concave set-valued maps. Later, Sach and Craven
[10, 11] introduced invex set-valued maps and proved duality theorems of Mond-Weir
type.

In this paper, we extend the notion of (p, r)-ρ-(η, θ)-invexity from vectorial case
to set-valued one. We establish that the Fritz John optimality conditions are suffi-
cient under (p, r)-ρ-(η, θ)-invexity assumptions. We also establish the duality theo-
rems of Mond-Weir type (MWD) of a pair of set-valued optimization problems under
(p, r)-ρ-(η, θ)-invexity assumptions.

2. Definitions and Preliminaries

Let K be a nonempty subset of Rm. Then K is said to be a cone if λy ∈ K, for
all y ∈ K and λ ≥ 0. Also, K is called pointed if K ∩ (−K) = {0Rm}, solid if
int(K) 6= ∅, closed if K = K and convex if λy1 + (1 − λ)y2 ∈ K, for all y1, y2 ∈ K
and λ ∈ [0, 1], where int(K) and K denote the interior and closure of K, respectively
and 0Rm is the zero element of Rm. The dual cone to K is

K+ = {y∗ ∈ Rm : y∗y ≥ 0,∀y ∈ K},

where y∗y is the inner product between y∗ and y.
Let Rm+ = {y = (y1, ..., ym) ∈ Rm : yi ≥ 0, for all i = 1, ...,m}. Then Rm+ is a solid

pointed closed convex cone in Rm. It is clear that y∗y > 0, for any y∗ ∈ Rm+ \ {0Rm}
and y ∈ int(Rm+ ).

With respect to Rm+ , there are two types of cone-orderings in Rm. For any two
elements y1, y2 ∈ Rm,

y1 ≤ y2 if y2 − y1 ∈ Rm+

and

y1 < y2 if y2 − y1 ∈ int(Rm+ ).

For any nonempty subsets Y, Y ′ of Rm and y∗, y′∗ ∈ Rm, define

y∗Y + y′∗Y ′ =
⋃

y ∈ Y
y′ ∈ Y ′

{y∗y + y′∗y′}.

94



K. Das, C. Nahak – Sufficiency and Duality in Set-Valued . . .

The ordering of two subsets of Rm with respect to Rm+ is defined as

Y ≥ Y ′ ⇐⇒ y ≥ y′, for all y ∈ Y and y′ ∈ Y ′.

Let y = (y1, ..., ym) ∈ Rm. The logarithm and exponential of y are defined by
componentwise

log y = (log y1, ..., log ym)T , for y > 0 (wrt. Rm+ )

and

ey = (ey1 , ..., eym)T , for any y.

Let ∅ 6= Y ⊆ Rm. Define two sets log Y and eY as

log Y = {log y : y ∈ Y }, for Y > 0Rm (wrt. Rm+ )

and

eY = {ey : y ∈ Y }, for any Y .

Similarly, we can define y
1
p and Y

1
p for nonzero real number p.

Let 2R
m

be the set of all subsets of Rm and F : Rn → 2R
m

be a set-valued map from
Rn to Rm. The effective domain, range, graph, and epigraph of the set-valued map
F are defined as

dom(F ) = {x ∈ Rn : F (x) 6= ∅},

F (X) =
⋃
x∈X

F (x), for any ∅ 6= X ⊆ Rn,

gr(F ) = {(x, y) ∈ Rn × Rm : y ∈ F (x)},

and
epi(F ) = {(x, y) ∈ Rn × Rm : y ∈ F (x) + Rm+}.

The following notions of minimality are mainly used in Rm with respect to Rm+ .

Definition 2.1. Let Y be a nonempty subset of Rm and y′ ∈ Y . Then y′ is called a
minimal point of Y if there is no y ∈ Y \{y′} such that y ≤ y′ and a weakly minimal
point of Y if there is no y ∈ Y such that y < y′.
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The sets of minimal points and weak minimal points of Y are denoted by minY and
w-min Y , respectively and characterized as

minY = {y′ ∈ Y : (y′ − Rm+ ) ∩ Y = {y′}}

and
w-min Y = {y′ ∈ Y : (y′ − int(Rm+ )) ∩ Y = ∅}.

The maximal points and weak maximal points of Y are defined in similar manners.
Contingent cone is an important tool in set-valued analysis. Aubin and Frankowsa
[3] characterized the contingent cone in terms of sequences.

Definition 2.2. [3] Let B be a nonempty subset of Rm and y0 ∈ B. Then the
contingent cone of B at y0 is denoted by T (B, y0) and y ∈ T (B, y0) if there exist
sequences {λn} with λn → 0+ and {yn} with yn → y such that, y0 + λnyn ∈ B, for
all n ∈ N.

