Acta Universitatis Apulensis No. 62/2020
ISSN: 1582-5329 pp- 93-110
http://www.uab.ro/auajournal / doi: 10.17114/j.aua.2020.62.08

SUFFICIENCY AND DUALITY IN SET-VALUED OPTIMIZATION
PROBLEMS UNDER (p, r)-p-(n, )-INVEXITY

K. DAs, C. NAHAK

ABSTRACT. In this paper, we introduce a new type of generalized invexity,
namely (p,r)-p-(n, §)-invexity, for set-valued optimization problems. We establish
the sufficient optimality conditions and duality results of Mond-Weir type (MWD)
under the stated (p,r)-p-(n, 0)-invexity assumptions. As a special case, our results
reduce to the existing ones of scalar valued optimization problems.
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1. INTRODUCTION

Convex Analysis has a vital role in investigating the solutions of vector optimization
problems. To relax convexity assumptions, various notions of generalized convex-
ity have been introduced. In 1981, Hanson [7] introduced the notion of invexity.
Later, many authors have studied further generalizations of invexity. One of such
generalizations is (p, r)-invexity introduced by Antczak [1, 2]. He established the suf-
ficient optimality conditions and duality results under (p, r)-invexity assumptions in
nonlinear multiobjective programming problems. Recently, Mandal and Nahak [9]
introduced generalized (p, r)-invexity, namely (p, r)-p-(n, 8)-invexity, in vector opti-
mization. They established the sufficient optimality conditions and duality results
of Mond-Weir type under (p,7)-p-(n, #)-invexity assumptions.

Recently, there has been an increasing interest in the extension of vector opti-
mization problems to set-valued optimization problems, where the objective func-
tion and functions attached to constraints are set-valued maps. It has huge ap-
plications in economics, management science, and engineering. The derivative of
set-valued maps is an important tool for set-valued optimization problems. An-
bin and Frankowska [3] introduced the notion of contingent derivative of set-valued
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maps. For single-valued map, contingent derivative coincides with Frechet deriva-
tive (Remark 15.2. in [8]). In 1987, Corley [4] established the generalized Fritz John
necessary optimality conditions for the maximization of set-valued maps in terms
of contingent derivative. He also proved the generalized Fritz John sufficient condi-
tions of set-valued optimization problems where the objective function and functions
attached to constraints are cone concave set-valued maps. Later, Sach and Craven
[10, 11] introduced invex set-valued maps and proved duality theorems of Mond-Weir
type.

In this paper, we extend the notion of (p,r)-p-(n, 0)-invexity from vectorial case
to set-valued one. We establish that the Fritz John optimality conditions are suffi-
cient under (p,r)-p-(n, #)-invexity assumptions. We also establish the duality theo-
rems of Mond-Weir type (MWD) of a pair of set-valued optimization problems under
(p,7)-p-(n, B)-invexity assumptions.

2. DEFINITIONS AND PRELIMINARIES

Let K be a nonempty subset of R™. Then K is said to be a cone if \y € K, for
all y € K and A > 0. Also, K is called pointed if K N (—K) = {Ogm}, solid if
int(K) # 0, closed if K = K and convex if A\y; + (1 — M)y € K, for all 31,92 € K
and \ € [0,1], where int(K) and K denote the interior and closure of K, respectively
and Ogm is the zero element of R™. The dual cone to K is

Kt ={y*eR™:y*y > 0,Vy € K},

where y*y is the inner product between y* and y.

Let RT = {y = (y1, -, ym) ER™ :y; > 0, forall i = 1,...,m}. Then R is a solid
pointed closed convex cone in R™. It is clear that y*y > 0, for any y* € R*\ {Opm }
and y € int(R7).

With respect to R', there are two types of cone-orderings in R™. For any two
elements y1,y2 € R™,

y1 <y if yo —y1 € R

and
Y1 <2 if yo —y1 € Int(RY).

