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Surgery and duality

By Matthias Kreck

1. Introduction

Surgery, as developed by Browder, Kervaire, Milnor, Novikov, Sullivan,
Wall and others is a method for comparing homotopy types of topological
spaces with diffeomorphism or homeomorphism types of manifolds of dimen-
sion≥ 5. In this paper, a modification of this theory is presented, where instead
of fixing a homotopy type one considers a weaker information. Roughly speak-
ing, one compares n-dimensional compact manifolds with topological spaces
whose k-skeletons are fixed, where k is at least [n/2]. A particularly attractive
example which illustrates the concept is given by complete intersections. By
the Lefschetz hyperplane theorem, a complete intersection of complex dimen-
sion n has the same n-skeleton as CPn and one can use the modified theory
to obtain information about their diffeomorphism type although the homo-
topy classification is not known. The theory reduces this classification result
to the determination of complete intersections in a certain bordism group.
This was under certain restrictions carried out in [Tr]. The restrictions are: If
d = d1 · . . . ·dr is the total degree of a complete intersection Xn

d1,... ,dr
of complex

dimension n, then the assumption is, that for all primes p with p(p−1) ≤ n+1,
the total degree d is divisible by p[(2n+1)/(2p−1)]+1.

Theorem A. Two complete intersections Xn
d1,... ,dr

and Xn
d′1,... ,d

′
s

of com-
plex dimension n > 2 fulfilling the assumption above for the total degree are
diffeomorphic if and only if the total degrees, the Pontrjagin classes and the
Euler characteristics agree.

Note that the kth Pontrjagin class is a multiple of x2k, where x generates
the second cohomology of the complete intersection. Thus we can compare
this invariant for different complete intersections. There are explicit formulas
for all these invariants. It is open whether this theorem holds for arbitrary
complete intersections of complex dimension > 2.

The k-skeleton is not an invariant of a topological space and thus we
pass to the closely related language of Postnikov towers. The normal k-type
of a manifold is the fibre homotopy type of a fibration B → BO such that



     

708 MATTHIAS KRECK

πi(B → BO) = 0 for i ≥ k + 2, admitting a lift of the normal Gauss map
ν : M → BO to a map ν̄ : M → B such that πj(ν̄ : M → B) = 0 for j ≤ k+ 1.
We call such a lift a normal k-smoothing. A normal k-smoothing determines
an element in an obvious bordism group given by the normal k-type. The main
result of this paper concerning the classification of manifolds is the following.

Theorem B. Let k ≥ [n/2] − 1. A normal bordism W of dimension
n + 1 > 4 between two normal k-smoothings on manifolds M0 and M1 with
the same Euler characteristics is bordant to an s-cobordism if and only if an
algebraic obstruction θ(W ) is elementary. Thus M0 and M1 are diffeomorphic,
if n > 4, and homeomorphic, if n = 4 and π1 is good in the sense of [Fr2].

In the most general case the obstruction θ(W ) lies in a monoid depending
only on the fundamental group and the orientation character given by the
first Stiefel-Whitney class. If k ≥ [n/2] the obstruction is contained in a
subgroup of the monoid and one obtains as special cases the Wall-obstructions
and classification results. For a detailed formulation of Theorem B we refer
to Theorem 3 (Section 5) and Theorem 4 (Section 6). For simply connected
manifolds a similar approach to the classification problem was carried out by
M. Freedman [Fr1].

The obstructions are particularly complicated in the extreme case k =
[n/2] − 1, even for simply connected manifolds. It is surprising that they can
be omitted if the manifolds are of dimension 2q and one allows stabilization
by Sq × Sq. Then the result is the following which generalizes a result by
Freedman for specific 1-connected manifolds [Fr1, Th. 3].

Theorem C. Two closed 2q-dimensional manifolds with the same Euler
characteristic and the same normal (q − 1)-type, admitting bordant normal
(q − 1)-smoothings, are diffeomorphic after connected sum with r copies of
Sq × Sq for some r.

If the fundamental group is finite, one has cancellation results. In joint
work with Ian Hambleton [H-K1, Th. 1.3] we showed that up to homeomor-
phism one can take r = 2 for q = 2 and a similar argument holds up to diffeo-
morphism for q > 2. If q = 2, the main theorem of [H-K3] gives cancellation
up to homeomorphism down to r = 1.

In Section 7, Corollary 4, we will give a short proof of the cancellation
result for q > 2 by using the unitary stability techniques of Bass [Ba2] (as in
[H-K1]) to analyse the obstruction θ(W ) directly. For 1-connected manifolds,
elementary arguments give the following result which is best possible, and
which for q odd was proved by Freedman [Fr1, Th. 1]:
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Theorem D. For q > 2, two closed simply connected 2q-dimensional
manifolds M0 and M1 with the same Euler characteristic and the same normal
(q − 1)-type admitting bordant normal (q − 1)-smoothings are diffeomorphic if
either q is odd or q is even and M0 = M ′0]S

q × Sq.

This is the background for Theorem A. To mention an application of the
cancellation results to nonsimply connected manifolds we combine them with
the exact surgery sequence [W1] to compute under certain assumptions the
group of connected components of (local) orientation-preserving simple homo-
topy self equivalences π0(Aut(M)) modulo the group π0(Diff(M)) of isotopy
classes of (local) orientation-preserving diffeomorphisms in terms of an exact
sequence.

Theorem E. Let M2q either be 1-connected with q odd or 1-connected
with q even and M = M ′]Sq × Sq, or π1(M) finite and M = M ′]2(Sq × Sq).
If q > 2 there is an exact sequence

[Σ(M), G/O]→ Ls2q+1(π1(M), w1(M))

→ π0(Aut(M))/π0(Diff(M))→ [M,G/O] .

To give an application of Theorem B to manifolds with infinite fundamen-
tal groups we present a very quick proof of the following result, which was
independently proven by Freedman and Quinn [F-Q, Th. 10.7.A].

Theorem F. Two closed topological 4-dimensional spin 4-manifolds with
infinite cyclic fundamental group are homeomorphic if and only if they have
isometric intersection forms on π2.

The intersection form is a quadratic form with values in Λ = Z[π1], which
is described in Section 5.

For odd-dimensional manifolds I do not know a result like Theorem C
and so it is necessary to analyse the obstructions θ(W ). We will carry this
out in a special case which has applications to the classification of 1-connected
7-dimensional homogeneous spaces. These homogeneous spaces have torsion-
free second homology group and isomorphic finite fourth cohomology group
generated by the first Pontrjagin class and decomposable classes. The nor-
mal 2-type is then determined by the second Betti number and the second
Stiefel-Whitney class. An analysis of θ(W ) for a bordism between two such
homogeneous spaces leads to:
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Theorem G. Two 1-connected 7-dimensional homogeneous spaces with
the cohomolgical properties above are diffeomorphic if and only if they have
equal second Betti number and Stiefel-Whitney class and if there is a bordism
W between normal 2-smoothings such that sign(W ) = 0 and the characteristic
numbers p2

1(W ), z2
i p1(W ) and z2

i z
2
j vanish, where zi are classes in H2(W ;Z)

restricting to a basis of each of the two boundary components.

In joint work with Stephan Stolz we analysed this situation further and
showed that besides the second Betti number and Stiefel-Whitney class certain
spectral invariants determine the diffeomorphism type. An explicit calculation
of the spectral invariants gave the first examples of homeomorphic but not
diffeomorphic homogeneous spaces [Kr-St1] and of manifolds where the moduli
space of metrics with positive sectional curvature is not connected [Kr-St2].

Besides the aim of obtaining explicit classification results the theory sheds
some light on the role of duality for manifolds. Poincaré duality reflects some
symmetry between the k and n−k handles of a compact manifold. Prescribing
the [n/2]-skeleton and classifying the corresponding manifolds shows how far
manifolds are determined by their handles up to half the dimension. We will
mention a result which demonstrates that in a particular situation even the
cohomology ring up to the middle dimension plus the Pontrjagin classes and a
certain homology class determine the manifolds up to finite ambiguity. Sullivan
[Su] introduced minimal models and the notion of a formal space, which means
that the minimal model is determined by its rational cohomology ring. We
abbreviate for an n-dimensional manifold M the truncated cohomology ring∑

i≤[n/2]+1H
i(M ;Z) by H≤[n/2]+1(M) and the subalgebra of the real minimal

model of H≤[n/2]+1(M) generated by elements of degree ≤ [n/2] byM[n/2](M).
The fundamental class of M determines a class α(M) ∈ Hn(M[n/2](M)). The
result which was proved in [Kr-Tr] using the modified surgery theory is the
following. Let n ≥ 5. The diffeomorphism type of a 1-connected closed smooth
n-manifold with formal ([n/2]+1)-skeleton is determined up to finite ambiguity
by the truncated cohomology ring H≤[n/2]+1(M), the real Pontrjagin classes
and the class α(M) ∈ Hn(M[n/2](M)).

Most of the results of this paper were obtained in the early eighties and
were circulated as [Kr3]. A plan to write a monograph based on this preprint
could not yet be realized. Since the theory was meanwhile used in several
papers ([Be], [Da], [F-K], [F-K-V], [H-K1], [H-K2], [H-K3], [H-K4], [H-K-T],
[K-L-T], [Kr4], [Kr-St1], [Kr-St2], [Kr-St3], [Kr-Tr], [Sto2], [Te], [Tr], [Wa]), I
decided to publish the most important results in the present form.