It is obvious that if y0 ∈ int(B), then T (B, y0) = Rm.

Proposition 2.1. [4] T (B, y0) is a closed cone of Rm and T (B, y0) ⊆
⋃
h>0

B − y0
h

.

If B is a convex set, then the equality holds and B − y0 ⊆ T (B, y0).

Let X be a nonempty subset of Rn and F : X → 2R
m

be a set-valued map with
dom(F ) = X and (x0, y0) ∈ gr(F ). Aubin and Frankowsa [3] introduced the notion
of contingent derivative of set-valued maps.

Definition 2.3. [3] A set-valued function DF (x0, y0) : Rn → 2R
m

whose graph
coincides with the contingent cone to the graph of F at (x0, y0), i.e.

gr(DF (x0, y0)) = T (gr(F ), (x0, y0)),

is said to be the contingent derivative of F at (x0, y0).

The domain of the contingent derivative, dom(DF (x0, y0)) is not necessarily
the whole space Rn. It is equal to the projection of T (gr(F ), (x0, y0)) onto Rn.
For a single-valued map f : Rn → Rm which is Frechet differentiable at x0, from
Lyusternik’s Theorem [8], we have

T (gr(f), (x0, f(x0))) = gr(f ′(x0))

Therefore, the contingent derivative is the natural extension of Frechet derivative
from vectorial to set-valued case.
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Definition 2.4. [4] Let X be a convex set of Rn and F : X → 2R
m

be a set-valued
map. Then F is said to be Rm+ -convex on X if for all x1, x2 ∈ X and λ ∈ [0, 1],

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) + Rm+ .

Lemma 2.1. [4] Let X be a convex set of Rn and F : X → 2R
m

be a Rm+ -convex
set-valued map. Then for all x, x0 ∈ X and y0 ∈ F (x0),

F (x)− y0 ⊆ D(F + Rm+ )(x0, y0)(x− x0),

where F + Rm+ is a set-valued map defined by

(F + Rm+ )(x) = F (x) + Rm+ , x ∈ X.

Definition 2.5. [11] Let ∅ 6= X ⊆ Rn, η : X×X → Rn be a map and F : X → 2R
m

be a set-valued map with (x0, y0) ∈ gr(F ). Suppose that F + Rm+ is contingent
derivable at (x0, y0) with

η(X,x0) ⊆ dom(D(F + Rm+ )(x0, y0)).

Then F is said to be η-invex at (x0, y0) if

F (x)− y0 ⊆ D(F + Rm+ )(x0, y0)(η(x, x0)), for all x ∈ X,

where η(X,x0) = {η(x, x0) : x ∈ X}.
Let X be a nonempty subset of Rn and F : X → 2R

m
and G : X → 2R

k
be two

set-valued maps with dom(F ) = dom(G) = X. We consider a primal problem (P).

minimize
x∈X

F (x)

subject to G(x) ∩ (−Rk+) 6= ∅.
(P)

For special case, when f : X → Rm and g : X → Rk are single-valued maps, we
obtain a classical single-valued primal problem as

minimize
x∈X

f(x)

subject to g(x) ≤ 0Rm .

Definition 2.6. A point (x0, y0) ∈ Rn × Rm is said to be a feasible point of the
problem (P) if x0 ∈ X, y0 ∈ F (x0), and G(x0) ∩ (−Rk+) 6= ∅.

Let G−(−Rk+) = {x ∈ Rn : G(x) ∩ (−Rk+) 6= ∅} and S = X ∩ G−(−Rk+). Then
minimizers and weak minimizers of the problem (P) are defined in the following
ways.

97



K. Das, C. Nahak – Sufficiency and Duality in Set-Valued . . .

Definition 2.7. A feasible point (x0, y0) of (P) is said to be a minimizer of the
problem (P) if

y0 ∈ minF (S)

and a weak minimizer of the problem (P) if

y0 ∈ w-min F (S).

Let FS , GS be the restrictions of F,G to S, respectively and (FS +Rm+ , GS +Rk+)
be a set-valued map defined by

(FS + Rm+ , GS + Rk+)(x) = (FS + Rm+ )(x)× (GS + Rk+)(x), for x ∈ X.

Corley [4] introduced the Fritz John sufficient optimality conditions of the problem
(P).

Theorem 2.1. [4] Let X be a convex set and F , G be Rm+ -convex and Rk+-convex on
X, respectively. Suppose that there exist x0 ∈ S, y0 ∈ F (x0), z0 ∈ G(x0) ∩ (−Rk+),
0Rm 6= y∗ ∈ Rm+ , and z∗ ∈ T (Rk+, z0)+ such that,

y∗y + z∗z ≥ 0,

for all (y, z) ∈ D(FS + Rm+ , GS + Rk+)(x0, y0, z0)(x) and x ∈ T (S, x0). Then (x0, y0)
is a weak minimizer of the problem (P).

