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Mapping tori of free group automorphisms
are coherent

By Mark Feighn and Michael Handel*

Abstract

The mapping torus of an endomorphism Φ of a group G is the HNN-
extensionG∗G with bonding maps the identity and Φ. We show that a mapping
torus of an injective free group endomorphism has the property that its finitely
generated subgroups are finitely presented and, moreover, these subgroups are
of finite type.

1. Introduction

A group is coherent if its finitely generated subgroups are finitely pre-
sented. Free groups are obviously coherent. The classification of surfaces and
the fact that every cover of a surface is itself a surface, imply that surface groups
are coherent. In the early 1970’s, Scott [Sco73] and Shalen (unpublished) in-
dependently answered a question of Jaco by showing that the fundamental
group of a 3-manifold is coherent. Stallings [Sta77] showed that F2×F2 is not
coherent.

Since most finitely generated groups are not finitely presented, the ques-
tion of which groups are coherent has centered on groups with special prop-
erties. Rips [Rip82] gave examples of incoherent small cancellation groups.
Wise [Wis98] gave examples of compact negatively curved two complexes with
incoherent fundamental group. McCammond and Wise [MW] have recently
developed methods that allow them to show, for example, that a one-relator
group 〈A|Wn〉 is coherent for all large n.

Many authors have explored parallels between the mapping class group
MCG(S) of a compact surface and the outer automorphism group Out(Fn)
of the free group on n letters. Various analogues of Thurston’s classification
have been produced for Out(Fn) ([BH92], [CV86], [Lus92], [Sel96], [Sel]). The
Scott conjecture (proven in [BH92]) bounds the rank of the fixed subgroup
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of a free group automorphism and is a generalization of a result of Nielsen
for surface automorphisms. The Out(Fn)-analogue of the Nielsen problem for
MCG(S) (lift subgroups to the homeomorphism group of S) is to lift subgroups
to the group of homotopy equivalences, up to a certain natural equivalence, of
a marked graph. Results along these lines have proved by Culler [Cul84] and
in [BFH96]. The Tits Alternative holds for MCG(S) ([Iva84], [McC85]) as well
as for Out(Fn) ([BFH98], [BFH96]).

For a topological space X and a map f : X → X, the mapping torus of f
is the quotient

M(f) := (X × I)/ ∼

where ∼ is the equivalence relation generated by (f(x), 0) ∼ (x, 1). Mapping
tori of surface automorphisms have played a significant role in the study of 3-
manifolds. For example, a part of Thurston’s hyperbolization theorem is that
the mapping torus of a pseudo-Anosov automorphism of a compact surface
is hyperbolic [Thu]. In fact, it is conjectured by Thurston that every finite
volume hyperbolic 3-manifold is finitely covered by such a mapping torus.

For a group endomorphism Φ : G→ G, the mapping torus, denoted M(Φ),
is the HNN-extension G∗G where the bonding maps are the identity and Φ. If
the homomorphism Φ : π1(X)→ π1(X) is induced by f : (X, ∗)→ (X, ∗) then
M(Φ) is isomorphic to the fundamental group of M(f). If Φ is an injective
endomorphism then M(Φ) is also called an ascending HNN-extension.

It is natural to ask whether M(Φ) shares interesting properties with the
class of 3-manifold groups. For example, if Φ is a hyperbolic automorphism of
a word hyperbolic group (such as a finitely generated free group) then M(Φ)
is word hyperbolic [BF92]. The main result of this paper is along this line.

Theorem 1.1 (Main Theorem). The mapping torus M(Φ) of an injective
endomorphism Φ of a (possibly infinite rank) free group is coherent.

This answers Problem 17 of Baumslag’s 1973 problem list [Bau74]. Wise
[Wis98] produces incoherent groups with presentations strikingly similar to
that of M(Ψ). Gersten [Ger81] showed the incoherence of the double Fn ∗H Fn
of a free group Fn of rank n > 1 over a finite index subgroup H such that
[Fn : H] > 2. Since Fn ∗H Fn is a subgroup of Fn∗H , this group is also not
coherent. So, the theorem is, in a certain regard, sharp.

To give more detailed information about presentations of finitely generated
subgroups of mapping tori, it is convenient to slightly generalize the notion of
a mapping torus.