I would like to thank Stephan Stolz and Peter Teichner for many helpful
discussions about the theory, and the referee for detailed suggestions improving
the presentation.
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2. Normal k-smoothings

We will formulate and prove our general results in the smooth category.
Most results can with appropriate modifications be proved in the piecewise
linear or topological category. (Replace the differential normal bundle by the
corresponding PL - or TOP bundle.) This follows from the basic results of
[K-S].

We use the language of manifolds with B-structures. Here B is a fibration
over BO and a normal B-structure on an n-dimensional manifold M in B

is a lift ν̄ of the stable normal Gauss map ν : M → BO to B. Since the
normal Gauss map depends on an embedding of M into Rn+r for r large, one
has to interpret this with care and we refer to [St, p. 14 ff] for details. Since
we will frequently use homotopy groups we equip all spaces, without special
mentioning, with base points and assume that maps preserve the base points.
In particular if we orient the classifying bundle over BO at the base point
the normal Gauss map induces a local orientation at the base point and so all
orientable connected manifolds come with a given orientation.

Definition. Let B be a fibration over BO.
i) A normal B-structure ν̄ : M → B of a manifold M in B is a normal
k-smoothing, if it is a (k + 1)-equivalence.

ii) We say that B is k-universal if the fibre of the map B → BO is connected
and its homotopy groups vanish in dimension ≥ k + 1.

Obstruction theory implies that if B and B′ are both k-universal and
admit a normal k-smoothing of the same manifold M , then the two fibrations
are fibre homotopy equivalent. Furthermore, the theory of Moore-Postnikov
decompositions implies that for each manifoldM there is a k-universal fibration
Bk over BO admitting a normal k-smoothing of M . For background on these
basic homotopy theoretic facts we refer to [Ste] or more generally to [Bau].
Thus the fibre homotopy type of the fibration Bk over BO is an invariant
of the manifold M and we call it the normal k-type of M denoted Bk(M).
We note that if two manifolds have homotopy equivalent (k+ 1)-skeletons and
isomorphic normal bundles over them, then they have the same normal k-type.
By obstruction theory one obtains a classification of all normal k-smoothings
of M in Bk(M). The group of fibre homotopy classes of fibre homotopy self-
equivalences Aut(Bk(M)) acts effectively and transitively on the set of normal
k-smoothings of M .

There is an obvious bordism relation on closed n-dimensional manifolds
with normal B structures and the corresponding bordism group is denoted
Ωn(B) [St]. Normal k-smoothings give special elements in Ωn(B) and these
are independent of the choice of the normal k-smoothing in Ωn(B)/Aut(B).
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Remark. If k is larger than n, the dimension of M , then Bk(M) is equiva-
lent to the normal homotopy type of M : Two manifolds have the same (= fibre
homotopy equivalent) normal k-type if and only if there is a homotopy equiv-
alence preserving the normal bundle. Thus the starting point of the original
surgery theory, the normal homotopy type, is a special case of our setting.

We will demonstrate now using some examples that it is often much easier
to determine the normal [n/2]−1-type of a manifold than its normal homotopy
type.

Consider an n-dimensional homotopy sphere Σ. To describe the normal
k-type of Σ we need the following notion. Let X be a connected CW-complex.
The k-connected cover X〈k〉 is a CW-complex which up to homotopy equiva-
lence is characterized by the property that X〈k〉 is k-connected and there is a
fibration p : X〈k〉 −→ X inducing isomorphisms on πi for i > k.

Proposition 1. Let Σn be an n-dimensional homotopy sphere and k <

n− 1. Then the normal k-type of Σn is the fibration p : BO〈k + 1〉 −→ BO.

Proof. Since the fibration p : BO〈k+ 1〉 −→ BO induces an isomorphism
on πn for n > k, the normal Gauss map lifts and the lift is automatically a
(k + 1)-equivalence.

Remark. For k ≥ n the normal k-type is equivalent to the normal homo-
topy type of a homotopy sphere. The determination of this is an important
step in the analysis of homotopy spheres by ordinary surgery theory as was
done by Kervaire and Milnor [K-M]. The additional information needed for this
is that the stable normal bundle of a homotopy sphere is trivial [K-M, Th. 3.1].
It should be noted that the proof of this fact is not elementary (it uses the
Hirzebruch signature theorem as well as Adams’s result about the injectivity
of the J-homomorphism and of course Bott periodicity). In contrast, the proof
of the proposition for k < n− 1 is completely elementary. One can, based on
this completely elementary proposition, see that one gets the same information
about the diffeomorphism classification of homotopy spheres as Kervaire and
Milnor.

Next, we determine the normal 1-type of a compact manifold. This is
relevant for determining the homeomorphism type of compact 4-manifolds and
for applications to manifolds of dimension > 4 with metric of positive scalar
curvature. Consider triples (π,w1, w2) where π is a finitely presentable group
and wi ∈ H i(K(π, 1);Z/2) are cohomology classes. Two such triples are called
isomorphic if there is an isomorphism f : π −→ π′ such that f∗w′i = wi. We de-
note the isomorphism class by [π,w1, w2]. Similarly we introduce isomorphism
classes of pairs [π,w1], where w1 is an element of H1(K(π, 1);Z/2).
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Given (π,w1) we consider the real line bundle E → K(π, 1) with w1(E) =
w1. Consider the composition

K(π, 1)×BSO E×p−→ BO ×BO ⊕−→ BO,

where E:K(π, 1)→ BO is the classifying map of the stable bundle given by E
and ⊕ is the H-space structure on BO given by the Whitney sum. We denote
the corresponding fibration by B[π,w1]. The normal Gauss map ν : M → BO

together with u : M → K(π, 1) determines a lift ν̄ : M → B(π,w1) of ν and it
is easy to check that ν̄ is a 2-equivalence.

Given (π,w1, w2), we consider the following pullback square

B(π,w1, w2) −−−→ K(π, 1)

p

y yw1×w2

BO −−−−−−−−−−−→
w1(EO)×w2(EO)

K(Z/2, 1)×K(Z/2, 2),

where wi(EO) are the Stiefel-Whitney classes of the universal bundle. The fibre
homotopy type of p : B(π,w1, w2) −→ BO is determined by the isomorphism
class of (π,w1, w2) and is denoted by B[π,w1, w2].

If M is a compact manifold (implying π1(M) is finitely presentable) and
u : π1(M) → π is an isomorphism we denote the corresponding map M →
K(π, 1) again by u (u is unique up to homotopy and a classifying map of
the universal covering). If w2(M̃) = w2(ν(M̃)) = 0 there are unique classes
wi ∈ H i(K(π, 1);Z/2) with u∗wi = wi(ν(M)) for i = 1, 2. This is clear for
i = 1 and for i = 2 one uses the short exact sequence [Bro]:

0→ H2(K(π, 1);Z/2) u∗−→ H2(M ;Z/2)
p∗−→ H2(M̃ ;Z/2).

Obviously [π,w1, w2] is an invariant of M.

The normal Gauss map ν : M → B together with u : M → K(π, 1)
determines a lift ν̄ : M → B(π,w1, w2) of ν and it is easy to check that ν̄ is a
2-equivalence. We summarize these considerations as:

Proposition 2. If w2(M̃) 6= 0 then the normal 1-type of a compact
manifold M is B[π,w1], and if w2(M̃) = 0 then it equals B[π,w1, w2].

Finally we determine the normal (n− 1)-type of a complete intersection.
Let f1, . . . , fr be homogeneous polynomials on CPn+r of degree d1, . . . , dr. If
the gradients of these polynomials are linearly independent, the set of com-
mon zeros is a smooth complex manifold of complex dimension n, a nonsin-
gular complete intersection. As was noted by Thom, the diffeomorphism type
of nonsingular complete intersections depends only on the unordered tuple
(d1, . . . , dr) called the multi-degree. We denote this diffeomorphism type by
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Xn
d1,... ,dr

. It is natural to ask for a diffeomorphism classification of this very
interesting class of algebraic manifolds.

Except under some restrictive assumptions [L-W1], [L-W2], even the ho-
motopy classification of the Xn

d1,... ,dr
’s is unknown, which is the first step in

the ordinary surgery theory. On the other hand the topology of Xn(d) up to
half the dimension is known. According to Lefschetz the inclusion

i : Xn
d1,... ,dr −→ CP∞

is an n-equivalence.
Moreover, it is easy to see that the normal bundle of Xn

d1,... ,dr
is isomorphic

to

ν(Xn
d1,... ,dr)

∼= i∗(ν(CPn+r)⊕Hd1 ⊕ · · · ⊕Hdr)
∼= i∗(−(n+ r + 1) ·H ⊕Hd1 ⊕ · · · ⊕Hdr)

where H is the Hopf bundle and Hdi means the di-fold tensor product. We
abbreviate δ = (d1, . . . dr). Denote the classifying map of

−(n+ r + 1) ·H ⊕Hd1 ⊕ · · · ⊕Hdr

by ξ(n, δ) : CP∞ → BO. We transform the composition of ξ(n, δ) × p

: CP∞×BO〈n+1〉 → BO×BO and the Whitney sum ⊕ : BO×BO → BO

into a fibration and denote the projection map of this fibration by ξ(n, δ)⊕ p
: CP∞ × BO〈n + 1〉 → BO. Then by construction the normal Gauss map of
Xn
d1,... ,dr

admits a lift over this fibration by a n-equivalence. Then:

Proposition 3. The normal (n − 1)-type of a complete intersection
Xn(δ) is

CP∞ ×BO〈n+ 1〉 ξ(n,δ)⊕p−−−−−→ BO.