Definition 2.8. Let X be a nonempty subset of Rn and F : X → 2R
m

be a
set-valued map. Then F is called locally Lipschitz at x0 ∈ X if there exist a
neighborhood N of x0 and a constant r such that

dH(F (x), F (x′)) ≤ r‖x− x′‖, for all x, x′ ∈ N ∩ dom(F ),

where dH(., .) is the Hausdorff distance in 2R
m

.

Lemma 2.2. [11] Let either F or G be locally Lipschitz at x0. Then, we have

D(FS + Rm+ , GS + Rk+)(x0, y0)(.) =D(FS + Rm+ )(x0, y0)(.)

+D(GS + Rk+)(x0, z0)(.).

Now, since X and G−(−Rk+) are convex sets, so S is also convex. Hence, from
Proposition 2.1, we have x − x0 ∈ T (S, x0), for all x ∈ S. Now, if z∗ ∈ Rk+ and
z∗z0 = 0, then z∗ ∈ T (Rk+, z0)+. Then, we get Fritz John sufficient optimality
conditions as

y∗D(FS + Rm+ )(x0, y0)(x− x0) + z∗D(GS + Rk+)(x0, z0)(x− x0) ≥ 0, ∀x ∈ S

and

z∗z0 = 0.
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3. Optimality Conditions

Our objective is to establish the sufficient optimality conditions of the problem
(P) under generalized invexity assumptions. Let X be a nonempty subset of Rn
and F : X → 2R

m
be a set-valued map with dom(F ) = X and (x0, y0) ∈ gr(F ).

Throughout the paper, we assume that 1 = (1, ..., 1) ∈ Rn, 1′ = (1, ..., 1) ∈ Rm,
and 1′′ = (1, ..., 1) ∈ Rk. We introduce the notion of (p, r)-ρ-(η, θ)-invex set-valued
maps. For p = 0 and r = 0, we have the notions of ρ-(η, θ)-invex and ρ-cone convex
set-valued maps, introduced by Das and Nahak [5, 6].

Definition 3.1. Let F +Rm+ be contingent derivable at (x0, y0). Then F is said to
be (p, r)-ρ-(η, θ)-invex at (x0, y0) if there exist vector functions η, θ : X ×X → Rn
and ρ ∈ R with ((epη(X,x0) − 1)/p) ⊂ dom(D(F + Rm+ )(x0, y0)), for p 6= 0 and
η(X,x0) ⊂ dom(D(F + Rm+ )(x0, y0)), for p = 0, such that, for all x ∈ X,

(er(F (x)−y0) − 1′)/r ⊂ D(F + Rm+ )(x0, y0)((e
pη(x,x0) − 1)/p) + ρ‖θ(x, x0)‖21′

for p 6= 0, r 6= 0,

F (x)− y0 ⊂ D(F + Rm+ )(x0, y0)((e
pη(x,x0) − 1)/p) + ρ‖θ(x, x0)‖21′

for p 6= 0, r = 0,

(er(F (x)−y0) − 1′)/r ⊂ D(F + Rm+ )(x0, y0)(η(x, x0)) + ρ‖θ(x, x0)‖21′

for p = 0, r 6= 0,

F (x)− y0 ⊂ D(F + Rm+ )(x0, y0)(η(x, x0)) + ρ‖θ(x, x0)‖21′

for p = 0, r = 0.

For a continuously differentiable single valued map f : Rn → Rm,

D(f + Rm+ ) = ∇f(x0)(.) + Rm+ ,

where ∇f is the gradient of f . Therefore, for single valued case, the above notion
reduces to (p, r)-ρ-(η, θ)-invexity, introduced by Mandal and Nahak [9]. We have the
following example of a set-valued map which is (p, r)-ρ-(η, θ)-invex but not η-invex.

Example 3.1. Let F : R→ 2R
2

be a set-valued map defined by

F (λ) =

{
{(x, x2) : x ≥ 0}, if λ ≥ 0,

{(x, x2) : −1 < x < 0}, if λ < 0.

We have
T (gr(F + R2

+), (0, (0, 0))) = R× R2
+.

Hence,
gr(D(F + R2

+)(0, (0, 0))) = R× R2
+.

Now for −1 < x < 0,
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(x, x2) /∈ D(F + R2
+)(0, (0, 0))η(λ, 0) + R2

+, for any η.

Hence, F is not η-invex map for any η.
We choose p = 0, r = 1, ρ = −1 and η, θ such a way that

η(λ, 0) ≥ 0 and θ(λ, 0) = 1, for any λ.