For a pair of topological spaces Y ⊂ X and a map f : Y → X, the
mapping torus of f is the quotient

M(f) := (X ∪∪∪Y=Y×{0}(Y × I))/ ∼,
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where ∼ is the equivalence relation generated by f(y) ∼ (y, 1) for y ∈ Y .
For a pair of groups F ⊂ G and a homomorphism Ψ : F → G, the mapping
torus, denoted M(Ψ), is the HNN-extension G∗F where the bonding maps
are the inclusion of F into G and Ψ. If the homomorphism Ψ : π1(Y ) →
π1(X) is induced by f : (Y, ∗) → (X, ∗) then M(Ψ) is isomorphic to the
fundamental group of M(f). In this paper, we restrict attention to the class
M of mapping tori where G is a (possibly infinite rank) free group, F is a
free factor, and Ψ is injective. LetM0 denote the subclass where additionally
G is finitely generated. By taking F to be trivial, we see that M0 contains
the class of nontrivial, finitely generated free groups. It is easy to check (see
Proposition 2.1) that every element of M can be realized as the mapping
torus of an injective endomorphism of a (possibly infinite rank) free group.
Thus the class M is the same as the class of mapping tori of injective free
group endomorphisms. The class M0 properly contains the class of mapping
tori of injective endomorphisms of finitely generated free groups.

Each element M(Ψ) ∈M has a class of preferred presentations

〈t, A,B, |C〉

where A is a basis for F , A q B is a basis for G, and C = {tat−1(Ψ(a))−1|a
∈ A}. For an element of M0, we also require that in a preferred presentation
the cardinalities of the sets A, B, (and hence C) be finite. A group is of finite
type if it has a compact Eilenberg-Mac Lane space. The 2-complex associated
to a preferred presentation of an element ofM is an Eilenberg-Mac Lane space
(see [SW79]). So, groups in M0 are of finite type.

We can now give a more precise statement of our main result.

Theorem 1.2. A nontrivial finitely generated subgroup of an element
M(Ψ) ∈M is in M0. In particular, each finitely generated subgroup of M(Ψ)
has finite type and M(Ψ) is coherent.

Our methods are geometric. In fact, our main technique (see §4) may be
viewed as a relative version of Stallings folds [Sta83] (see §3).

We thank Dani Wise for pointing us to the Baumslag problem list and
for providing us relevant examples of incoherent groups. We learned of this
problem from Peter Shalen whom we thank for a very interesting history of
the 3-manifold result.

2. Preliminaries

Throughout this paper, we will use the following notation. The free group
with (not necessarily finite) basis E = {ei|i ∈ I} is denoted F, and Φ will
denote an injective endomorphism of F. As described in the introduction, the
mapping torus M(Φ) is the HNN-extension F∗F with bonding maps the identity
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and Φ. By definition, M(Φ) has the presentation with generators E ∪ {t} and
relations {teit−1(Φ(ei))−1|i ∈ I}. (Here and throughout we slightly abuse
notation and write Φ(ei) for both the element of F and the freely reduced
word in E representing it.) Since M(Φ) is an HNN-extension with injective
bonding maps, E freely generates a subgroup of M(Φ) that we identify with
F (see, for example, [Ser80, Cor. 1, p. 45]). We denote by p : M(Φ) → Z the
homomorphism defined by p(t) = 1 and p(ei) = 0 for i ∈ I.

It is well-known that an element of M is also a mapping torus of an
injective free group endomorphism. For completeness, we include a proof.

Proposition 2.1. Let F be a free factor of F and Ψ : F → F be an injec-
tive homomorphism. There is a free group F

′ and an injective endomorphism
Φ : F′ → F

′ such that M(Φ) is isomorphic to M(Ψ).

Proof. We may assume that {ej |j ∈ J} is a basis for F where J ⊂ I.
Take F′ to have the basis {ei,0|i ∈ I} ∪ {ei,k|i ∈ I \J, k = 1, 2, · · ·}. Denote by
F
′
1,F
′
2, and F

′
3 the free factors of F′ generated by, respectively, {ej,0 : j ∈ J},

{ei,0 : i ∈ I \ J}, and {ei,k : i ∈ I \ J, k ≥ 1}; thus F′ = F
′
1 ∗ F′2 ∗ F′3. After

identifying each ei,0 ∈ F
′ with ei ∈ F, we may view Ψ as a map from F

′
1 to

F
′
1 ∗ F′2. Define T : F′2 ∗ F′3 → F

′
3 by T (ei,k) = ei,k+1 and define Φ = Ψ ∗ T

: F′ → F
′. Since Ψ is an injective endomorphism and T is an isomorphism, Φ

is an injective endomorphism.
By construction, ei 7→ ei,0 and t 7→ t defines a homomorphism from M(Ψ)

to M(Φ) and ei,k 7→ tkeit
−k and t 7→ t defines a homomorphism from M(Φ) to

M(Ψ). These homomorphisms are inverses and hence isomorphisms.

We gather some elementary observations in the following lemma.

Lemma 2.2.

(1) Every element g ∈ M(Φ) has a representation of the form g = t−qxtr

where q, r ≥ 0 and x ∈ F.

(2) If a finitely generated subgroup H of M(Φ) contains t then there is a
finite set A ⊂ F such that H = 〈t, A〉.

(3) If a subgroup H of M(Φ) contains t then Φ(H ∩ F) ⊂ H ∩ F.