3. Surgery below the middle dimension and first applications

In homotopy theory one can, for a topological spaceX and r ≥ 1, eliminate
arbitrary elements [f ] ∈ πr(X) by attaching an (r+1)-cell via f . More precisely
consider Y = Dr+1 ∪f X. Then the inclusion i : X → Y is an r-equivalence
and [f ] with all its translates under the action of π1(X) generates the kernel
of i∗ : πr(X) → πr(Y ) (for r > 1 see [Wh], for r = 1 this follows from van
Kampen’s theorem).

Surgery is an attempt to do constructions which have the same effect on
homotopy groups within the category of manifolds [Br], [W1]. To stay within
the category of manifolds, we start with an embedding

f : Sr ×Dm−r ↪→
◦
M
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where M is a m-dimensional manifold. Then we define

W : = Dr+1 ×Dm−r ∪
f
M × I

where we consider f as a map to M × {1}.
W is a manifold with corners but we will always straighten the angles

occurring at f(Sr × Sm−r−1) [C-F]. This construction is called attaching an
(r + 1)-handle and W the trace of a surgery via f .

The boundary of W is M ∪ (∂M × I)∪M ′ and we call M ′ the result of a
surgery of index r + 1 via f . More explicitly,

M ′ = Dr+1 × Sm−r−1 ∪
f

(M − f(Sr ×
◦
Dm−r)).

Obviously W is homotopy equivalent to Y = Dr+1 ∪
f |Sr×{0}

M , the result

of attaching a cell via f |Sr×{0}. From the construction of W and M ′ it is not
difficult to see that W can also be viewed as the trace of a surgery on M ′ via
the obvious embedding of Dr+1 × Sm−r−1 into M ′ [Mi1]. In particular, W is
homotopy equivalent to Y ′ = Dm−r ∪

{0}×Sm−r−1
M ′.

The following lemma demonstrates the analogy of the two constructions
“attaching a cell” and “surgery” as far as the effect on homotopy groups is
concerned.

Lemma 1. Let f : Sr ×Dm−r ↪→Mm be an embedding into a connected
manifold. Let W be the trace of a surgery via f and M ′ be the result of a
surgery via f.

i) The inclusion i : M → W is an r-equivalence and [f |Sr × {0}] and
its translates under the action of π1(M) generate the kernel of i∗ : πr(M) →
πr(W ).

ii) The inclusion j : M ′ → W is an (m − r − 1)-equivalence and [{0} ×
Sm−r−1] ∈ πm−r−1(M ′) and its translates under the action of π1(M ′) generate
the kernel of j : πm−r−1(M ′)→ πm−r−1(W ).

iii) If k < r and k < m− r − 1, then

πk(M ′) ∼= πk(M) ∼= πk(W )

and, if 2r < m− 1
πr(M ′) ∼= πr(M)/U

where U is generated by [f |Sr×{0}] and its translates under the action of π1(M).

Proof. The results follow from [Wh, p. 213] and van Kampen’s theorem
since

i) W ' Dr+1 ∪
f|Sr×{0}

M and
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ii) W ' Dm−r ∪
{0}×Sm−r−1

M ′.

iii) follows from i) and ii).

To apply the construction of attaching handles to eliminate elements in
πr(M), it is necessary to know which elements in πr(M) can be represented
by embeddings f : Sr × Dm−r ↪→ M. We have some control over this in the
situation described in Section 2. Let

ξ : B → BO

be a fibration and ν̄ : M → B a normal B-structure. If r < m
2 , the Whitney

embedding theorem [Hi] implies that any map Sr → M is homotopic to an
embedding f. If [f ] lies in the kernel of ν̄ : πr(M)→ πr(B), the stable normal
bundle of this embedding is trivial. Since the dimension of the normal bundle
is greater than r, it is actually trivial [Ste]. Thus, we have shown the first part
of the following lemma.

Lemma 2. Let ξ : B → BO be a fibration and (M, ν̄) be a normal B-
structure.

i) If r < m
2 any element in the kernel of ν̄∗ : πr(M) → πr(B) can be

represented by an embedding

f : Sr ×Dm−r ↪→M.

ii) Let f : Sr×Dm−r ↪→M be an embedding representing a homotopy class
in the kernel of ν̄?. For 1 < r < m

2 , f can be modified by a self-diffeomorphism
on Sr × Dm−r, so that ν̄ : M → B extends to a normal B-structure of W ,
the trace of the surgery via f . Denote the restriction of any such extensions to
M ′, the result of the surgery, by ν̄ ′ : M ′ → B.

iii) For 1 < r = m
2 and r 6= 3, 7, or r = 3, 7 and there is β ∈ πr+1(B)

with β∗ξ∗wr+1 6= 0, wr+1 ∈ H∗(BO;Z/2) the Stiefel-Whitney class, the same
statement as in ii) holds.

Proof. We only have to show ii) and iii). The embedding f :Sr×Dm−r↪→
M induces a normal B-structure on Sr × Dm−r denoted by f∗ν̄. There is
a unique (up to homotopy) B-structure on Dr+1 × Dm−r and we have to
show that, after perhaps modifying the embedding f, we can achieve that its
restriction to Sr × Dm−r is f∗ν̄. Let F be the fibre of ξ : B → BO. The
different B-structures on Sr × Dm−r are classified by πr(F ), as follows from
the long exact homotopy sequence. Since f∗ν̄|Sr×{0} represents 0 in πr(B)
by assumption, the B-structures are in the image of the boundary operator
d : πr+1(BO) → πr(F ). For a map α : Sr → O(m − r) we consider the
diffeomorphism gα : Sr×Dm−r → Sr×Dm−r mapping (x, y) 7−→ (x, α(x) · y).
Then f∗ν̄ and (f · gα)∗ν̄ differ by d(iα) ∈ πr(F ), where i : O(m − r) → O is
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the inclusion and we consider iα as an element of πr+1(BO) ∼= πr(O). Since
m − r > r, i∗ : πr(O(m − r)) → πr(O) is surjective [Ste] which finishes the
proof of ii).

For r = m
2 the same argument as above works as long as i∗ : πr(O(r))→

πr(O) is surjective. This is the the case for r 6= 3, 7 as follows from results
in [Ste]. For r = 3, 7 the map is not surjective but has a cokernel Z/2. This
cokernel is detected by the Stiefel Whitney class wr+1 of the bundle over Sr+1

classified by an element of πr(O). Looking at the homotopy sequence of the
fibration B → BO: πr+1(B) → πr+1(BO) → πr(F ) → πr(B) we see that if
there is β ∈ πr+1(B) with β?ξ∗wr+1 6= 0 there is no obstruction for finding
a diffeomorphism gα : Sr × Dm−r → Sr × Dm−r, so that after changing the
embedding with this diffeomorphism ν̄ : M → B extends to a normal B-
structure of W , the trace of the surgery via f .

We call an embedding f : Sr ×Dm−r ↪→M , where ν̄ extends to a normal
B-structure of the trace a compatible embedding.

Combining the information about the effect of attaching a cell for homo-
topy groups with Lemma 1 we get the following result. Before we formulate
it recall that the integral group ring Z[π] of a group π is the ring of all for-
mal linear combinations

∑
ngg, where g runs over elements of π and all but

finitely many ng are zero. We abbreviate Z[π1(B)] by Λ. If π is the funda-
mental group of a space X then it acts on all homology groups of the universal
covering and on all homotopy groups of dimension > 1, making these groups
into Λ-modules in such a way that the Hurewicz homomorphism is a Λ-module
homomorphism.

Proposition 4. Let ξ : B → BO be a fibration and assume that B is
connected and has a finite [m/2]-skeleton. Let ν̄ : M → B be a normal B-
structure on an m-dimensional compact manifold M. Then, if m ≥ 4, by a
finite sequence of surgeries (M, ν̄) can be replaced by (M ′, ν̄ ′) so that ν̄ ′ : M ′

→ B is an [m2 ]-equivalence.

Proof. In the first step we make M connected. We can diminish the num-
ber of components of M by one if we do surgery via an appropriate embedding
f : S0×Dm ↪→M, if f(1, 0) and f(−1, 0) are contained in different components
of M (note that in this situation surgery is the same as forming the connected
sum).

Now, we assume M to be connected and deal in the second step with π1.
We want to modify ν̄ : M → B so that the induced map in π1 is surjective.

For this, and the similar statement for higher homotopy groups, it is useful
to note that surgery on a standard (unknotted) embedding Si × Dm−i ↪→
Dm ↪→ M replaces M by M#Si+1 × Sm−i−1. More precisely, consider the
decomposition of Sm = Si × Dm−i ∪Di+1 × Sm−i−1. Surgery on Si × Dm−i
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yields Si+1 × Sm−i−1 and replacing M by M]Sm we obtain via surgery M ′ =
M#Si+1×Sm−i−1. We have freedom in extending the normal B-structure on
M to the trace of the surgery and this freedom can be used to achieve the fact
that under the restriction of the normal B-structure on the trace to M ′ an
arbitrary element in the kernel of πi+1(B)→ πi+1(BO) is in the image of ν̄ ′∗.

We can generalize this construction. For α : Si → O(m − i) twist the
embedding of Si×Dm−i by composition with the corresponding diffeomorphism
on Si×Dm−i. Performing surgery replaces M by M]Xα where Xα is the sphere
bundle of the vector bundle over Si+1 classified by α. If α ∈ πi(BO) is in the
image of πi+1(B) → πi+1(BO), the normal B-structure on M extends to the
trace of the surgery and now α is in the image of the map induced by the
normal Gauss map from M]Xα to BO.