For any nonempty subsets Y, Y’ of R™ and y*, 4" € R™, define

y*Y + y’*Y’ — U {y*y + y/*y/}'
yey
y/ c Yl
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The ordering of two subsets of R™ with respect to R’ is defined as
Y>Y < y>y, forallyeY andy €Y'

Let y = (y1,..-,ym) € R™. The logarithm and exponential of y are defined by
componentwise

logy = (log Y1, ..., log ym )T, for y > 0 (wrt. R7)
and
e¥ = (e¥,...,e¥m)T for any y.
Let () # Y C R™. Define two sets logY and e as
logY = {logy :y € Y}, for Y > Ogm (wrt. R?)
and

eV ={eY:y €Y}, forany Y.

Similarly, we can define y% and Y% for nonzero real number p.

Let 28" be the set of all subsets of R” and F : R® — 28" be a set-valued map from
R™ to R™. The effective domain, range, graph, and epigraph of the set-valued map
F are defined as

dom(F) = {z € R": F(x) # 0},
F(X)= U F(x), for any ) # X CR",
zeX
gr(F) = {(z,y) e R" xR™ .y € F(x)},

and
epi(F) = {(z,y) e R" xR : y € F(x) + R}}.

The following notions of minimality are mainly used in R™ with respect to R

Definition 2.1. Let Y be a nonempty subset of R” and 3’ € Y. Then ¢/ is called a
minimal point of Y if there is no y € Y\ {¢'} such that y < ¢ and a weakly minimal
point of Y if there is no y € Y such that y < 3.
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The sets of minimal points and weak minimal points of Y are denoted by min Y and
w-min Y, respectively and characterized as

minY ={y' €Y :(y —R})NY = {y'}}

and
wmin Y ={y' € Y : (y —int(R})) NY = 0}.

The maximal points and weak maximal points of Y are defined in similar manners.
Contingent cone is an important tool in set-valued analysis. Aubin and Frankowsa
[3] characterized the contingent cone in terms of sequences.

Definition 2.2. [3] Let B be a nonempty subset of R™ and yy € B. Then the
contingent cone of B at yg is denoted by T(B,yp) and y € T(B,yo) if there exist
sequences {\,} with A\, — 07 and {y,} with y,, — y such that, yo + A\,yn € B, for
all n € N.

It is obvious that if yo € int(B), then T'(B,yg) = R™.
P e . m B —1yo
roposition 2.1. [4] T(B,yo) is a closed cone of R™ and T(B,yy) C U o
h>0

If B is a convex set, then the equality holds and B — yo C T'(B, yo).

Let X be a nonempty subset of R” and F : X — 28" be a set-valued map with
dom(F') = X and (xg,y0) € gr(F). Aubin and Frankowsa [3] introduced the notion
of contingent derivative of set-valued maps.

Definition 2.3. [3] A set-valued function DF(xg,y) : R® — 28" whose graph
coincides with the contingent cone to the graph of F' at (z, o), i.e.

gI‘(DF(.%'(), yO)) = T(gr(F)v (J?(), yO))a
is said to be the contingent derivative of F' at (xo, yo)-

The domain of the contingent derivative, dom(DF(zg,¥p)) is not necessarily
the whole space R™. It is equal to the projection of T'(gr(F'), (zo,yo)) onto R™.
For a single-valued map f : R® — R™ which is Frechet differentiable at xg, from
Lyusternik’s Theorem [8], we have

T(gr(f), (zo, f(x0))) = gr(f'(z0))

Therefore, the contingent derivative is the natural extension of Frechet derivative
from vectorial to set-valued case.
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Definition 2.4. [4] Let X be a convex set of R and F': X — 2%" be a set-valued
map. Then F is said to be R}’-convex on X if for all z1,22 € X and X € [0, 1],

AF(z1) 4+ (1 = N F(22) € F(Azy + (1 — N)z2) + R

Lemma 2.1. [4] Let X be a convex set of R” and F : X — 28" be a R"-convex
set-valued map. Then for all z,zp € X and yy € F(x0),

F(z) —yo € D(F + RY) (20, yo)(z — 20),
where '+ R'" is a set-valued map defined by
(F+R7)(z) = F(z) + R,z € X.