(4) If g ∈M(Φ) satisfies p(g) = m > 0, then g ∈ 〈F, tm〉.
Proof. Since tx = Φ(x)t and xt−1 = t−1Φ(x) for all x ∈ F, given any

word in {t} ∪ E , we can move positive powers of t to the right and negative
powers of t to the left. This implies (1) which in turn implies (2). Item (3)
follows from the fact that Φ(x) = txt−1 for all x ∈ F. It remains to prove (4).
If p(g) = m > 0, then (1) implies that g = t−qxtq+m for some x ∈ F and
some q ≥ 0. Choose j ≥ 0 so that q + j is a multiple of m and write g =
t−qt−jtjxtq+m = t−(q+j)Φj(x)tq+m+j ∈ 〈F, tm〉.
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The following proposition is the heart of Theorem 1.2. Its proof occupies
all of the remaining sections.

Proposition 2.3 (Main Proposition). If Φ is an injective endomorphism
of F, and if H is a finitely generated subgroup of M(Φ) that contains t, then
H ∈M0. In fact, H has a preferred presentation of the form 〈t, A,B|C〉 where

• A = {a1, · · · , am}, B = {b1, · · · , br}, and C = {r1, · · · , rm} are finite sets
in F,

• rj = tajt
−1w−1

j for wj = Φ(aj) and 1 ≤ j ≤ m, and

• 〈A,Φ(A)〉 = 〈A,B〉.

We conclude this section by reducing our main theorem to our main propo-
sition.

Proof of Theorem 1.2 assuming Proposition 2.3. By Proposition 2.1, we
may assume that Ψ is an injective endomorphism of F, which we call Φ to
conform to the notation of Proposition 2.3.

Let H be a finitely generated subgroup of M(Φ) and suppose, at first,
that H ⊂ Ker(p). Lemma 2.2(1) implies that each g ∈ H has the form t−qxtq

where x ∈ F and where q ≥ 0. Let itk(g) = tkgt−k be the inner automorphism
of M(Φ) determined by tk. If k ≥ q, then itk(g) = tk−qxtq−k = Φk−q(x) ∈ F.
Since H is finitely generated, there exists k > 0 such that itk(H) ⊂ F and so
H is free.

If t ∈ H, then H ∈ M0 by the Main Proposition and there is nothing
more to prove.

For the general case we may assume that p(H) is generated by some
m > 0. Lemma 2.2(4) implies that H is contained in the subgroup M∗ =
〈tm, ei ∈ E〉. Choose gm ∈ H such that p(gm) = m. Lemma 2.2(1) implies
that gm = t−pbtm+p for some p ≥ 0 and b ∈ F. Up to changing H by an
isomorphism, we may replace H by itp(H) and gm by btm. Define Θ = ibΦm.
The assignments tm 7→ b−1s and ei 7→ ei for ei ∈ E define an isomorphism
between M∗ and M(Θ) = 〈s, ei ∈ E|seis−1 = Θ(ei)〉 that carries H to a
subgroup H ′ containing s. The argument of the previous paragraph implies
that H ′, and hence H, is in M0.

3. Labeled graphs and free groups

In this section, we recall a procedure of Stallings ([Sta83, Algorithm 5.4])
that from a finite set of words in the generators E of F produces a basis for the
subgroup of F generated by these words. All of the results in this section are
contained in [Sta83]. In Section 4, a relative version of this procedure will be
presented.
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Definition 3.1. A graph is a one-dimensional CW-complex. The rose R
associated to E is the graph with one vertex vR and with oriented edges in
one-to-one correspondence with E . We identify π1(R, vR) with F in the usual
way: the homotopy class of any orientation-preserving immersion of [0, 1] onto
the edge of R corresponding to ei is identified with ei. A labeled graph X is a
finite connected graph with a basepoint ∗ and with oriented edges, each labeled
by some ei ∈ E . The labeling defines, up to homotopy relative to the vertices
of X, a map fX : X → R that is injective when restricted to the interior of
any edge. We write π1(X) for π1(X, ∗) and denote f#(π1(X)) ⊂ F by X#. If
fX is an immersion then we say that X is tight. If H is a subgroup of F and
X# = H, then we say that X is a labeled graph for H.

The importance of tightness is indicated by the following proposition
([Sta83, Prop. 5.3]).

Proposition 3.2. If X is a tight labeled graph then (fX)# : π1(X)→ F

is injective.

Definition 3.3 ([Sta83, §3]). If X is a labeled graph for H which is not
tight, then there is (at least one) pair of distinct closed edges E1 and E2

of X with the same initial or terminal endpoints and the same labels. Let
q : X → X ′ be the quotient map obtained by identifying E1 with E2, and let
q(∗) be the basepoint for X ′. The labeling for X descends to a labeling of X ′

such that fX = fX′q. We say that X ′ is obtained from X by folding E1 and
E2, and we call the map q a fold. A fold q is a homotopy equivalence unless
E1 ∪ E2 is a bigon, i.e. they share both initial and terminal endpoints. In
either case, q# is onto and so X ′ is also a labeled graph for H.