Now
e(x,x

2)−(0,0) − 1− ρ|θ(λ, 0)|21 = e(x,x
2).

For any x > −1, we have

e(x,x
2) ∈ D(F + R2

+)(0, (0, 0))η(λ, 0) + R2
+.

Hence, F is (0, 1)-ρ-(η, θ)-invex map.

Theorem 3.1. (Sufficient Optimality Conditions) Let (x0, y0) be a feasible
point of the problem (P) and z0 ∈ G(x0) ∩ (−Rk+). Assume that FS is (p, r)-ρ1-
(η, θ)-invex at (x0, y0) and GS is (p, r)-ρ2-(η, θ)-invex at (x0, z0) with respect to
same functions η and θ and ρ1(y

∗1′) + ρ2(z
∗1′′) ≥ 0. Suppose that there exists

(y∗, z∗) ∈ Rm+ × Rk+, with y∗ 6= 0Rm , such that

y∗D(FS + Rm+ )(x0, y0)((e
pη(x,x0) − 1)/p)

+ z∗D(GS + Rk+)(x0, z0)((e
pη(x,x0) − 1)/p) ≥ 0,∀x ∈ S, (for p 6= 0),

y∗D(FS + Rm+ )(x0, y0)η(x, x0)

+ z∗D(GS + Rk+)(x0, z0)η(x, x0) ≥ 0,∀x ∈ S, (for p = 0),

(3.1)

and

z∗z0 = 0. (3.2)

Then (x0, y0) is a weak minimizer of the problem (P).

Proof. We prove the theorem by the method of contradiction in the case when p 6= 0.
For p = 0, we can prove likewise.
Suppose that (x0, y0) is not a weak minimizer of the problem (P).
Then,

(y0 − int(Rm+ )) ∩ F (S) 6= ∅.

Therefore, there exist x ∈ S, y ∈ F (x) such that

y < y0.
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Hence,

ey < ey0 ⇒ 1

r
ery <

1

r
ery−0 ⇒ (er(y−y0) − 1′)/r < 0.

As y∗ 6= 0Rm , we have
y∗(er(y−y0) − 1′)/r < 0.

Since, x ∈ S, there exists an element z ∈ G(x) ∩ (−Rk+).
Let z∗ = (z∗1 , ..., z

∗
k), z = (z1, ..., zk), and z0 = (z1

′, ..., zk
′).

As z ∈ −Rk+, we have

z ≤ 0⇒ ez ≤ 1′′ ⇒ 1

r
erz ≤ 1

r
1′′ ⇒ (erz − 1′′)/r ≤ 0.

Now z∗z0 = 0, z0 ∈ −Rk+ and z∗ ∈ Rk+.
Therefore, if zi

′ < 0 for some i, where 1 ≤ i ≤ k, then zi
∗ = 0.

So, in this case,
zi
∗(er(zi−zi

′) − 1)/r = 0.

Again, if zi
′ = 0 for some i, where 1 ≤ i ≤ k, then

zi
∗(er(zi−zi

′) − 1)/r = zi
∗(erzi − 1)/r ≤ 0.

Combining both cases, we have

z∗(er(z−z0) − 1′′)/r ≤ 0.

Hence, we have

y∗(er(y−y0) − 1′)/r + z∗(er(z−z0) − 1′′)/r < 0. (3.3)

As FS is ρ1 − (η, θ)-invex at (x0, y0) and GS is ρ2 − (η, θ)-invex at (x0, z0), we have

(er(y−y0) − 1′)/r ∈ D(FS + Rm+ )(x0, y0)((e
pη(x,x0) − 1)/p) + ρ‖θ(x, x0)‖1′ (3.4)

and

(er(z−z0) − 1′′)/r ∈ D(GS + Rk+)(x0, z0)((e
pη(x,x0) − 1)/p) + ρ‖θ(x, x0)‖21′′. (3.5)

Therefore, from (3.1), (3.4), (3.5), and the condition ρ1(y
∗1′) + ρ2(z

∗1′′) ≥ 0, we
have

y∗(er(y−y0) − 1′)/r + z∗(er(z−z0) − 1′′)/r ≥ 0.