Definition 2.5. [11]Let ) # X CR", 5: X x X — R" be amap and F : X — 28"
be a set-valued map with (zo,y0) € gr(#). Suppose that F' + R’ is contingent
derivable at (xo,yo) with

W(X; .CI?()) - dOHl(D(F =+ RT)(:UO? 2/0))
Then F' is said to be n-invex at (zo, yo) if
F(z) —yo € D(F 4+ RY)(x0,90)(n(x, z0)), for all z € X,

where n(X, zo) = {n(z,x0) : z € X}.
Let X be a nonempty subset of R” and F : X — 28" and G : X — 28" be two
set-valued maps with dom(F') = dom(G) = X. We consider a primal problem (P).

minimize  F(x)
reX (P)
subject to  G(z) N (—R%) # 0.

For special case, when f : X — R™ and g : X — R¥ are single-valued maps, we
obtain a classical single-valued primal problem as

minimize f(x)

subject to  g(z) < Ogpm.

Definition 2.6. A point (zg,70) € R™ x R™ is said to be a feasible point of the
problem (P) if 79 € X, yo € F(x0), and G(x0) N (=RE) £ 0.

Let G~(-RY) = {z € R" : G(z) N (-RY) # 0} and S = X NG~ (~R%). Then
minimizers and weak minimizers of the problem (P) are defined in the following
ways.
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Definition 2.7. A feasible point (x0,yo) of (P) is said to be a minimizer of the
problem (P) if
Yo € min F(5)

and a weak minimizer of the problem (P) if
Yo € w-min F(5).

Let Fs,Gg be the restrictions of F, G to S, respectively and (Fs+ R, G5 —i—R’fr)
be a set-valued map defined by

(Fs +R7T,Gg + RE)(2) = (Fs + RT)(z) x (Gs + Rk )(z), for 7 € X.
Corley [4] introduced the Fritz John sufficient optimality conditions of the problem

(P).
Theorem 2.1. [4] Let X be a convex set and F', G be R"-convex and R¥ -convex on

X, respectively. Suppose that there exist zg € S, yo € F(x0), 20 € G(z0) N (—Rﬁ),
Opm # y* € R™, and 2* € T(RE | 2)T such that,

yy+2"2>0,

for all (y,2) € D(Fs + R, Gs + R ) (0,90, 20)(z) and x € T(S, x9). Then (z0, o)
is a weak minimizer of the problem (P).

Definition 2.8. Let X be a nonempty subset of R” and F : X — 28" be a
set-valued map. Then F' is called locally Lipschitz at zg € X if there exist a
neighborhood N of zg and a constant r such that

dy(F(z), F(2") < r|x — ||, for all x,2" € N Ndom(F),
where dg(.,.) is the Hausdorff distance in 28",
Lemma 2.2. [11] Let either F' or G be locally Lipschitz at xg. Then, we have
D(Fs + BT, Gs + RY)(z0, 90)(.) =D(Fs + BT (x0,50)()
+D(Gs + RY) (w0, 20)(.)-

Now, since X and G_(—R’i) are convex sets, so S is also convex. Hence, from
Proposition 2.1, we have x — xy € T(S,x¢), for all z € S. Now, if z* € Rﬁ and
2*zg = 0, then z* € T(]Rﬁ,zo)f Then, we get Fritz John sufficient optimality
conditions as

y*D(Fs + R7)(z0,y0)(x — 20) + 2*D(Gs + RY ) (20, 20) (x — m0) > 0,Yz € §
and

2*20 = 0.
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3. OPTIMALITY CONDITIONS

Our objective is to establish the sufficient optimality conditions of the problem
(P) under generalized invexity assumptions. Let X be a nonempty subset of R"
and F : X — 28" be a set-valued map with dom(F) = X and (xg,y0) € gr(F).
Throughout the paper, we assume that 1 = (1,...,1) € R", 1’/ = (1,...,1) € R™,
and 1” = (1,...,1) € R*. We introduce the notion of (p,r)-p-(n, #)-invex set-valued
maps. For p =0 and r = 0, we have the notions of p-(7, 8)-invex and p-cone convex
set-valued maps, introduced by Das and Nahak [5, 6].