When a fold q : X → X ′ is not a homotopy equivalence, the rank of X ′ is
less than the rank of X where by the rank of a graph, we mean its first betti
number. In particular, folding does not increase rank. There are always fewer
edges in X ′ than in X. The next proposition follows easily.

Proposition 3.4 ([Sta83, §3]). There is a finite sequence of folds that
from a labeled graph X for H produces a tight labeled graph X̂ for H with
rank(X̂) ≤ rank(X). If f# is not injective, then rank(X̂) < rank(X).

Notation 3.5. Suppose that W = {w1, . . . , wn} is a set of words in E .
For each i, let X({wi}) be the labeled graph for 〈wi〉 that is homeomorphic to
a circle and such that fX({wi}) is an immersion away from the basepoint. Let
X(W ) be the labeled graph

∨n
i=1X({wi}) for 〈W 〉 obtained by wedging at the

basepoints.
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We can now present Stallings’ algorithm. Given a finite set W of words
in E , let X̂(W ) be the tight labeled graph obtained from X(W ) as in Propo-
sition 3.4. By Proposition 3.2 (fX̂(W ))# is injective. Thus, if A is a basis for

π1(X̂(W )) then (fX̂(W ))#(A) is a basis for 〈W 〉.

Example 3.6. Suppose that F = 〈e1, e2, e3〉 has rank 3 and that

W = {e2e1e3, e2e3e1, e
−1
3 e2e1, e2e3e

−1
2 e3}.

The procedure outlined above will be used to find a basis for 〈W 〉. Start with
X(W ) which is depicted in Figure 1 below. In the figures, the direction of the
arrows on an edge indicates the orientation of the edge, an edge with i arrows
is labeled ei, and the large vertices are basepoints. To go from Figure 1 to
Figure 2, two edges labeled e3 are folded. From Figure 2 to Figure 3, four
folds are performed. (In our diagrams, edges that are to be folded need not be
particularly close. For example, consider the two edges labeled ‘e3’ incident to
the base point in Figure 2.) Finally, from Figure 3 to the tight Figure 4, there
are two folds. Choosing the edges in Figure 4 containing the basepoint as a
maximal tree, the basis {e2e1e3, e

−1
3 e2e1, e2e3e1} for 〈W 〉 is obtained.

1. 2.

3.4.

Example 3.6
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4. Labeled graph pairs

Let Φ be an injective endomorphism of F and suppose that H is a finitely
generated subgroup of M(Φ) that contains t. To prove Proposition 2.3, we
will need a mechanism for keeping track of pairs of subgroups of F of the form
(〈A,B〉, 〈A〉). This leads us to consider pairs of labeled graphs.

Definition 4.1. A labeled graph pair is a pair (Z,X) such that X ⊂ Z

are labeled graphs with a common basepoint. The pair (Z,X) is tight if Z
is tight. The relative rank of (Z,X) is defined by rr(Z,X) = rank(π1(Z)) −
rank(π1(X)) = χ(X)− χ(Z).

If H is a finitely generated subgroup of M(Φ) then a labeled graph pair
(Z,X) is a labeled graph pair for H if 〈t,X#〉 = H and Z# ⊂ 〈X#,Φ(X#)〉 ⊂
H ∩ F. (The last inclusion is a consequence of Lemma 2.2(3) and is in-
cluded here for emphasis.) If additionally Z# = 〈X#,Φ(X#)〉, or equivalently
Φ(X#) ⊂ Z#, then (Z,X) satisfies the invariance property and (Z,X) is an
invariant labeled graph pair for H.

Remark 4.2. If H is a finitely generated subgroup of M(Φ) that con-
tains t, then, by Lemma 2.2(2), there is a finite set A of F such that H = 〈t, A〉.
If we take X = X(A) and Z = X(A∪Φ(A)), then (Z,X) is an invariant labeled
graph pair for H.

The rest of this section is devoted to the details of a relative version of
the first part of Proposition 3.4; the second part of Proposition 3.4 will be
addressed in Section 5. The relative procedure will start with an invariant
labeled graph pair for H and produce a tight invariant labeled graph pair
for H.

If (Z,X) is a labeled graph pair then a fold qZ of Z induces a map of
pairs q = (qZ , q̌X) : (Z,X) → (Z1, X1) where X1 = qZ(X). We still call q a
fold. Mimicking the absolute case, we will use folding to improve an invariant
labeled graph pair (Z,X) that isn’t tight. We chose the notation q̌X : X → X1

for the induced map to remind the reader of an important point—q̌X need
not be a fold of X. In fact, it may be that rank(X1) > rank(X), perhaps
resulting in a loss of the invariance property. In the next lemma, we record the
possibilities for q̌X . The proof, an immediate consequence of the definitions,
is omitted.