This contradicts (3.3).
Hence, (x0, y0) is a weak minimizer of the problem (P).
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4. Mond-Weir Type Duality

In several set-valued optimization problems, evaluating the dual maximization prob-
lem is comparatively easier than solving the primal minimization problem. Sach and
Craven [11] proved the duality results of Mond-Weir type under invexity assump-
tions. We establish the duality results under (p, r)-ρ-(η, θ)-invexity assumptions.
Let x′ ∈ X, y′ ∈ F (x′), z′ ∈ G(x′). We assume that FS +Rm+ is contingent derivable
at (x′, y′) and GS + Rk+ is contingent derivable at (x′, z′) with,

((epη(S,x
′) − 1)/p) ⊆ dom(D(FS + Rm+ )(x′, y′)) ∩ dom(D(GS + Rk+)(x′, z′)),

for p 6= 0,

and

η(S, x′) ⊆ dom(D(FS + Rm+ )(x′, y′)) ∩ dom(D(GS + Rk+)(x′, z′)),

for p = 0.

For the primal problem (P), we consider a Mond-Weir type dual problem (MWD).

maximize y′ (MWD)

subject to y∗D(FS + Rm+ )(x′, y′)((epη(x,x
′) − 1)/p)

+ z∗D(GS + Rk+)(x′, z′)((epη(x,x
′) − 1)/p) ≥ 0,∀x ∈ S, for p 6= 0,

y∗D(FS + Rm+ )(x′, y′)(η(x, x′))

+ z∗(GS + Rk+)(x′, z′)(η(x, x′)) ≥ 0, ∀x ∈ S, for p = 0,

z∗z′ ≥ 0,

y∗1′ = 1, y∗ ∈ Rm+ \ {0Rm}, and z∗ ∈ Rk+.

For single-valued optimization, we have the Mond-Weir type dual problem con-
sidered in [9].

maximize f(x′)

subject to y∗∇f(x′)((epη(x,x
′) − 1)/p)

+ z∗∇g(x′)((epη(x,x
′) − 1)/p) ≥ 0,∀x ∈ S, for p 6= 0,

y∗∇f(x′)(η(x, x′)) + z∗∇g(x′)(η(x, x′)) ≥ 0, ∀x ∈ S, for p = 0,

z∗g(x′) ≥ 0,

y∗1′ = 1, y∗ ∈ Rm+ \ {0Rm}, and z∗ ∈ Rk+.

This is the Mond-Weir type dual problem considered in [9].
Let W1 = {y′ : (x′, y′, z′, y∗, z∗) is a feasible point of (MWD)}.
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Definition 4.1. A feasible point (x′, y′, z′, y∗, z∗) of the problem (MWD) is said to
be a weak maximizer of (MWD), if

(y′ + int(Rm+ )) ∩W1 = ∅.

Theorem 4.1. (Weak Duality) Let (x0, y0) and (x′, y′, z′, y∗, z∗) be feasible points
for the problems (P) and (MWD), respectively, with z′ ∈ G(x′) ∩ (−Rk+). Assume
that FS is (p, r)-ρ1-(η, θ)-invex at (x′, y′) and GS is (p, r)-ρ2-(η, θ)-invex at (x′, z′)
with respect to same functions η, θ and ρ1 + ρ2(z

∗1′′) ≥ 0. Then, we have

y0 ≮ y′.

Proof. We prove the theorem by the method of contradiction.
Suppose that y0 < y′. Hence,

ey0 < ey
′ ⇒ 1

r
ery0 <

1

r
ery

′ ⇒ (er(y0−y
′) − 1′)/r < 0.

Since, y∗ 6= 0Rm , we have
y∗(er(y0−y

′) − 1′)/r < 0.

As x0 ∈ S, there exists an element z0 ∈ G(x0) ∩ (−Rk+).
Let z∗ = (z∗1 , ..., z

∗
k), z0 = (z1, ..., zk), and z′ = (z1

′, ..., zk
′).

Since, z0 ∈ −Rk+, we have

z0 ≤ 0⇒ ez0 ≤ 1′′ ⇒ 1

r
erz0 ≤ 1

r
1′′ ⇒ (erz0 − 1′′)/r ≤ 0.

As z′ ∈ −Rk+ and z∗ ∈ Rk+, we have

z∗z′ ≤ 0.

Again, from duality constraints, we have

z∗z′ ≥ 0.

Therefore,
z∗z′ = 0.

Now z∗z′ = 0, z′ ∈ −Rk+ and z∗ ∈ Rk+.
Consequently, if zi

′ < 0 for some i, where 1 ≤ i ≤ k, then zi
∗ = 0.

So, in this case,
zi
∗(er(zi−zi

′) − 1)/r = 0.
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Again, if zi
′ = 0 for some i, where 1 ≤ i ≤ k, then

zi
∗(er(zi−zi

′) − 1)/r = zi
∗(erzi − 1)/r ≤ 0.

Combining both cases, we have

z∗(er(z0−z
′) − 1′′)/r ≤ 0.