We call such surgeries connected sum surgeries. Combining these two
considerations and using the fact that πi(B) is finitely generated (over Λ for
i > 1), we obtain:

Lemma 3. For i ≤ m/2, by a sequence of connected sum surgeries,
ν̄∗ : πi(M)→ πi(B) is surjective without changing anything below dimension i.

Let 〈x1, . . . , xk|r1, . . . , rs〉 be a presentation of π1(B). Applying the
lemma above to π1 we can replace (M, ν̄) by M ′ = M]X, ν̄ ′ with X a con-
nected sum of X ′αs as above, such that π1(M ′) has a presentation

〈a1, . . . , aj , z1, . . . , zk|R1, . . . , Rp〉,
where 〈zi〉 = π1(X), ν̄ ′∗zi = xi and 〈a1, . . . , aj |R1, . . . , Rp〉 is a presentation
of π1(M) (note that by Morse theory [Mi1] the fundamental group of M is
finitely presentable if M is compact, in particular ri is a word in a1, . . . , aj).

In this situation we write ν̄ ′∗(ai) = wi(x1, . . . , xk), a word in xi. Now con-
sider the elements a−1

i wi(z1, . . . , zk) in π1(M ′) and ri(z1, . . . , zk). Obviously
these elements are in the kernel of ν̄ ′∗ and thus we can do surgery on them.
The effect on π1(M ′) is to introduce these elements as additional relations.
This follows from Lemma 2 since m ≥ 4. Thus the map on π1 becomes an
isomorphism. By Lemma 3 we can assume that π2(M)→ π2(B) is surjective.

Summarizing after these steps we can assume that ν̄ : M → B with M

connected and ν̄ a 2-equivalence. We finish the proof by an inductive argument.
We assume inductively that for some 2 ≤ r < [m2 ], ν̄ is an r-equivalence.

We first want to eliminate the kernel of ν̄∗ : πr(M)→ πr(B) by a sequence of
surgeries. There is an exact sequence

πr+1(B,M) d→ πr(M) ν̄∗−→ πr(B)→ 0

(here as in similar situations we replace ν̄ : M → B by an embedding up to ho-
motopy equivalence using the mapping cylinder, so that the relative homotopy
groups make sense [Wh]).
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By assumption, B has a finite (r + 1)-skeleton so that Hr+1(B,M ; Λ) ∼=
πr+1(B,M) is finitely generated. Surgery on a set of generators of image d
eliminates the kernel of ν̄∗ without changing the inductive assumptions (this
follows from Lemmas 1 and 2). Finally, as for r = 0 and 1, we can do connected
sum surgeries to show that πr+1(M)→ πr+1(B) is surjective.

We call two compact manifolds M0 and M1 with the same boundary and
normalB-structures, which agree on the boundary, normally B-bordant relative
to the boundary, if the union of the two manifolds over the common boundary
is zero bordant as a normal B-manifold. Here we have to equip M1 with the
negative orientation which is obtained by extending the given B-structure on
M1 to the cylinder M1×I and restricting it to the other boundary component.

Obviously the trace of a surgery is a normal B-bordism relative boundary.
Thus, we can conclude from Proposition 3 the following:

Corollary 1. Under the assumptions of Proposition 4, (M, ν̄) is nor-
mally B-bordant relative to the boundary to (M ′, ν̄ ′) such that ν̄ ′ : M ′ → B is
an [m2 ]-equivalence.

The concept of normal 1-types and normal B-bordisms is useful for the
investigations of a relevant differential geometric problem: Which manifolds
admit a metric of positive scalar curvature? This relation was pointed out to me
by Stephan Stolz. The key is the following result which is an easy consequence
of the surgery theorem of Gromov-Lawson [G-L], respectively, Schoen-Yau
[S-Y].

Theorem 1 [G-L], [S-Y]. Let M be a compact manifold of dimension
n ≥ 5. Let B be the normal 1-type of M as described in Proposition 2. Then
M admits a metric of positive scalar curvature if and only if there is a normal
B-manifold N admitting a metric of positive scalar curvature, such that M
and N agree in Ωn(B)/Aut(B).

Proof. Let (W, ν̄W ) be a normal B-bordism between (M, ν̄) and (M ′, ν̄ ′).
By Proposition 4 we can assume that ν̄W is a 3-equivalence, implying that
i : M → W is a 2-equivalence. By Morse theory M is obtained from M ′ by
a sequence of surgeries [Mi1]. If i : M → W is a 2-equivalence the proof of
this theorem implies that one actually can pass from M ′ to M by a sequence
of surgeries using embeddings of Sr ×Dm−r with r < m− 2 [Mi2].

The surgery theorem of [G-L] or [S-Y] says that if one performs surgery
on a sphere of codimension ≥ 3 on a manifold with positive scalar curvature
metric, then the resulting manifold admits such a metric. Thus the existence
of a positive scalar curvature metric on M ′ implies the existence on M .
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Corollary 2. Let M be a closed manifold of dimension m ≥ 5 admit-
ting a zero bordant normal 1-smoothing ν̄ in ξ where ξ is the normal 1-type of
M as described in Proposition 2. Then M admits a metric with positive scalar
curvature.

Proof. (M, ν̄) is B-bordant to the sphere Sm with the normal B-structure
induced from Dm+1. Since the standard metric on Sm has positive sectional
curvature (implying positive scalar curvature), the result follows from Theo-
rem 1.

Remark. For M simply connected of dimension ≥ 5 the solution of the
problem of existence of a positive scalar curvature metric follows if M does
not admit a spin structure (w2(M) 6= 0). For, in this situation one can rather
easily construct explicit generators of the oriented bordism group Ωn (which in
this situation is the bordism group of the normal 1-type) admitting metrics of
positive scalar curvature. This was carried out in [G-L]. The spin case is much
harder and was recently solved by Stephan Stolz [Sto1] showing that there is
a single obstruction α(M) with values in Z for dim(M) divisible by 4, in Z/2
for dim(M) ≡ 0, 1 mod 8 and 0 else. There is also substantial progress going
on for nonsimply connected manifolds [Ro-St], [Sto2], [Ju].

4. Stable diffeomorphism classification

In this section we will prove Theorem C and a relative version for man-
ifolds with boundary. We will do it by showing that a normal B-bordism W

between two normal B-smoothings of 2q-dimensional manifolds M0 and M1

in a (q − 1)-universal fibration B can be replaced by an s-cobordism after a
sequence of surgeries and a new operation, called subtraction of tori, which
changes the boundary components by connected sum with Sq × Sq. Then
the s-cobordism theorem [Ke] in dimension > 4 and the stable s-cobordism
theorem in dimension 4 [Q] imply that M0 and M1 are stably diffeomorphic.

We will also prove a relative version for manifolds with boundary. Let M0

and M1 be compact manifolds of dimension 2q with boundary and f : ∂M0 →
∂M1 a diffeomorphism. This diffeomorphism is used to identify the boundaries.
Suppose that these manifolds have the same normal (q − 1)-type and admit
normal (q − 1)-smoothings compatible with f , i.e. are equal on the bound-
ary after identifying the boundaries via f . We also assume that the normal
B-manifold M0 ∪f M1 is zero bordant via a normal B-bordism W . We begin
with the description of subtraction of tori from W . Consider an embedded
torus Sq ×Dq+1 in the interior of W . Join ∂(Sq ×Dq+1) with M0 by an em-
bedded thickened arc I × D2q meeting ∂(Sq × Dq+1) and M0 transversely in
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{0}×D2q and {1}×D2q respectively. Remove Sq× int(Dq+1) and I× int(D2q)
from W and straighten the resulting angles (compare [C-F, p. 9]). The result-
ing manifold W ′ has boundary M0#Sq×Sq∪fM1. We say that W ′ is obtained
from W by subtraction of a (solid) torus. Of course, we can do the same with
M1 instead of M0. One can generalize this process by admitting embeddings
of arbitrary vector bundles over Sq instead of the trivial bundle. Then one
stabilizes by connected sum with the corresponding sphere bundle. Also this
generalization is useful for some classification problems (compare [Kr1], [Kr2]).

We want to do this process with a bit more care controlling the B-
structures. Up to homotopy classes of lifts Dq+1 has a unique normal structure
in B and we denote its restriction to Sq by ν̄c (note that this “canonical“ lift
is not the constant map as Dq+1 ⊆ Rq+2 meets Rq+1 transversely in Sq). Sim-
ilarly, we can construct a normal structure on Sq × Dq+1 and we denote its
restriction to Sq × Sq again by ν̄c. Now, we will show that, if Sq × {0} is zero
homotopic in B, we can change the embedding of Sq×Dq+1 into W , such that
the restriction of the normal B-structure on W to M0#Sq × Sq is equal to
M0#(Sq ×Sq, ν̄c). For this, we note that the different normal B-structures on
Sq×Dq+1 are classified up to homotopy by the action of πq(F ) on a fixed given
normal B-structure, where F is the fibre of B −→ BO. Since Sq × {0} is zero
homotopic in B we are only allowed to change the B-structure on Sq ×{0} by
elements in the image of πq+1(BO)→ πq(F ).

Now we consider a map α : Sq −→ O(q+ 1) and the twist diffeomorphism
fα : Sq×Dq+1 −→ Sq×Dq+1, (x, y) −→ (x, α(x) · y).