Lemma 4.3. Suppose that (Z,X) is a labeled graph pair, that q : (Z,X)→
(Z1, X1) is a fold, and that qZ folds edges E1 and E2 of Z. Let v denote a vertex
shared by E1 and E2.

(1) If E1 and E2 are edges of X then q̌X is a fold.
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(2) If E1 ∪ E2 is not a bigon and is not contained in X, and if the vertices
of E1 and E2 that are opposite v are contained in X, then q̌X is defined
by identifying a pair of distinct vertices in X.

(3) In all remaining cases q̌X is a homeomorphism.

Notation 4.4. In Case (1) we say that q is a subgraph fold, and in Case (2)
we say that q is exceptional.

Lemma 4.5. Suppose that (Z,X) is a labeled graph pair and that
q : (Z,X)→ (Z1, X1) is a fold. Then the following hold :

(1) Z# = Z#
1 .

(2) X# ⊂ X#
1 .

(3) If q is not exceptional and if (Z,X) has the invariance property, then
(Z1, X1) has the invariance property.

(4) rr(Z1, X1) ≤ rr(Z,X).

(5) If E1 ∪E2 is a bigon that is not contained in X then rr(Z1, X1)<rr(Z,X).

(6) If q is exceptional, then rr(Z1, X1) < rr(Z,X).

Proof. Item (1) follows from fZ = fZ1qZ and the fact that (qZ)# is onto.
Item (2) follows from fX = fX1(q̌X). If q is not exceptional, then Lemma 4.3
implies that (q̌X)# is onto and hence that the inclusion in item (2) is an
equality. Along with (1), this implies (3).

Suppose that E1∪E2 is a bigon. Then rank(Z1) = rank(Z)−1, rank(X1) =
rank(X) − 1 if E1 ∪ E2 ⊂ X, and rank(X1) = rank(X) otherwise. Suppose
that E1 ∪ E2 is not a bigon. Then rank(Z1) = rank(Z), rank(X1) = rank(X)
if q is not exceptional, and rank(X1) = rank(X) + 1 if q is exceptional. This
implies (4), (5), and (6).

Since an exceptional fold need not preserve the invariance property, we
introduce a second move.

Definition 4.6. Suppose that (Z,X) is an invariant labeled graph pair for
H and that q : (Z,X)→ (Z1, X1) is a fold. We define a new invariant labeled
graph pair (Z2, X2) for H as follows. There are three cases to consider; in all
cases X2 = X1. If q is not exceptional, then define Z2 = Z1. If q is exceptional,
let p1 and p2 be the points that are identified by q̌X . Choose immersed paths
d1 and d2 in X from ∗ to p1 and p2 respectively, and let δ be the element of
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X#
1 ⊂ Z# ⊂ H represented by fX1(q̌X(d1d

−1
2 )). If Φ(δ) ∈ Z#

1 , then define
Z2 = Z1. Finally, if Φ(δ) 6∈ Z#

1 , define Z2 = Z1 ∨ X({Φ(δ)}). We say that
(Z2, X2) is obtained from (Z,X) by folding and adding a loop if necessary.

Lemma 4.7. Using the notation of Definition 4.6, the following hold.

(1) (Z2, X2) is an invariant labeled graph pair for H.

(2) The number of vertices in X2 is at most the number of vertices in X,
and if the fold is exceptional, then X2 has fewer vertices than X.

(3) If the fold is not exceptional, then Z2 has fewer edges than Z.

(4) rr(Z2, X2) ≤ rr(Z,X).

(5) If E1 ∪ E2 is a bigon that is not contained in X, then rr(Z2, X2) <

rr(Z,X).

(6) If the fold is exceptional and if Φ(δ) ∈ Z#
1 then rr(Z2, X2) < rr(Z,X).

Proof. If the fold is not exceptional then (Z2, X2) = (Z1, X1) and (1) fol-
lows from Lemma 4.5(3). If the fold is exceptional, then Z#

2 = 〈Z#
1 ,Φ(δ)〉 =

〈Z#,Φ(δ)〉 and X#
2 = X#

1 = 〈X#, δ〉. In this case, (1) follows from
Lemma 2.2(3) and the assumption that (Z,X) is an invariant labeled graph
pair for H.

Item (2) follows from Lemma 4.3 and the fact that X2 = X1. For a
non-exceptional fold, Z2 = Z1. Item (3) follows immediately and the non-
exceptional case of (4) follows from Lemma 4.5(4). The exceptional case of (4)
follows from Lemma 4.5(6) and rr(Z2, X2) = rr(Z1, X1) + 1. If E1 ∪ E2 is a
bigon and E1, say, is not contained in X, then X2 = X1 = X and Z2 = Z1

is obtained from Z by erasing the interior of E1. This implies (5). Item (6)
follows from Lemma 4.5(6) and the fact that (Z2, X2) = (Z1, X1) in this case.

We can now define our relative version of the tightening procedure of
Stallings.