So, we have
y∗(er(y0−y

′) − 1′)/r + z∗(er(z0−z
′) − 1′′)/r < 0. (4.6)

As FS is (p, r)-ρ1-(η, θ)-invex at (x′, y′) and GS is (p, r)-ρ2-(η, θ)-invex at (x′, z′), we
have

(er(y0−y
′) − 1′)/r ∈ D(FS + Rm+ )((x′, y′)((epη(x0,x

′) − 1)/p) + ρ‖θ(x0, x′)‖21′ (4.7)

and

(er(z0−z
′) − 1′′)/r ∈ D(GS + Rk+)(x′, z′)((epη(x0,x

′) − 1)/p) + ρ‖θ(x0, x′)‖21′′. (4.8)

Hence, from (4.7), (4.8), and the conditions y∗1′ = 1 and ρ1 +ρ2(z
∗1′′) ≥ 0, we have

y∗(er(y0−y
′) − 1′)/r + z∗(er(z0−z

′) − 1′′)/r ≥ 0.

This contradicts (4.6). Therefore
y0 ≮ y′.

Theorem 4.2. (Strong Duality) Let (x0, y0) be a weak minimizer of the problem
(P). Assume that for some (y∗, z∗) ∈ Rm+ × Rk+, with y∗1′ = 1, Eqs. (3.1) and
(3.2) are satisfied for some z0 ∈ G(x0)∩ (−Rk+). Then (x0, y0, z0, y

∗, z∗) is a feasible
solution for (MWD). Now if the Weak Duality Theorem 4.1 between (P) and (MWD)
holds, then (x0, y0, z0, y

∗, z∗) is a weak maximizer of (MWD).

Proof. Since the Eqs. (3.1) and (3.2) are satisfied, we have

y∗D(FS + Rm+ )(x0, y0)((e
pη(x,x0) − 1)/p)

+ z∗D(GS + Rk+)(x0, z0)((e
pη(x,x0) − 1)/p) ≥ 0, ∀x ∈ S, for p 6= 0,

y∗D(FS + Rm+ )(x0, y0)η(x, x0)

+ z∗D(GS + Rk+)(x0, z0)η(x, x0) ≥ 0, ∀x ∈ S, for p = 0,

and
z∗z0 = 0.
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Hence, (x0, y0, z0, y
∗, z∗) is a feasible solution for (MWD).

Next, we show that,
(y0 + int(Rm+ )) ∩W1 = ∅.

We prove it by the method of contradiction.
Let y′ ∈ (y0 + int(Rm+ )) ∩W1.
Therefore,

y′ − y0 ∈ int(Rm+ )⇒ y0 < y′.

This contradicts the Weak Duality Theorem 4.1 between (P) and (MWD).
Therefore,

(y0 + int(Rm+ )) ∩W1 = ∅.

Hence, (x0, y0, z0, y
∗, z∗) is a weak maximizer for (MWD).

Theorem 4.3. (Converse Duality) Let (x′, y′, z′, y∗, z∗) be a weak maximizer
of the problem (MWD) with z′ ∈ G(x′) ∩ (−Rk+). Assume that FS is (p, r)-ρ1-
(η, θ)-invex at (x′, y′) and GS is (p, r)-ρ2-(η, θ)-invex at (x′, z′) with respect to same
functions η and θ and ρ1 + ρ2(z

∗1′′) ≥ 0. Then (x′, y′) is a weak minimizer of (P).

Proof. Clearly, (x′, y′) is a feasible solution of the problem (P).
Let (x′, y′) be not a weak minimzer of the problem (P).
Then,

(y′ − int(Rm+ )) ∩ F (S) 6= ∅.

So, there exist x ∈ S and y ∈ F (x), such that

y′ − y ∈ int(Rm+ ) i.e., y < y′.

Hence,

ey < ey
′ ⇒ 1

r
ery <

1

r
ery

′ ⇒ (er(y−y
′) − 1′)/r < 0′.

Since, y∗ 6= 0Rm , we have
y∗(er(y−y

′) − 1′)/r < 0.

As x ∈ S, there exists an element z ∈ G(x) ∩ (−Rk+).
Let z∗ = (z∗1 , ..., z

∗
k), z = (z1, ..., zk), and z′ = (z1

′, ..., zk
′).

Since, z ∈ −Rk+, we have

z ≤ 0′′ ⇒ ez ≤ 1′′ ⇒ 1

r
erz ≤ 1

r
1′′ ⇒ (erz − 1′′)/r ≤ 0.

As z′ ∈ −Rk+ and z∗ ∈ Rk+, we have

z∗z′ ≤ 0.
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Again, from duality constraints we have

z∗z′ ≥ 0.

Therefore,
z∗z′ = 0.