The induced normal B-structure under this diffeomorphism on Sq×Dq+1

is given by the action of the image of α under πq(O(q + 1)) −→ πq(O) ∼=
πq+1(BO)→ πq(F ) on the given B-structure. Since πq(O(q+ 1)) −→ πq(O) is
surjective [Ste], this implies that we can always change a given embedding of
Sq×Dq+1 into W by composing it with fα for an appropriate α such that the
induced normal B-structure on ∂(Sq×Dq+1) is fibre homotopic to νc. In the
following we will always assume that embeddings Sq×Dq+1 into W are chosen
such that the normal B-structure on ∂(Sq×Dq+1) is νc. Then we call this a
compatible subtraction of a torus.

Theorem 2. Let M0 and M1 be compact connected 2q-dimensional man-
ifolds with normal (q− 1)-smoothings in a fibration B. Let f : ∂M0 → ∂M1 be
a diffeomorphism compatible with the normal (q − 1)-smoothings.

By a finite sequence of surgeries and compatible subtraction of tori, a
normal B-zero bordism of M0 ∪f M1 can be replaced by a relative s-cobordism
between M0]r(Sq × Sq) and M1]s(Sq × Sq).

Corollary 3. Under the same conditions f : ∂M0 → ∂M1 can be ex-
tended to a diffeomorphism F : M0]r(Sq × Sq)→M1]s(Sq × Sq). This diffeo-
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morphism commutes up to homotopy with the normal (q− 1)-smoothings in B

given by the normal (q − 1)-smoothing on Mi and νc on Sq × Sq.

If the manifolds have the same Euler characteristic, then r = s. If the
boundary is empty, this is Theorem C from the introduction.

Proof. In the following we will frequently make use of homology and co-
homology with twisted coefficients. In particular, we consider as coefficients
the group ring Λ = Z[π1(B)]. Here we assume that the space whose homology
we are looking at is equipped with a map to B under which we pull back the
coefficients. In particular, if the map induces an isomorphism on π1, the ho-
mology with coefficients in Λ is the ordinary homology of the universal covering
considered as a module over π1 via covering translations. Note that the corre-
sponding statement for cohomology is only true for finite π1; for infinite groups
it is ordinary cohomology with compact support. References for homology with
twisted coefficients are [Wh], [W1].

W is a relative s-cobordism if and only if

i) π1(Mi) −→ π1(W ) are isomorphisms for i = 0, 1.

ii) Hk(W,Mi; Λ) = {0} for i = 0, 1 and k ≤ q.
iii) The Whitehead torsion τ(W,Mi) vanishes for i = 0, 1 [Mi3].

By Proposition 4 we can assume that ν̄ : W −→ B is a q-equivalence.
Since also the normal (q − 1)-smoothings ν̄i : Mi → B are q-equivalences, this
implies i) and that ii) holds for k < q . To kill Hq(W,Mi; Λ) by a sequence of
compatible subtractions of tori, we consider the diagram of exact sequences

Hq+1(B,W ; Λ)y
Hq(Mi; Λ) → Hq(W ; Λ) → Hq(W,Mi; Λ) → 0.y

Hq(B; Λ)y
0

As Hq(Mi; Λ)→ Hq(B; Λ) is surjective, the same follows for Hq+1(B,W ; Λ)→
Hq(W,Mi; Λ). Since W and Mi are compact, Hq(W,Mi; Λ) is a finitely gen-
erated Λ-module. As ν̄ : W → B is a q-equivalence, the Hurewicz theorem
implies

πq+1(B,W )
∼=−→ Hq+1(B,W ; Λ).

Thus there exists a finite set of elements of πq+1(B,W ) mapping to generators
of Hq(W,M0; Λ). The images of them in πq(W ) can be represented by disjointly
embedded spheres with trivial normal bundle (Sq×Dq+1)i in the interior of
W (the normal bundle is stably trivial since these elements map to zero in
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πq(B) under ν̄ and we are in the stable range, i.e. stably trivial bundles are
trivial). As described above, join each of these embedded (Sq×Dq+1)i with
M0 to obtain [(Sq×Dq+1)∪I×D2q]i and subtract these tori to obtain (W ′, ν̄ ′)
replacing (M0, ν̄0) by (M0, ν̄0)#r(Sq×Sq, ν̄c). This leaves (M1, ν̄1) unchanged.
By general position ν̄ ′ is again a q-equivalence. The fact that the classes
(Sq ×{0})i generate Hq(W,M0; Λ) and the long exact homology sequence of a
triple implies

Hq(W,M0 ∪i [(Sq ×Dq+1) ∪ I ×D2q]i; Λ) = {0}.

But the latter group is by excision isomorphic to Hq(W ′,M0#r(Sq×Sq); Λ).
Thus we have killed Hq(W ′,M0#r(Sq×Sq); Λ) and so the pair

(W ′,M0#r(Sq×Sq)) is q-connected. What about Hq(W ′,M1; Λ)? This Λ-
module is stably free; i.e., the direct sum with an appropriate finitely generated
free Λ-module is free: It was shown in [W1, Lemma 2.3] that this is true if
Hk(W ′,M1;A) is trivial for k 6= q and every Λ-module A. This holds for k < q

by assumption and for k > q we have by Poincaré-Lefschetz duality (compare
[W1, Th. 2.1])

Hk(W ′,M1;A) ∼= H2q+1−k(W ′,M0#r(Sq×Sq);A) = {0}

since (W ′,M0#r(Sq×Sq)) is q-connected.
We want to achieve that Hq(W ′,M1; Λ) is actually free. For this we con-

sider a finite set of disjoint embeddings of Sq×Dq+1 sitting unknotted and
unlinked in a ball D2q+1 ⊂ int(W ). If we join them with M0 and subtract
these tori, we replace Hq(W ′,M1; Λ) by the direct sum with a free module of
rank the number of embedded Sq×Dq+1.

Thus we can assume thatHq(W ′,M1; Λ) is free. If one distinguishes a basis
of Hq(W ′,M1; Λ), the Whitehead torsion τ(W ′,M1) is defined [Mi3, p. 378].
Since every element of Wh(π1) is represented by a matrix of finite rank, the
definition of this torsion implies that (after further stabilization) we can choose
the basis such that the torsion vanishes. Following Wall, such a basis is called
preferred [W1, §2].

Given such a preferred basis, we have shown above that we can represent
it by s disjoint embeddings (Sq×Dq+1)j in the interior of W ′. Join them with
M1 and subtract these tori to obtain W ′′ with

∂ W ′′ = M0#r(Sq×Sq) ∪f M1#s(Sq × Sq).

We claim that W ′′ is a relative s-cobordism. For this we have to check

Hq(W ′′,M0#r(Sq × Sq); Λ) = 0 = Hq(W ′′,M1#s(Sq×Sq); Λ)

and the torsion of (W ′′,Mi) is zero.
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As above, Poincaré-Lefschetz duality implies that the left homology group
vanishes automatically if Hk(W ′′,M1#s(Sq×Sq); Λ) = {0} for all k. Further-
more we know that these homology groups are trivial for k 6= q or q + 1. By
excision the group is isomorphic to Hk(W ′,M1 ∪ U ; Λ) where U = ∪

j
(Sq ×

Dq+1)j ∪ I × D2q. We consider the homology sequence of a triple (with Λ-
coefficients)

0→ Hq+1(W ′,M1 ∪ U)→ Hq(M1 ∪ U,M1)

→ Hq(W ′,M1)→ Hq(W ′,M1 ∪ U)→ 0.

All other homology groups in this long exact sequence vanish. Hq(M1∪U ,
M1; Λ) is free with its basis given by the (Sq×{0})j . This is a preferred basis
(the Whitehead torsion of (M1∪U,M1) with respect to it vanishes). The image
of these basis elements forms our preferred basis of Hq(W ′,M1).

All this implies that Hk(W ′,M1 ∪ U ; Λ) = {0} for all k and that the
Whitehead torsion of the based acyclic complex given by the exact sequence
above is trivial. By the additivity formula of the Whitehead torsion [Mi3,
Th. 3.2], this implies:

τ(W ′′,M1#s(Sq×Sq)) = τ(W ′,M1 ∪ U) = τ(W ′,M1)− τ(M1 ∪ U,U) = 0.

By the duality theorem [Mi3], this also implies τ(W ′′,M0#r(Sq×Sq)) = 0,
finishing the proof of Theorem 2.

As Peter Teichner pointed out to me, one can get an easier proof of Corol-
lary 3 roughly as follows (a similar argument was used in the proof of [Fr1,
Th. 3]). By Proposition 4 we can assume that there is a bordism relative to
the boundary W between M0 and M1 such that the map W → B is a q-
equivalence. Then the proof of the s-cobordism theorem implies that W has
a handle decomposition consisting only of handles of index q and q + 1. The
middle level of this bordism is obtained from both M0 and M1 as the result
of surgeries on null-homotopic embeddings Sq−1 ×Dq+1 in Mi which replace
Mi by connected sum with copies of Sq × Sq. Thus M0 and M1 are stably
diffeomorphic relative to the boundary.

5. The main theorem for even-dimensional W

We begin with the definition of the obstruction monoid l2q(π,w). Here π
is a group and w : π → Z/2 a homomorphism, which in the geometric context
is the first Stiefel-Whitney class. Denote the integral group ring as before by
Λ = Z[π]. Let − : Λ → Λ be the involution sending g ∈ π to ḡ = w(g) · g−1.
We will work with left Λ-modules but note that we can via − pass to right
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Λ-modules whenever we like. In particular, the dual Λ-module V ? of a left
Λ-module V is naturally a right Λ-module but we consider it as left Λ-module.