Definition 3.1. Let F' 4R’ be contingent derivable at (xo, o). Then F is said to
be (p,r)-p-(n,0)-invex at (xg,yo) if there exist vector functions 7,6 : X x X — R"
and p € R with ((eP"X20) — 1)/p) € dom(D(F + R7)(x0,0)), for p # 0 and
n(X, z9) C dom(D(F + R7')(x0,0)), for p = 0, such that, for all z € X,

(€' P 1) € D(F + R 0, 10) (75 — 1)/p) + g, 0) |21

forp#0, r#0,

F(x) = yo C D(F + RY) (w0, yo) (""" — 1) /p) + pl|6(, o) [|*1’

forp#0, r=0,

(e"F@7w0) —1%) fr € D(F + RY)(w0,90) (1(, 20)) + pl|6(, 0) | *1'

forp=0,r#0,

F(z) = yo C D(F + RY) (w0, 90) (n(, x0)) + pll6(x, z0)||*1’

forp=0, r=0.

For a continuously differentiable single valued map f : R” — R™,

D(f +RY) = Vf(xo)(.) + RY,

where V f is the gradient of f. Therefore, for single valued case, the above notion
reduces to (p, r)-p-(n, 0)-invexity, introduced by Mandal and Nahak [9]. We have the
following example of a set-valued map which is (p, r)-p-(n, 6)-invex but not n-invex.

Example 3.1. Let F': R — 28 be a set-valued map defined by
F(\) = {(z,2%) : 2 > 0}, %f)\ZO,
{(z,2?): =1 <z <0}, ifA<O.

We have
T(gr(F +R3),(0,(0,0))) = R x R.

Hence,
gr(D(F +R2)(0,(0,0))) =R x R3.

Now for —1 < x < 0,
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(z,2%) ¢ D(F + R%_)(O, (0,0))n(A,0) + Ra_, for any 7.

Hence, F' is not n-invex map for any 7.
We choose p =0, r =1, p=—1 and n, 0 such a way that

n(A,0) >0 and (), 0) = 1, for any A.
Now , ,
e@=)=00) 1 — plg(), 0)]*1 = @),

For any x > —1, we have
™) € D(F +R2)(0,(0,0))n(A, 0) + R2.
Hence, F' is (0, 1)-p-(n, #)-invex map.

Theorem 3.1. (Sufficient Optimality Conditions) Let (xg,yo) be a feasible
point of the problem (P) and zy € G(z¢) N (—R%). Assume that Fg is (p,r)-p1-
(n,0)-invex at (xg,yo) and Gg is (p,r)-p2-(n,0)-invex at (zg,29) with respect to
same functions 1 and ¢ and p1(y*1’) + p2(2*1”) > 0. Suppose that there exists
(y*,z*) € RT x RE | with y* # Ogm, such that

y*D(Fs + R7)(z0,y0) (70 — 1) /p)

+2*D(Gg + R]fr)(xo, 20)((eP"@%0) — 1) /p) > 0,Va € S, (for p # 0),
y"D(Fs + R") (w0, yo)n(x, xo)

+2*D(Gg + ]Rﬁ)(gco, zo)n(z,x0) > 0,V € S, (for p=0),

(3.1)

and
2" 29 = 0. (3.2)
Then (xg,y0) is a weak minimizer of the problem (P).

Proof. We prove the theorem by the method of contradiction in the case when p # 0.
For p = 0, we can prove likewise.
Suppose that (zg,yp) is not a weak minimizer of the problem (P).
Then,
(yo — nt(RT)) N F(S) # 0.

Therefore, there exist x € S, y € F/(z) such that
Y < Yo-
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Hence,

1 1
e¥ < ¥ = " <« Zery—0 = (er(y—yo) o 1/)/7‘ <o0.
T T

As y* # Ogm, we have
JH (W) 1 /r < 0,

Since, z € S, there exists an element z € G(x) N (—RY).
Let 2* = (2], ....,2}), 2 = (21, ..., 2k), and 20 = (21, ..., 2&’).
As z € —Ri, we have

1 1
Z§0:>€ZS1//:>*67'ZS*1//:>(6rz_1//)/7’§0.
T T

Now z*z9 =0, z9 € —Rﬁ and z* € Ri.
Therefore, if z;/ < 0 for some ¢, where 1 < i < k, then z* = 0.