Now z∗z′ = 0, z′ ∈ −Rk+ and z∗ ∈ Rk+.
Therefore, if zi

′ < 0 for some i, where 1 ≤ i ≤ k, then zi
∗ = 0.

So, in this case,
zi
∗(er(zi−zi

′) − 1)/r = 0.

Again, if zi
′ = 0 for some i, where 1 ≤ i ≤ k, then

zi
∗(er(zi−zi

′) − 1)/r = zi
∗(erzi − 1)/r ≤ 0.

Combining both cases, we have

z∗(er(z−z
′) − 1′′)/r ≤ 0.

Therefore, we have

y∗(er(y−y
′) − 1′)/r + z∗(er(z−z

′) − 1′′)/r < 0. (4.9)

As FS is (p, r)-ρ1-(η, θ)-invex at (x′, y′) and GS is (p, r)-ρ2-(η, θ)-invex at (x′, z′), we
have

(er(y−y
′) − 1′)/r ∈ D(FS + Rm+ )(x′, y′)η(x, x′) + ρ‖θ(x, x′)‖21′ (4.10)

and

(er(z−z
′) − 1′′)/r ∈ D(GS + Rp+)(x′, z′)η(x, x′) + ρ‖θ(x, x′)‖21′′. (4.11)

Hence, from (4.10), (4.11), and the conditions y∗1′ = 1 and ρ1 + ρ2(z
∗1′′) ≥ 0, we

have

y∗(er(y−y
′) − 1′)/r + z∗(er(z−z

′) − 1′′)/r ≥ 0.

This contradicts (4.9).
Hence, (x′, y′) is a weak minimizer of (P).
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4.1. Wolfe Type Duality

For the primal problem (P), we consider a Wolfe type dual problem (WD).

maximize y′ + (z∗z′)1′ (WD)

subject to y∗D(FS + Rm+ )(x′, y′)((epη(x,x
′) − 1)/p)

+ z∗D(GS + Rk+)(x′, z′)((epη(x,x
′) − 1)/p) ≥ 0,∀x ∈ S, for p 6= 0,

y∗D(FS + Rm+ )(x′, y′)(η(x, x′))

+ z∗D(GS + Rk+)(x′, z′)(η(x, x′)) ≥ 0, ∀x ∈ S, for p = 0,

y∗1′ = 1, y∗ ∈ Rm+ \ {0Rm}, and z∗ ∈ Rk+.

For single-valued optimization, we have Wolfe type dual problem as

maximize f(x′) + (z∗g(z′))1′

subject to y∗∇f(x′)((epη(x,x
′) − 1)/p)

+ z∗∇g(x′)((epη(x,x
′) − 1)/p) ≥ 0,∀x ∈ S, for p 6= 0,

y∗∇f(x′)(η(x, x′)) + z∗∇g(x′)(η(x, x′)) ≥ 0, ∀x ∈ S, for p = 0,

y∗1′ = 1, y∗ ∈ Rm+ \ {0Rm}, and z∗ ∈ Rk+.

This is the Wolfe type dual problem considered in [9].
Let W2 = {y′ + (z∗z′)1′ : (x′, y′, z′, y∗, z∗) is a feasible point of (WD)}.

Definition 4.2. A feasible point (x′, y′, z′, y∗, z∗) of the problem (WD) is said to
be a weak maximizer of (WD), if

(y′ + (z∗z′)1′ + int(Rm+ )) ∩W2 = ∅.

We prove the duality results of Wolfe type of the problem (P). The proofs are
very similar to Theorems 4.1 - - 4.3, and hence omitted.

Theorem 4.4. (Weak Duality) Let (x0, y0) and (x′, y′, z′, y∗, z∗) be feasible points
for the problems (P) and (WD) respectively. Assume that FS is (p, 0)− ρ1 − (η, θ)-
invex at (x′, y′) and GS is (p, 0) − ρ2 − (η, θ)-invex at (x′, z′) with respect to same
functions η and θ and ρ1 + ρ2(z

∗e′) ≥ 0. Then, we have

y0 ≮ y′ + (z∗z′)1′.

Theorem 4.5. (Strong Duality) Let (x0, y0) be a weak minimizer of the problem
(P). Assume that for some (y∗, z∗) ∈ Rm+ × Rk+, with y∗1′ = 1, Eqs. (3.1) and (3.2)

107



K. Das, C. Nahak – Sufficiency and Duality in Set-Valued . . .

are satisfied for some z0 ∈ G(x0) ∩ (−Rk+). Then (x0, y0, z0, y
∗, z∗) is a feasible

solution for (WD). Now if the Weak Duality Theorem 4.4 between (P) and (WD)
holds, then (x0, y0, z0, y

∗, z∗) is a weak maximizer of (WD).