For ε = ±1, an ε-quadratic form over Λ is given by a left Λ-module V
together with an ε-hermitian form λ : V × V → Λ and a quadratic refinement
µ : V → Λ/〈x−εx̄〉. This means that λ and µ have to fulfill the following
properties:

i) For fixed v ∈ V the map V → Λ mapping w 7→ λ(w, v) is a Λ-homomor-
phism.

ii) λ(v, w) = ελ̄(w, v).
iii) λ(v, v) = µ(v) + εµ̄(v) ∈ Λ.
iv) µ(v + w) = µ(v) + µ(w) + λ(v, w) ∈ Λ/〈x−εx̄〉.
v) µ(x · v) = x · µ(v) · x̄.

Note that iii) is an equation in Λ since x+ εx̄ is a well-defined element in
Λ. An important special case is the ε-hyperbolic form Hr

ε := Hε ⊥ · · · ⊥ Hε,
r summands, where Hε is the form on Λ⊕Λ with standard basis e and f and
λ(e, f) = 1, λ(f, e) = ε, λ(e, e) = λ(f, f) = 0 and µ(e) = µ(f) = 0.

A Λ-module V is called based, if it is finitely generated and equipped with
an equivalence class of bases, where two bases are equivalent if the matrix of
base changes vanishes in Wh(π). An isomorphism between based Λ-modules
is called a simple isomorphism if the matrix of the isomorphism with respect
to the given bases vanishes in Wh(π).

The objects in l2q(π,w) are represented by triples (V0
f← V

g→ V1, λ, µ)
fulfilling:

i) V is a finitely generated left Λ-module and V0 and V1 are based.
ii) λ : V0 → V ?

1 is an isomorphism and should induce an ε-hermitian form
λV on V (i.e. for x and y in V we have λV (x, y) := λ(f(x), g(y)) =
(−1)qλ(f(y), g(x)) ∈ Λ) and µ : V → Λ/〈x−εx̄〉 is a quadratic refinement
of this form. Here ε := (−1)q.
The second condition can be reformulated as follows: The adjoint of λ is

an isomorphism λ : V0 → V ∗1 and λV = g∗λf = (−1)qf∗λ∗g : V → V ∗, and
µ : V → Λ/〈x−εx̄〉 is a quadratic refinement of λV .

The orthogonal sum defines a monoid structure on these objects. Particu-
lar objects of this type are obtained from an ε-quadratic form (V, λ, µ) with V
based by setting V0 = V1 = V and f = g = Id. In particular, the ε-hyperbolic
forms are of this type, where we base Hε via the canonical basis e and f . In
the definition of the quadratic refinement we can, for ε = −1, replace µ by
µ̃, which takes values in the quotient Λ/〈x − εx̄, 1〉. Everything above makes
sense with this modification.

Definition. The monoid l2q(π,w) is given by equivalence classes of triples



     

726 MATTHIAS KRECK

(V0
f← V

g→ V1, λ, µ)

as above, where two such triples are equivalent if they are simple isometric after
adding ε-hyperbolic forms (of perhaps different rank) to them. If, for q odd,
we replace µ by µ̃ which takes values in Λ/〈x−εx̄, 1〉, we call the corresponding
monoid l∼2q(π,w).

Of course, l2q(π,w) depends only on q modulo 2. The notion comes from
the geometric context. There is a submonoid coming from all ε-quadratic
forms (V, λ, µ) with V based. This is actually an abelian group L2q(π,w)
which essentially is the ordinary Wall group Ls2q(π,w). More precisely, the
Wall group is given by those ε-quadratic forms (V, λ, µ) with V based, where
the adjoint of λ is a simple isomorphism. Thus we have a homomorphism from
the subgroup of l2q(π,w) consisting of ε-quadratic forms (V, λ, µ) with V based
to Wh(π) mapping to the adjoint of λ with kernel the Wall group Ls2q(π,w).

Now we recall Wall’s definition of a quadratic form on even-dimensional
manifolds. Let W be a 2q-dimensional compact manifold. We equip W with a
base point and orient it at this base point. Wall [W1, p. 44ff] defines a (−1)q-
hermitian form (i.e. the conditions i) and ii) above are fulfilled) on the group of
regular homotopy classes of immersions of q-spheres in W , denoted immk(W ).
Roughly speaking, the hermitian form is given by transversal double point
intersections which, along the two branches, are joined with the base points,
so that the form has values in Λ. Similarly, he assigns to each immersion x

an element µ(x) ∈ Λ/〈x−(−1)qx̄〉 which is given analogously via self-intersection
points. We recall this fundamental result.

Proposition 5 ([W1, Th. 5.2 and p. 52]). Let W be a compact 2q-
dimensional manifold with base point and local orientation at the base point.

Intersections define a (−1)q-hermitian form λ : immk(W ) × immk(W )
→ Λ and self-intersections define a function µ : immk(W ) → Λ/〈x−(−1)qx̄〉. If
q ≥ 3, an immersion is regularly homotopic to an embedding if and only if µ
vanishes on it.

If W is part of the boundary of some manifold X with same fundamental
group and there are two families of disjoint immersions of spheres Sk in W

each of which extends to an immersion of a disk with holes, then the sum
of the self-intersection of all immersed spheres within each family and the in-
tersection number between the two families vanish (slogan: intersection and
self-intersection numbers vanish for elements in the kernel of immk(W ) →
immk(X)).

The function µ is not a quadratic refinement of λ but very closely related
to a quadratic refinement. It fulfills for v, w ∈ immq(W ):
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iii′) λ(v, v) = µ(v) + εµ̄(v) + e(v) ∈ Λ, e the normal Euler number.
iv′) µ(v + w) = µ(v) + µ(w) + λ(v, w) ∈ Λ/〈x−εx̄〉.
v′) µ(g · v) = g · µ(v) · ḡ for g ∈ π1(W ).

In [W1, Th. 5.2] the last formula was stated for arbitrary a ∈ Λ instead
of g ∈ π1(W ), which is not correct. But the proof shows v′) and is correct.
This function µ induces a quadratic refinement on those homotopy classes
which have stably trivial normal bundle. To explain this, we first study when
an immersion is homotopic to an embedding with trivial normal bundle. A
necessary condition is that the stable normal bundle of the immersion is trivial
or equivalently, that the homotopy class α represented by the immersion is
contained in Kπq(W ) := Kerν∗ : πq(W ) → πq(BO). For q even, a stably
trivial q-dimensional bundle over Sq is trivial if and only if the Euler class
vanishes and the group of these bundles is generated by the tangent bundle
of Sq. Since the Euler class is controlled by the self-intersection number, one
can for q even add in the third sentence of the proposition that the embedding
has trivial normal bundle, if and only if the stable normal bundle is trivial.
For q 6= 1, 3, 7 odd there are precisely two stably trivial bundles of dimension
q over Sq, the trivial bundle and the tangent bundle of Sq [K-M, p. 534]. For
q = 1, 3, 7, q-dimensional stably trivial vector bundles over Sq are trivial.

The map immq(W ) → πq(W ) is surjective and its kernel is in the image
of a homomorphism from Z or Z/2 to immq(W ) if q is even or odd [W1, p. 44].
Assume that W decomposes as W ′]Sq × Sq. Then there are two immersions
representing the diagonal of Sq × Sq, the diagonal embedding and the con-
nected sum of the two factors. The normal bundle of the first is the tangent
bundle and the normal bundle of the second is trivial. The normal bundle
of the difference of these two immersions is the tangent bundle of Sq. Thus,
after adding an appropriate multiple of the difference of these two immersions,
we can assume that an arbitrary immersion representing a homotopy class in
Kπq(W ) is represented by an immersion with trivial normal bundle and, for
q 6= 1, 3, 7, this immersion is unique. This gives for q 6= 1, 3, 7 a splitting of the
restriction of immq(W )→ πq(W ) to the kernel of the map to πq(BO). We can
now define µ on Kπq(W ). By the formulas iii′), iv′) and v′) this is a quadratic
refinement of λ and α ∈ Kπq(W ) is representable by a compatible embedding
with trivial normal bundle if and only if µ(α) = 0. If q = 3, 7, there is no
unique immersion in Kπq(W ) with trivial normal bundle. The difference of
the diagonal in Sq×Sq and the sum of the two factors is the nontrivial element
in the kernel of immq(W ) → πq(W ). It is nontrivial since µ is 1 on it. Thus
the self-intersection is not well-defined in this case. If there is β ∈ πr+1(B)
with β∗ξ∗wr+1 6= 0, wr+1 ∈ H∗(BO;Z/2) the Stiefel Whitney class, we replace
µ by µ̃. Then by Lemma 2 we have again that α ∈ Kπq(W ) is representable
by a compatible embedding with trivial normal bundle if and only if µ̃(α) = 0.
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We summarize these considerations as:

Proposition 6. For q 6= 1, 3, 7 the intersections and self-intersections
define a quadratic form (λ, µ) on Kπq(W ). The statements of the previous
proposition hold for this quadratic form. In particular, α ∈ Kπq(W ) is rep-
resentable by a compatible embedding with trivial normal bundle if and only if
µ(α) = 0. The same holds for q = 3, 7 and 〈wq+1(B), πq+1(B)〉 6= 0 if µ is
replaced by µ̃.