Definition 4.8. Assume that (Z,X) is an invariant labeled graph pair
for H. If (Z,X) is tight then do nothing. If fX is not an immersion, then
perform a subgraph fold (Notation 4.4). If fX is an immersion and if fZ is not
an immersion, then fold and add a loop if necessary. Repeat until the resulting
invariant labeled graph pair for H, denoted (Ẑ, X̂), is tight. Items (2) and (3)
of Lemma 4.7 guarantee that this procedure terminates in finite time. We say
that (Ẑ, X̂) is obtained from (Z,X) by tightening.



    

MAPPING TORI OF FREE GROUP AUTOMORPHISMS ARE COHERENT 1071

Example 4.9. Suppose that F = 〈e1, e2, e3〉 has rank 3. Let Φ be the
automorphism of F given by Φ(e1) = e2, Φ(e2) = (e−1

2 e3e2), and Φ(e3) =
e2e
−1
1 e2. Set A = {e−1

3 e1, e
−1
2 e−1

3 e2
1e
−1
3 e1}. We have Φ(A) = {e−1

2 e1, e
−1
2 e−1

3 e2
1}.

Set Z = X(A ∪ Φ(A)) and X = X(A). Then (Z,X) is an invariant labeled
graph pair for the subgroup = 〈t, A〉 ofM(Φ), and is pictured in Figure 1 below.
We follow the conventions of the previous example, but add that edges of Z
that are not in X are labeled with arrows that are not filled-in. The tightening
procedure applied to (Z,X) is pictured below. We refer to the closure of the
complement of the subgraph as the overgraph. Figure 2 is obtained from Figure
1 by three subgraph folds. The subgraph in Figure 2 is tight. To go to Figure
3, a loop of the overgraph is folded into the subgraph. To go to Figure 4, part
of the remaining loop of the overgraph is folded into the subgraph. To go to
Figure 5, the edge of the overgraph is folded into the subgraph. This fold is
exceptional and so we must add a loop labeled Φ(e−1

2 e1) = e−1
2 e−1

3 e2e2 which
is depicted in Figure 6. Finally, Figure 7 shows (Ẑ, X̂) and is obtained from
Figure 6 by folding three edges of the overgraph into the subgraph. Note that
rr(Z,X) = 2 whereas rr(Ẑ, X̂) = 1.



      

1072 MARK FEIGHN AND MICHAEL HANDEL

Example 4.9

5. Reducing relative rank

The goal of this section is a relative version of Proposition 3.4.

Notation 5.1.

• If (Z,X) is a labeled graph pair, then the normal closure of the included
image of Ker((fX)#) in π1(Z) is denoted by N(Z,X).

• A composition Q = (QZ , QX) : (Z,X) → (Z ′, X ′) of subgraph folds
(Notation 4.4) is called an iterated subgraph fold.

Lemma 5.2. Suppose that (Z,X) is a labeled graph pair and that γ ∈
π1(Z). Then γ ∈ N = N(Z,X) if and only if γ ∈ Ker((QZ)#) for some
iterated subgraph fold Q : (Z,X)→ (Z ′, X ′).

Proof. Suppose that q : (Z,X)→ (Z1, X1) is a subgraph fold. If qZ does
not fold a bigon, then qZ is a homotopy equivalence. If qZ does fold a bigon
then, up to homotopy equivalence, qZ is defined by adding a disk along a
loop in X with contractible image under fX . It follows that, for an iterated
subgraph fold Q, the map QZ is defined, up to homotopy equivalence, by
adding disks along loops in X whose fX -images are contractible. This implies
Ker((QZ)#) ⊂ N .
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Conversely, suppose that Q : (Z,X) → (Z ′, X ′) is defined by itera-
tively folding subgraph edges until fX′ is an immersion. Then Ker((fX)#) ⊂
Ker((QZ)#) and hence N ⊂ Ker((QZ)#).

We will need the following simple observation in the proof of the next
proposition.

Remark 5.3. If Z is a wedge A ∨ B and if qZ : Z → Z1 is a folding
map that folds two edges in A, then the induced map from A to qZ(A) is also
a fold, the induced map from B to qZ(B) is a homeomorphism, and Z1 =
qZ(A) ∨ qZ(B).

The next proposition is the relative version of Proposition 3.4. Before
proving it, we state an immediate corollary that we will apply in proving the
Main Proposition.

Proposition 5.4. Suppose that (Z,X) is an invariant labeled graph pair
for H. The tightening procedure produces from (Z,X) a tight invariant labeled
graph pair (Ẑ, X̂) for H with rr(Ẑ, X̂) ≤ rr(Z,X). If (fZ)# is not injective,
but (fX)# is injective, then rr(Ẑ, X̂) < rr(Z,X).

Corollary 5.5. If (Z,X) is an invariant labeled graph pair for H of
minimal relative rank and if (fX)# is injective, then (fZ)# is injective.