Theorem 4.6. (Converse Duality) Let (x′, y′, z′, y∗, z∗) be a weak maximizer of
the problem (WD) with z∗z′ = 0. Assume that FS is (p, 0) − ρ1 − (η, θ)-invex at
(x′, y′) and GS is (p, 0)− ρ2 − (η, θ)-invex at (x′, z′) with respect to same functions
η and θ and ρ1 + ρ2(z

∗1′′) ≥ 0. Then (x′, y′) is a weak minimizer of (P).

4.2. Mixed Type Duality

For the primal problem (P), we consider a mixed type dual problem (Mix D).

maximize y′ + (z∗z′)1′ (Mix D)

subject to y∗D(FS + Rm+ )(x′, y′)((epη(x,x
′) − 1)/p)

+ z∗D(GS + Rk+)(x′, z′)((epη(x,x
′) − 1)/p) ≥ 0,∀x ∈ S, for p 6= 0,

y∗D(FS + Rm+ )(x′, y′)(η(x, x′))

+ z∗D(GS + Rk+)(x′, z′)(η(x, x′)) ≥ 0,∀x ∈ S, for p = 0,

z∗z′ ≥ 0,

y∗1′ = 1, y∗ ∈ Rm+ \ {0Rm}, and z∗ ∈ Rk+.

For single-valued optimization, we have the mixed type dual problem as

maximize f(x′) + (z∗g(z′))1′

subject to y∗∇f(x′)((epη(x,x
′) − 1)/p)

+ z∗∇g(x′)((epη(x,x
′) − 1)/p) ≥ 0,∀x ∈ S, for p 6= 0,

y∗∇f(x′)(η(x, x′)) + z∗∇g(x′)(η(x, x′)) ≥ 0,∀x ∈ S, for p = 0,

z∗g(x′) ≥ 0,

y∗1′ = 1, y∗ ∈ Rm+ \ {0Rm}, and z∗ ∈ Rk+.

This is the mixed type dual problem considered in [9].
Let W3 = {y′ + (z∗z′)1′ : (x′, y′, z′, y∗, z∗) is a feasible point of (Mix D)}.

Definition 4.3. A feasible point (x′, y′, z′, y∗, z∗) of the problem (Mix D) is said to
be a weak maximizer of (Mix D), if

(y′ + (z∗z′)1′ + int(Rm+ )) ∩W3 = ∅.
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We prove the duality results of mixed type of the problem (P). The proofs are
very similar to Theorems 4.1 - - 4.3, and hence omitted.

Theorem 4.7. (Weak Duality) Let (x0, y0) and (x′, y′, z′, y∗, z∗) be feasible points
for the problems (P) and (Mix D) respectively with z′ ∈ G(x′) ∩ (−Rk+). Assume
that FS is (p, r)-ρ1-(η, θ)-invex at (x′, y′) and GS is (p, r)-ρ2-(η, θ)-invex at (x′, z′)
with respect to same functions η and θ and ρ1 + ρ2(z

∗1′′) ≥ 0. Then, we have

y0 ≮ y′ + (z∗z′)1′.

Theorem 4.8. (Strong Duality) Let (x0, y0) be a weak minimizer of the problem
(P). Assume that for some (y∗, z∗) ∈ Rm+ × Rk+, with y∗1′ = 1, Eqs. (3.1) and (3.2)
are satisfied for some z0 ∈ G(x0)∩ (−Rk+). Then (x0, y0, z0, y

∗, z∗) is a feasible solu-
tion for (Mix D). Now if the Weak Duality Theorem 4.7 between (P) and (Mix D)
holds, then (x0, y0, z0, y

∗, z∗) is a weak maximizer of (Mix D).

Theorem 4.9. (Converse Duality) Let (x′, y′, z′, y∗, z∗) be a weak maximizer
of the problem (Mix D) with z′ ∈ G(x′) ∩ (−Rp+). Assume that FS is (p, r)-ρ1-
(η, θ)-invex at (x′, y′) and GS is (p, r)-ρ2-(η, θ)-invex at (x′, z′) with respect to same
functions η and θ and ρ1 + ρ2(z

∗1′′) ≥ 0. Then (x′, y′) is a weak minimizer of (P).

5. Conclusions

In this paper, we study set-valued optimization problems with (p, r)-ρ-(η, θ)-invexity
assumptions. We derive the sufficient optimality conditions and study the duality
results of Mond-Weir type under the stated (p, r)-ρ-(η, θ)-invexity assumptions. We
also construct an example to ensure that (p, r)-ρ-(η, θ)-invexity is more general than
invexity. For special case, our results reduce to the existing ones available in single-
valued optimization problems.
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