So, in this case,
z*(e"F ) — 1) /r = 0.

Again, if z;/ = 0 for some 4, where 1 < ¢ < k, then
zi*(eT(z"fzi/) —1)/r=2z%E€"*—-1)/r <O0.
Combining both cases, we have
z*(er(z_zo) —1")/r <.
Hence, we have

y (e — 1) Jr 4 2* (") — 1) /r < 0.

(3.3)

As Fg is p1 — (n,0)-invex at (zg,y0) and Gg is p2 — (n,0)-invex at (xo, 29), we have

(e"v=¥) —1")/r € D(Fs +R)(wo, yo) (") — 1) /p) + pl|6(, z0) |1’

and

(3.4)

(G720) —1")/r € D(Gs + RY) (w0, 20) (") — 1)/p) + pl|6(x, z0)|*1". (3.5)

Therefore, from (3.1), (3.4), (3.5), and the condition p1(y*1’) 4+ p2(2*1”) > 0, we

have
y* (e W) — 1) fr 4 25 (e"FT) — 1) /r > 0.

This contradicts (3.3).
Hence, (x9,yp) is a weak minimizer of the problem (P).
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4. MOND-WEIR TYPE DUALITY

In several set-valued optimization problems, evaluating the dual maximization prob-
lem is comparatively easier than solving the primal minimization problem. Sach and
Craven [11] proved the duality results of Mond-Weir type under invexity assump-
tions. We establish the duality results under (p,r)-p-(n, 6)-invexity assumptions.
Let 2/ € X,y € F(a'), 2 € G(2'). We assume that Fg + R’ is contingent derivable
at (2/,y') and Gg + RE is contingent derivable at (2/, z') with,
((e7"5*) — 1) /p) € dom(D(Fs +RT)(a',y/)) N dom(D(Gs + RY) (2, ),
for p#0,
and
n(S,2") C dom(D(Fs + RT)(2",y')) Ndom(D(Gs + Rli)(x', 2),
for p=0.
For the primal problem (P), we consider a Mond-Weir type dual problem (MWD).
maximize ¢’ (MWD)
subject to y*D(Fs +RT)(a',y) (") —1)/p)
+2*D(Gs + RY)(2/, ) (eP"®) —1)/p) >0,z € S, for p# 0,
y"D(Fs + R})(,y)(n(z,2"))
+2%(Gs + RE) (2, ) (n(x,2')) > 0,Vz € S, for p=0,
22 >0,
y*1'=1, y* € R\ {Orm}, and 2" € ]le_.

For single-valued optimization, we have the Mond-Weir type dual problem con-
sidered in [9].

maximize f(z')
subject to y*V f(2')((e?"®*) — 1) /p)
+ 2*Vg(2')((eP"®*) — 1) /p) > 0,Vz € S, for p £ 0,
y'V (@) n(z,2) +2"Vg(@')(n(z,2')) = 0,Yz € S, for p =0,
2*g(x") >0,
y*1 =1, y* €R7\ {0gm}, and z* € RE.

This is the Mond-Weir type dual problem considered in [9].
Let Wi ={y' : («/,v/, 2, y*, 2*) is a feasible point of (MWD)}.
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Definition 4.1. A feasible point (z/,v/, 2/, y*, z*) of the problem (MWD) is said to
be a weak maximizer of (MWD), if

(y +int(R7)) N Wy = 0.

Theorem 4.1. (Weak Duality) Let (xg,y0) and (2, ¢/, 2/, y*, 2*) be feasible points
for the problems (P) and (MWD), respectively, with 2’ € G(2) N (=R%). Assume
that Fs is (p,r)-p1-(n, 0)-invex at (2/,y’) and Gg is (p,r)-pe-(n, 0)-invex at (z’, 2’)
with respect to same functions 1, 6 and p1 + p2(2*1”) > 0. Then, we have

Yo £y
Proof. We prove the theorem by the method of contradiction.
Suppose that yo < 3’. Hence,
yO y/ ]. Tyo ]_ /ry/ ,,.,( . /) 12
e <e¥ = e < -V = (V) -1 /r <0.
r r
Since, y* # Ogm, we have
y*(e"wov) —1")/r < 0.