Proof. That (Ẑ, X̂) is tight and invariant follows the definition of tight-
ening. Lemma 4.7(4) implies that rr(Ẑ, X̂) ≤ rr(Z,X).

It remains to prove the last sentence of the proposition. A single step in
the tightening procedure is to fold q : (Z0, X0)→ (Z1, X1) and then add a loop
if necessary to form (Z2, X2). Let inc : Z1 → Z2 the inclusion map, let ∗i be
the basepoint of Zi and let Ni = N(Zi, Xi) for i ∈ {0, 1, 2}.

We will show that if rr(Z2, X2) = rr(Z0, X0) and if N0 6= Ker((fZ0)#)
then N2 6= Ker((fZ2)#). This will finish the proof of the proposition. Indeed,
at the very beginning of the tightening process, (Z0, X0) = (Z,X); in this
case N0 is trivial and Ker((fZ0)#) is nontrivial. If rr(Ẑ, X̂) = rr(Z,X), then
rr(Z2, X2) = rr(Z0, X0) for each tightening step and we conclude, by induction
on the number of steps, that N(Ẑ, X̂) 6= Ker((fẐ)#). But, this contradicts the
fact that (Ẑ, X̂) is tight. We conclude that rr(Ẑ, X̂) < rr(Z,X) as desired.

Assume now that rr(Ẑ2, X̂2) = rr(Z0, X0) and that N0 6= Ker((fZ0)#).

Step 1 (Subgraph folds). If q is a subgraph fold then (Z1, X1) = (Z2, X2)
and Lemma 5.2 implies that if γ is any nontrivial element of Ker((fZ0)#) \N0

then (qZ0)#(γ) is a nontrivial element of Ker((fZ1)#) \N1. We may therefore
assume that q is not a subgraph fold.
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Step 2 (The case that N1 is trivial). By definition of the tightening pro-
cedure, fX0 must be an immersion; thus N0 is trivial. Since rr(Z2, X2) =
rr(Z0, X0), Lemma 4.7(5) implies that qZ0 does not fold a bigon. In particu-
lar, (qZ0)# is injective and (inc)#(qZ0)#Ker((fZ0)#) is a nontrivial subgroup
of Ker((fZ2)#). If N1, and hence N2, is trivial, then we are done. We may
therefore assume that N1 is nontrivial.

Step 3 (Making a jump). By Lemma 4.3, q is an exceptional fold. Let p1

and p2 be the points in X0 that are identified by q̌X0 ; let p = q̌X0(p1) = q̌X0(p2)
be their image in X1; for i = 1, 2, let di be the path in X0 connecting ∗0 to
pi in the definition of (Z2, X2); and let d = q̌X0(d1)q̌X0(d−1

2 ) be the resulting
loop in X1. Recall that δ ∈ F is represented by fX1(d). By Lemma 4.7(6),
Φ(δ) 6∈ (fX1)#(π1(Z1)). The link of p in X1 is the union L1 ∪ L2 where Lj is
the link of pj in X0 for j = 1, 2. Let ρ be any closed based path in X1. If
ρ crosses p, entering through L1 and exiting through L2, or vice-versa, then
we say that ρ makes a jump at that crossing of p. Write ρ = ρ1 . . . ρm as
a concatenation of subpaths where we have subdivided each time ρ makes
a jump at p. The paths q̌X0(d1) and q̌X0(d2) connect ∗1 to p. By inserting
q̌X0(d−1

1 )·q̌X0(d1)·q̌X0(d−1
2 )·q̌X0(d2) = q̌X0(d−1

1 )·d·q̌X0(d2) or its inverse between
the ρi’s, we produce closed paths ρ∗i based at ∗1 such that ρ ' ρ∗1ρ∗2 . . . ρ∗s and
such that ρ∗i either makes no jumps at p or equals d or d−1.

Step 4 (Factoring β ∈ Ker((fX1)#)). Since N1 is nontrivial, we may choose
a nontrivial element β ∈ Ker((fX1)#). Applying the above decomposition to
a closed based path representing β, we conclude that β is the alternating
product of nontrivial elements µi, νj ∈ π1(X1) where µi = (q̌X0)#(µ′i) for some
µ′i ∈ π1(X0) and where νj is represented by a multiple of d or d−1. Since N0

is trivial, at least one νj must appear in this product.

Step 5 (Applying invariance to produce γ2 ∈ Ker((fZ2)#)). We next
construct an element γ2 ∈ π1(Z2) such that (fZ2)#(γ2) = Φ((fX1)#(β)).