Now, let M0 and M1 be (2q − 1)-dimensional manifolds and f : ∂M0 →
∂M1 be a diffeomorphism. Suppose that there are normal (q − 2)-smoothings
in a fibration B over BO compatible with f . Let W together with a normal
B-structure ν̄ be a B-zero bordism of M0 ∪f M1. Then we can by Proposition
4 assume that ν̄ is a q-equivalence, W = W ′]Sq × Sq and by Hurewicz’s theo-
rem Hq+1(B,W ; Λ) ∼= πq+1(B,W ). Thus the image under the boundary map
d : πq+1(B,W )→ πq(W ) is a finitely generated Λ-module. This image is con-
tained in Kπq(W ) and thus the quadratic form (λ, µ) is defined for q 6= 1, 3, 7.
For q = 1, 3, 7 and 〈wq+1(B), πq+1(B)〉 6= 0 we replace µ by µ̃.

For q = 1, 3, 7 and 〈wq+1(B), πq+1(B)〉 = 0, we will again define a
quadratic refinement µ, but this can only be defined on im(d : πq+1(B,W )→
πq(W )) = Ker(πq(W )→ πq(B)), as follows. Let α ∈ Ker(πq(W )→ πq(B)) be
represented by an immersion of Sq into W . This has stably trivial and thus
trivial normal bundle, since q = 1, 3, 7. Thus we can extend it to an immersion
of Sq × Dq to W . The extension can be modified by twisting with elements
of πq(0(q)) as discussed in the proof of Lemma 2. The immersion of Sq ×Dq

to W induces, together with the framing of ν(W )|im(Sq) given by the normal
B-structure, a stable framing on ν(Sq).

We say that the immersion of Sq ×Dq to W is good if we can choose an
extension to Sq ×Dq in W such that this stable framing is the standard one
coming from the embedding Sq ⊂ Dq+1. The good immersions form a subgroup
of Ker(immq(W ) → πq(W ) → πq(B)). It turns out that this subgroup maps
isomorphically to Ker(πq(W )→ πq(B)). The reason is that, as discussed above,
Ker(immq(B) → πq(B)) = Z/2 is generated by the difference of the diagonal
in Sq × Sq and the immersion given by the connected sum of the two factors.
The latter immersion is good while the diagonal is not as we will show below.
Since πq(0)/πq(0(q)) ∼= Z/2 (see proof of Lemma 2), we can for every element x
in Ker(πq(W )→ πq(B)) find a unique good immersion representing it. By this
unique good immersion we define µ(x) using Proposition 5. Again µ(x) = 0 if
and only if x is representable by a compatible embedding of Sq ×Dq ↪→W .

To show that the diagonal ∆ in Sq×Sq (for q = 1, 3, 7) admits no compati-
ble framing, we note that the normal bundle of ∆ in Sq×Sq is the tangent bun-
dle of Sq and no unstable framing of the tangent bundle extends to Dq+1. But
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the restriction of the framing on Sq×Sq to ∆ is the sum of two equal framings.
Since the obstruction for a compatible framing is in πq(0)/πq(0(q+1))

∼= Z/2 this
implies that there is no compatible framing on the diagonal.

We summarize these considerations as:

Proposition 7. For q = 3, 7 and 〈wq+1(B), πq+1(B)〉 = 0, there is
a quadratic refinement µ of λ defined on im(d : πq+1(B,W ) → πq(W )) =
Ker(πq(W ) → πq(B)), and α ∈ Kπq(W ) is representable by a compatible em-
bedding with trivial normal bundle if and only if µ(α) = 0.

Now we note that Poincaré duality gives a unimodular pairing

λ : Hq(W,M0; Λ)→ Hq(W,M1; Λ)?.

As in Section 4, we conclude from Poincaré duality that Hq(W,M;Λ) are sta-
bly free. After stabilization of W with Sq × Sq’s we assume that these Λ-
modules are free and equipped with a basis, so that the Whitehead torsion
of (W,Mi) vanishes. By Hurewicz’s isomorphism we identify πq(W,Mi) with
Hq(W,Mi; Λ). The inclusions define homomorphisms f and g:

im(d : πq+1(B,W )→ πq(W ))→ Hq(W,Mi; Λ))

and the geometric interpretation of Poincaré duality implies that the intersec-
tion pairing λ induces on im(d : πq+1(B,W )→ πq(W )) the hermitian form as
considered above.

Definition. For q 6= 1, 3, 7, or q = 1, 3, 7 and 〈wq+1(B), πq+1(B)〉 = 0, we
define, for (W, ν̄) with the properties above, θ(W, ν̄) ∈ l2q(π1(B), w1(B)) by

θ(W, ν̄) := (Hq(W,M0; Λ)
f← im(d : πq+1(B,W )

→ πq(W ))
g→ Hq(W,M1; Λ), λ, µ),

where f and g are induced by inclusions.
For q = 1, 3, 7 and 〈wq+1(B), πq+1(B)〉 6= 0 we replace µ by µ̃ in this

definition and obtain θ(W, ν̄) ∈ l∼2q(π1(B), w1(B)).

Here we identify π1(W ) with π1(B) and w1(B) with w1(W ) : π1(W ) ∼=
π1(B)→ Z/2. Let (W ′, ν̄) be another normal B-manifold with the same prop-
erties, which is normally B-bordant to (W, ν̄) relative to the boundary. Then
by Corollary 3, W and W ′ are stably diffeomorphic relative to the boundary
and thus

θ(W, ν̄) = θ(W ′, ν̄ ′) ∈ l2q(π1(B), w1(B)) (resp.l∼2q(π1(B), w1(B))).

Thus we can define θ(W, ν̄) for arbitrary B zero-bordisms (W, ν̄) of
M0 ∪f −M1 by replacing W by a bordism with the properties above and then
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applying the definition above. This invariant θ(W, ν̄) depends only on the
bordism class relative to the boundary of (W, ν̄).

Remark. If the smoothings on Mi are normal k-smoothings for some
k ≥ q, the invariant is contained in the subgroup L2q(π1(B), w1(B)) and if,
in addition, B is a finite simple Poincaré complex and the smoothings are
simple homotopy equivalences the obstruction sits in Ls2q(π1(B), w1(B)). The
reader might wonder, if the condition finitely generated free in the definition
of elements in l2q(π,w) is necessary in the geometric context. Perhaps this is
automatically the case for geometrically realized elements. Unfortunatley this
is not the case, even if the bordism W is already an s-cobordism. Consider for
example a 3-dimensional lens space L with nontrivial fundamental group π and
consider W := L×S2× I. Then the normal 2-type is K(π, 1)×CP∞×B Spin
and the obstruction is (0 ← π3(W ) = Z × Z → 0, 0, 0), where Z ⊕ Z is the
trivial π-module.

Definition. We call an element θ ∈ l2q(π,w) (resp. θ ∈ l∼2q(π,w)) elemen-

tary if and only if there is a representative (V0
f← V

g→ V1, λ, µ) and a based
submodule U ⊂ V such that

i) U ⊂ U⊥, µ|U = 0 (or µ̃|U = 0, if θ ∈ l∼2q(π,w));
ii) U maps injectively into Vi and the image is a direct summand denoted

Ui whose basis is the image of the basis on U ;
iii) λ induces a simple isomorphism U0 → (V1/U1)∗.

Now, we can formulate the main theorem for W even-dimensional.

Theorem 3. Let M0 and M1 be connected (2q − 1)-dimensional mani-
folds, q ≥ 3, and let f : ∂M0 → ∂M1 be a diffeomorphism. Suppose that there
are normal (q − 2)-smoothings in a fibration B over BO compatible with f .
Let W together with a normal B-structure ν̄ be a B-zero bordism of M0∪fM1.
Then (W, ν̄) is B-bordant relative to the boundary of a relative s-cobordism if
and only if θ(W, ν̄) ∈ l2q(π1(B), w1(B)) (resp. ∈ l∼2q(π1(B), w1(B)), if q = 3, 7
and 〈wq+1(B), πq+1(B)〉 6= 0) is elementary.

Proof. By Proposition 4 we can assume that ν̄ is a q-equivalence; i.e.
(W, ν̄) is a normal (q−1)-smoothing. Then θ(W, ν̄) is defined as in the definition
above. Since we can realize stabilization of θ(W, ν̄) by hyperbolic forms geomet-
rically via connected sum with (Sq × Sq)’s, we can assume that for θ(W, ν̄) =
(Hq(W,M0; Λ) ←− im(d : πq+1(B,W ) → πq(W )) −→ Hq(W,M1; Λ), λ, µ)
there exists a based submodule U ⊂ im(d : πq+1(B,W ) → πq(W )) with the
properties i)–iii) in the definition of “elementary” above. Choose x1, . . . , xk
∈ U representing the basis of U implying λ(xi, xj) = 0 and µ(xi) = 0 (resp.
µ̃(xi) = 0). By Propositions 6 and 7 one can find embeddings (Sq × Dq)i
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representing xi. Using the Whitney trick we can in addition assume that the
embeddings are disjoint. Furthermore, we can assume that the embeddings are
compatible with the B-structure so that we can do surgery with them (Lemma
2 and Propositions 6 and 7). We claim that the resulting B-manifold (W ′, νW ′)
is an s-cobordism.

It is clear that π1(Mi) −→ π1(W ′) is an isomorphism. To compute
H∗(W ′,M1; Λ) we consider the following exact sequences with Λ-coefficients.
Write X = ∪ (Sq ×Dq)i

Hq+1(W ′,W−
◦
X)

↓d

0 → Hq(W−
◦
X,M1) → Hq(W,M1)

j→ Hq(W,W−
◦
X) → Hq−1 (W−

◦
X,M1) → 0.