As zp € S, there exists an element 29 € G(zo) N (—R%).
Let 2* = (2], ..., 2}), 20 = (21, ..., 2), and 2’ = (21/, ..., z1,/).
Since, zg € —Ri, we have

p<0=e0 <1 = 16”0 < Ly = (" —1")/r <.
T r

As 2 € —R¥ and 2* € R%, we have

2*2 <0.
Again, from duality constraints, we have

2*2 > 0.
Therefore,

22 =0.

Now z*z' =0, 2/ € —R* and z* € R.
Consequently, if z;" < 0 for some i, where 1 < i < k, then z;* = 0.

So, in this case,
zi*(er(zi_zi ) — 1)/r=0.
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Again, if z;/ = 0 for some i, where 1 < i < k, then
zi*(e’“(zfz"/) —1)/r=2z%E"-1)/r <0.
Combining both cases, we have
2 (e’ 1"y /r < 0.

So, we have
y*(eromY) 1) fr 4 2* (707 — 1) r < 0. (4.6)

As Fg is (p,r)-p1-(n, 0)-invex at (2/,y') and Gg is (p, r)-pa-(n, 8)-invex at (2’, 2), we
have

(€0~ 1) /7 € D(Fs + R ) (@) = 1)/p) + plGao, )Y (1.7
and
(=) 1) /r € D(Gs + BE)(a!, ) () — 1)/p) + pl| (a0, 21", (48)
Hence, from (4.7), (4.8), and the conditions y*1" = 1 and p; + p2(2*1”) > 0, we have
P 1) fr 42 () < 1 0,

This contradicts (4.6). Therefore
wo £y

Theorem 4.2. (Strong Duality) Let (z9,yp) be a weak minimizer of the problem
(P). Assume that for some (y*,2*) € R x Ri, with y*1’ = 1, Egs. (3.1) and
(3.2) are satisfied for some 29 € G(w0) N (—RE). Then (zq, yo, 20, y*, 2*) is a feasible
solution for (MWD). Now if the Weak Duality Theorem 4.1 between (P) and (MWD)
holds, then (zo, yo, 20, ¥*, 2*) is a weak maximizer of (MWD).

Proof. Since the Egs. (3.1) and (3.2) are satisfied, we have
y*D(Fs +RT)(x0,40) (™) — 1) /p)
+ 2*D(Gs 4+ RY ) (20, 20) ((eP" @) —1)/p) > 0,V € S, for p # 0,

y*D(Fs + R7") (20, yo)n(x, zo)
+ 2*D(Gg + RY) (20, 20)n(x, 20) > 0,V € S, for p =0,

and
229 = 0.
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Hence, (0, yo, 20,y*, 2*) is a feasible solution for (MWD).
Next, we show that,
(yo + int(RTY)) N Wy = 0.

We prove it by the method of contradiction.
Let ¢/ € (yo + int(R7)) N Wy.
Therefore,
y' —yo € nt(RY) = yo < y'.

This contradicts the Weak Duality Theorem 4.1 between (P) and (MWD).
Therefore,
(yo + int(R)) N Wy = 0.

Hence, (o, yo, 20,y", 2*) is a weak maximizer for (MWD).

Theorem 4.3. (Converse Duality) Let (2/,¢/, 7, y* 2*) be a weak maximizer
of the problem (MWD) with 2/ € G(z') N (-R%). Assume that Fg is (p,r)-pi-
(n, 0)-invex at (2/,y') and Gg is (p,r)-p2-(n, 6)-invex at (a’, z’) with respect to same
functions n and 6 and py + p2(2*1”) > 0. Then (2/,y’) is a weak minimizer of (P).

Proof. Clearly, (2/,1) is a feasible solution of the problem (P).
Let (2/,v") be not a weak minimzer of the problem (P).
Then,

(v — nt(R7)) 1 F(S) £ 0.

So, there exist x € § and y € F(z), such that
y —yent(RY) ie, y<y.
Hence,
V<l = %ery < %ery, = ("Y) _ 1) /r < 0.
Since, y* # Ogm, we have
y*(e"wv) — 1) /r < 0.