By definition, Z2 is the wedge of Z1 with Y = X({Φ(δ)}); we will think
of Z1 and Y as subgraphs of Z2. For each νj , there exists a nontrivial ele-
ment τj ∈ π1(Y ) ⊂ π1(Z2) such that (fZ2)#(τj) = Φ((fX1)#(νj)). By the
invariance property for (Z0, X0), for each µi, there exists a nontrivial element
σ′i ∈ π1(Z0) such that (fZ0)#(σ′i) = Φ((fX0)#(µ′i)) = Φ((fX1)#(µi)). Let
σi = (qZ0)#(σ′i) ∈ π1(Z1) ⊂ π1(Z2); then (fZ2)#(σi) = Φ((fX1)#(µi)). Define
γ2 to be the alternating product of the σi’s and τj ’s in the same order as β is
the product of the µi’s and νj ’s. Then (fZ2)#(γ2) = Φ((fX1)#(β)) as promised.
Since β ∈ Ker((fX1)#), γ2 ∈ Ker((fZ2)#).
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Step 6 (γ2 6∈ N2). It suffices to show that γ2 6∈ N2. Since N0 is trivial and
µ′i ∈ π1(X0), (fX0)#(µ′i) and hence (fZ2)#(σi) = Φ((fX0)#(µ′i)) is nontrivial.
Suppose that Q : (Z2, X2) → (Z ′, X ′) is an iterated subgraph fold. Denote
QZ2(Z1) by Z ′1. It follows from Remark 5.3 thatQZ2 induces a homeomorphism
from Y to Y ′ = QZ2(Y ), that Z ′ is the wedge of Z ′1 and Y ′ at QZ2(∗2), and that
(QZ2)#(τj) represents a nontrivial element of π1(Y ′). Since Ker((QZ2)#) ⊂
Ker((fZ2)#), each (QZ2)#(σi) represents a nontrivial element of π1(Z ′1). Since
(QZ2)#(γ2) is an alternating concatenation of nontrivial elements in π1(Y ′)
and in π1(Z ′1), it represents a nontrivial element of π1(Z ′). Lemma 5.2 implies
that γ2 6∈ N2.

6. Conclusion

Proof of Main Proposition. Remark 4.2 and the fact that relative rank is
a nonnegative integer imply that there is an invariant labeled graph pair for H
of minimal relative rank. Proposition 5.4 therefore implies that there is a tight
invariant labeled graph pair (Z,X) for H of minimal relative rank. Let T be
a maximal tree for Z containing ∗ such that T ∩X is a maximal tree for X.
Let {a1, · · · , am, b1, · · · , br} and {a1, · · · , am} be the resulting bases for Z# and
X# respectively. Set A = {a1, · · · , am} and B = {b1, · · · , br}. For 1 ≤ j ≤ m,
let wj be the reduced word in A∪B such that Φ(aj) = wj , let rj = tajt

−1w−1
j ,

and let C = {r1, · · · , rm}. It suffices to prove that 〈t, A,B|C〉 is a presentation
for H.

Let F denote the free group with basis {t}∪A∪B, and let η : F → H be
the natural map.

Set X0 = X(A) and for each i ≥ 1, set Xi = X(A ∪ ⋃d−1
l=0 Φl(B)). Then

each (Xi+1, Xi) is an invariant labeled graph pair for H of minimal relative
rank and (fX0)# is injective. So, by induction using Corollary 5.5, (fXi)# is
injective for all i ≥ 0. Thus, if S′d = A ∪ ⋃dl=0 t

lBt−l ⊂ F then the restriction
of η to 〈S′d〉 is injective.

It is clear that C is contained in the kernel of η. It remains to show that
if k is in the kernel of η then k is in the normal closure N of C in F . After
replacing k by tzkt−z for some z ∈ Z, we may assume that k factors into a
product where each term has the form tdxt−d for some d ≥ 0 and for some
x ∈ A ∪ B. We now prove by induction on d the claim that each such term
can be written as nv where n ∈ N and v ∈ 〈S′d〉.

This is trivial for d = 0 and clear for d = 1 since tbit−1 ∈ S′1, tajt−1 = rjwj
and wj ∈ 〈S′0〉. Assume now that d > 1 and that the result holds for d − 1.
Then tdxt−d = t(td−1xt−(d−1))t−1 = tn1v1t

−1 = (tn1t
−1)(tv1t

−1) = n2(tv1t
−1)

where n1, n2 ∈ N and v1 ∈ 〈S′d−1〉. Now tv1t
−1 can be written as a product

where each term is either in 〈S′d〉 or is some tajt−1. Since terms of the latter
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type factor into an element of N and an element of 〈S′0〉, tdxjt−d factors into a
product where each term is either in N or in 〈S′d〉. Since N is normal, we may
assume that all the terms in N precede all the terms in 〈S′d〉. This verifies our
claim.

We have shown that k is a product where each term is either in N or in
some 〈S′d〉. Pushing all the N -terms to the front, we have k = nv where n ∈ N
and v ∈ 〈S′d〉 for some d ≥ 0. Since η(k) and η(n) are trivial in H, so is η(v).
The injectivity of the restriction of η to 〈S′d〉 implies that v must be the trivial
word in S′d and so k ∈ N as desired.
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