As z € S, there exists an element z € G(x) N (—RY).
Let 2* = (2], ....,2}), 2 = (21, ..., 2), and 2’ = (21/, ..., z1/).
Since, z € —Rﬁ, we have

Z§0//:>62§1//:>16T2§11//:>(eTZ_1//)/T§O‘
T T

As 2 € —R¥ and 2* € R%, we have

2*2 <0.
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Again, from duality constraints we have

2*2 > 0.
Therefore,

27 =0.

Now z*2/ =0, 2’ € —Rk and 2z* € RE.
Therefore, if z;/ < 0 for some 7, where 1 < i < k, then z* = 0.

So, in this case,
zi* ("= 1) /r = 0.

Again, if z;/ = 0 for some i, where 1 <7 < k, then
zi*(er(zi_zi,) —1)/r=z%E€"-1)/r <0.
Combining both cases, we have
(e’ — 1) /r < 0.
Therefore, we have

y (WY 1) Jr 4+ 25 (") —17) Jr < 0.

(4.9)

As Fs is (p,7)-p1-(n, 0)-invex at (2/,y’) and Gg is (p, r)-p2-(n, 0)-invex at (2/, 2’), we

have
(€@ —1")/r € D(Fs +R7)(2',3/ )n(z, 2') + p)|0(z, 2")||*1’
and

(") —1")/r € D(Gs + RY) (@', 2')n(z, ') + p||0(x, ') 1"

(4.10)

(4.11)

Hence, from (4.10), (4.11), and the conditions y*1’ = 1 and p; + p2(2*1") > 0, we

have
y*(er(y—y’) _ 1/)/7’ + Z*(er(z—z’) N 1”)/7’ > 0.

This contradicts (4.9).
Hence, (2/,1') is a weak minimizer of (P).
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4.1. Wolfe Type Duality
For the primal problem (P), we consider a Wolfe type dual problem (WD).
maximize y' + (2*2')1’ (WD)
subject to y*D(Fy +R)(@',y/) (@) — 1)/p)
+2"D(Gg + Rl_‘;)(az', z’)((ep”(x’xl) —1)/p) >0,Vz € S, for p#0,
y"D(Fs +RY) (2, ) (n(z, 2))
+2*D(Gs + RE) (2, 2')(n(z,2")) > 0,Vz € S, for p=0,
y*1' =1, y* € R7\ {Ogm}, and z* € RE.

For single-valued optimization, we have Wolfe type dual problem as

maximize f(x') + (2*g(z ))

subject to y*V f(a')((e"""*) — 1) /p)
+ 2V () (") —1)/p) > 0,Vz € S, for p £ 0,
y'V i@z, 2") +2*Vg(a')(n(z,2")) = 0,z € S, for p=0,

y*1' =1, y* € R\ {Ogn}, and z* € RE.

This is the Wolfe type dual problem considered in [9].
Let Wo = {y' + (z*2)1": (2/, ¢/, 2, y*, 2*) is a feasible point of (WD)}.

Definition 4.2. A feasible point (z/,y/, 2/, y*, z*) of the problem (WD) is said to
be a weak maximizer of (WD), if

(v + (") + int(R7)) N Wy = 0.

We prove the duality results of Wolfe type of the problem (P). The proofs are
very similar to Theorems 4.1 - - 4.3, and hence omitted.

Theorem 4.4. (Weak Duality) Let (xg,y0) and (2, ¢/, 2/, y*, 2*) be feasible points
for the problems (P) and (WD) respectively. Assume that Fs is (p,0) — p1 — (1, 0)-
invex at (2/,y') and Gg is (p,0) — p2 — (1, 6)-invex at (2/,2") with respect to same
functions n and 6 and p1 + p2(2*€’) > 0. Then, we have

yo £y + (221

Theorem 4.5. (Strong Duality) Let (x¢,y0) be a weak minimizer of the problem
(P). Assume that for some (y*,2*) € R x RY | with y*1’ = 1, Egs. (3.1) and (3.2)
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are satisfied for some z9 € G(z9) N (=R%). Then (2o, yo, 20,y", 2*) is a feasible
solution for (WD). Now if the Weak Duality Theorem 4.4 between (P) and (WD)
holds, then (z9, yo, 20, ¥*, 2*) is a weak maximizer of (WD).

Theorem 4.6. (Converse Duality) Let (2/,¢/, 2/, y*, 2*) be a weak maximizer of
the problem (WD) with z*2’ = 0. Assume that Fg is (p,0) — p1 — (1, 0)-invex at
(«',y) and Gg is (p,0) — p2 — (n, 0)-invex at (z/, z') with respect to same functions
n and 6 and p1 + p2(2*1”) > 0. Then (2/,y) is a weak minimizer of (P).

4.2. Mixed Type Duality

For the primal problem (P), we consider a mixed type dual problem (Mix D).

maximize y’ + (2*2')1’ (Mix D)
subject to y*D(Fs +RT)(z,y)((P"@*) —1)/p)
+2*D(Gs +RE) (2, 2) (P @) — 1) /p) > 0,Ya € S, for p # 0,
y"D(Fs +RY)(@',y)(n(,2"))
+2"D(Gg + Ri)(:z:', 2(n(x,2")) > 0,Vx € S, for p=0,
22 >0,
y*1' =1, y* € R7\ {Ogm}, and z* € RE.

For single-valued optimization, we have the mixed type dual problem as

maximize f(x') + (2*g(z ))
subject to y*Vf(2")((e?"@) —1)/p)

T 2V (@) — 1) /p) > 0,%z € 5, for p £ 0,
y*V (@) (n(z,2)) +2"Vg(@')(n(z,2')) = 0,Vz € S, for p =0,
Z"g(a) >0,
y*1' =1, y* € RT \ {Orm}, and 2" € Ri.

This is the mixed type dual problem considered in [9].

Let W3 = {y 4+ (2*2")1" : (2/,¢/, 2/, y*, 2*) is a feasible point of (Mix D)}.

Definition 4.3. A feasible point (2,1, 2/, y*, 2*) of the problem (Mix D) is said to

be a weak maximizer of (Mix D), if

(y' + (2*2")1 + int(R7")) N W3 = 0.
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We prove the duality results of mixed type of the problem (P). The proofs are
very similar to Theorems 4.1 - - 4.3, and hence omitted.

Theorem 4.7. (Weak Duality) Let (xg, yo) and (2/, 4/, 2/, y*, 2*) be feasible points
for the problems (P) and (Mix D) respectively with 2/ € G(2') N (=RE). Assume
that Fs is (p,r)-p1-(n, 0)-invex at (2/,y’) and Gg is (p,r)-pa-(n, 0)-invex at (2’,2’)
with respect to same functions 7 and 6 and p; + p2(2*1”) > 0. Then, we have

yo £y + (2721

Theorem 4.8. (Strong Duality) Let (x0,y0) be a weak minimizer of the problem
(P). Assume that for some (y*,2*) € R x RY | with y*1’ = 1, Egs. (3.1) and (3.2)
are satisfied for some zp € G(x0) N (—=R%). Then (z0, yo, 20, y*, 2*) is a feasible solu-
tion for (Mix D). Now if the Weak Duality Theorem 4.7 between (P) and (Mix D)

holds, then (x9, yo, 20, ¥*, 2*) is a weak maximizer of (Mix D).

Theorem 4.9. (Converse Duality) Let (2/,y/, 2, y*, 2*) be a weak maximizer
of the problem (Mix D) with 2z’ € G(2/) N (—R%). Assume that Fg is (p,7)-pi-
(n,0)-invex at (2/,y") and Gg is (p,7)-p2-(n, 0)-invex at (z’, 2") with respect to same
functions 1 and 6 and p1 + p2(2*1”) > 0. Then (2/,y’) is a weak minimizer of (P).

5. CONCLUSIONS

In this paper, we study set-valued optimization problems with (p, r)-p-(n, 8)-invexity
assumptions. We derive the sufficient optimality conditions and study the duality
results of Mond-Weir type under the stated (p, r)-p-(n, 6)-invexity assumptions. We
also construct an example to ensure that (p, r)-p-(n, 0)-invexity is more general than
invexity. For special case, our results reduce to the existing ones available in single-
valued optimization problems.
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