↓ ↓∼=
Hq(W ′,M1) Hq−1 (W ′,M1)

↓
0

By excision, Hr (W,W−
◦
X; Λ) ∼= Hr (X, ∂X; Λ). Thus Hr (W,W−

◦
X; Λ)

is trivial except for r = q where it is Λk with basis [({∗} × Dq, {∗} × Sq−1)]i
or r = 2q where it is again Λk with basis [(Sq ×Dq)i, ∂]. These bases together

represent a preferred basis of H∗ (W,W −
◦
X). We note that the map U0 →

Hq(W,W −
◦
X) mapping xi → [({∗} × Dq, {∗} × Sq−1)]i is an isomorphism.

Similarly, H∗(W ′W −
◦
X; Λ) has a preferred basis represented by [(Dq+1 ×

{∗}, ∂)]i in dimension q + 1 and by [(Dq+1 × Sq−1)i, ∂] in dimension 2q.
With respect to this basis the homomorphism

Hq(W,M1; Λ)
j−→ Hq(W,W −

◦
X; Λ)

is given by x −→ (λ(x, x1), . . . , λ(x, xk)). If we denote the image of U in
Hq(W,Mi; Λ) by Ui, the definition of elementary implies that Hq(W,M1; Λ)
splits as U1⊕Hq(W,M1; Λ)/U1 and that the restriction of j to Hq(W,M1; Λ)/U1

is a simple isomorphism to U0
∼= Hq(W,W−

◦
X; Λ). Thus Hq−1 (W−

◦
X,M1; Λ)

and with it Hq−1(W ′,M1; Λ) vanish. Furthermore Hq(W −
◦
X,M1; Λ) is iso-

morphic to U1 and if we equip Hq(W−
◦
X,M1; Λ) with the preferred basis of U1

then d : Hq+1 (W ′,W −
◦
X; Λ)→ Hq(W −

◦
X,M1; Λ) is a simple isomorphism.

Since H∗(W,M1) vanishes for ∗ 6= q, the boundary operator

H2q(W,W −
◦
X; Λ)

∼=−→ H2q−1 (W −
◦
X,M1; Λ)

is an isomorphism. If we equip H2q−1(W −
◦
X,M1; Λ) with the preferred basis

of H2q(W,W −
◦
X; Λ), then on the one hand the vertical exact sequence is a

sequence of based modules and the Whitehead torsion of this exact sequence
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vanishes. On the other hand, this basis is given by Sq×Sq−1 which is the image

of the preferred basis on H2q(W ′,W −
◦
X; Λ) under d : H2q(W ′,W −

◦
X; Λ) −→

H2q−1 (W −
◦
X,M1; Λ). Thus the Whitehead torsion of the vertical sequence

vanishes, too.

Since (W,M1) and (W,W −
◦
X) have trivial Whitehead torsion and the

Whitehead torsion of the acyclic complex given by the based horizontal homol-

ogy sequence vanishes, the additivity formula implies that (W −
◦
X,M1) has

trivial torsion. The same argument applied to the vertical sequence implies
that (W ′,M1) has trivial torsion. Thus W ′ is an s-cobordism.

Now, we show that θ is elementary if (W, ν̄) is bordant relative to the
boundary to an s-cobordism (N, ν̄). We can suppose that ν̄ is a q-equivalence.
If the bordism to an s-cobordism is obtained by a sequence of additions of
handles on disjoint embeddings (Sq × Dq)i as above, then the considerations
above show in turn that θ (W, ν) is elementary. But after possibly stabilizing
(W, ν) by connected sum with (Sq × Sq)′s, a bordism of this type always
exists. Namely, by similar considerations (as in §4), we can transform (N, ν)
by surgeries on disjoint embeddings (Sq−1 × Dq+1)i into a normal (q − 1)-
smoothing (N ′, ν). In turn (N, ν) is obtained from (N ′, ν) by surgeries on
(Dq × Sq)i. On the other hand, since (N ′, ν) and (W, ν) are bordant normal
(q−1)-smoothings they are stably diffeomorphic by Theorem 2. This ends the
proof of Theorem 3.

Remark. If B is a finite simple Poincaré complex and the normal smooth-
ings are simple homotopy equivalences then Theorem 3 is the same as Wall’s
result [W1, Th. 6.4].

Remark. One can also ask for obstructions for replacing (W, ν̄) as in
Theorem 3 by an h-cobordism instead of an s-cobordism. The only difference
in the proof of Theorem 3 is that one could drop the bases everywhere. Thus
one would have to modify the obstruction monoids (or groups) by omitting
the bases everywhere. This remark might be helpful in understanding the
definition of L2q(π,w) where we require that V be based but do not require
that the adjoint of λ be simple.

6. The main theorem for odd-dimensional W

We begin with the definition of the obstruction monoid l2q+1(π,w). An
object is represented by a half rank based direct summand V in a hyperbolic
form of rank r on Λ2r. More precisely we consider for ε = (−1)q pairs (Hr

ε , V ),
where V is a based submodule of rank r in Λ2r and V is a direct summand. We
stabilize these objects by identifying (Hr

ε , V ) with (Hr
ε ⊥ Hε, V ⊥ Λ × {0}).
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Now, we use as in Wall’s book [W1] the group RU ε(Λ) = limRU ε(Λr), where
RU ε(Λr) is generated by the flip σ mapping e 7→ εf and f 7→ e and those simple
isometries of Hr

ε preserving Λr × {0} and inducing a simple isomorphism on
Λr × {0}. The group RU ε(Λ) acts on the stable equivalence class of objects
(Hr

ε , V ) by mapping V to A · V and the resulting set of equivalence classes
is a monoid under orthogonal sum. Similarly, as in the definition of l2q, we
obtain - for q odd - a modified monoid by passing from µ to µ̃ with values in
Λ/〈x− εx̄, 1〉. We denote the corresponding group of isometries RU ε(Λ)∼.

Definition. The monoid l2q+1(π,w) is given by equivalence classes of sta-
ble pairs (Hr

ε , V ), where V is a based submodule of rank r in Λ2r and V is a
direct summand and where two such stable pairs are equivalent if they are in
the same orbit under the action of RU ε(Λ). If, for q odd, we take the same
objects but replace RU ε(Λ) by RU ε(Λ)∼, we obtain instead l∼2q+1(π,w).

The reader should note that in the definition of pairs (Hr
ε , V ) the preferred

lagrangian (i.e. a based half rank direct summand on which the form vanishes
identically, a subkernel in the language of [W1]) Λr × 0 plays an essential
role. We have not made this explicit in the notation since this information is
implicitly contained in the basis of Hr

ε , but its role will become clear when we
define elementary obstructions.

Similarly as for l2q(π,w) we consider a submonoid of l2q+1(π,w) consisting
of those pairs (Hr

ε , V ) where λ and µ are trivial on V . This is an abelian group
denoted L2q+1(π,w). To see this, one has to describe an inverse. This is a
rather delicate point. We first note that for those pairs (Hr

ε , V ) where λ and
µ are trivial on V there is an A ∈ U ε(Λ) with A(Λr × {0}) = V . Then we use
Lemma 6.2 from [W1] which says that A⊕A−1 ∈ RU ε(Λ). This lemma is only
proved, in [W1], for A ∈ SU ε(Λ) but the same argument works for A ∈ U ε(Λ).
Thus the inverse of (Hr

ε , V ) is given by (Hr
ε , A

−1(Λr × {0})).
Again we have a homomorphism L2q+1(π,w)→Wh(π) mapping (Hr

ε , V )
to the Whitehead torsion of the base change between the standard basis on
Hr
ε and the basis obtained from the basis α1, . . . , αr on V and dual elements

β1, . . . , βr with λ(αi, βj) = δi,j . The kernel of this homomorphism is by defi-
nition the Wall group Ls2q+1(π,w) [W1].

Now, let M0 and M1 be (2q)-dimensional manifolds and f : ∂M0 → ∂M1

be a diffeomorphism. Suppose that there are normal (q − 1)-smoothings in
a fibration B over BO compatible with f . Let W together with a normal
B-structure ν̄ be a B-zero bordism of M0 ∪f M1. Then we can by Propo-
sition 4 assume that ν̄ is a q-equivalence; i.e., (W, ν̄) is a normal (q − 1)-
smoothing. From this one can easily conclude that πq(W ) → πq(W,Mi)
is surjective and that the boundary operator πq+1(B,W ) −→ πq(W,Mi) is
also surjective. Since (B,W ) is q-connected and B has finite (q + 1)-skeleton
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πq+1(B,W ) ∼= Hq+1(B,W ; Λ) is finitely generated. We choose disjoint em-
beddings (Sq × Dq+1)i ⊂ W compatible with the B-structure representing
generators of im(d : πq+1(B,W )→ πq(W )) and denote ∪i(Sq×Dq+1)i by U .

We consider the exact sequence with Λ-coefficients:

Hk+1(W −
◦
U, ∂ U ∪M0) −→ Hk(∂U) −→ Hk(W −

◦
U,M0).

From now on we suppose that χ(M0) = χ(M1), where χ denotes the Euler
characteristic. Standard arguments in algebraic topology show (compare [W1,
Lemma 2.3 and p. 50]) :

i) This sequence vanishes except for k = 0, q, 2q. In the cases k = 0, 2q
the left or right maps are obviously isomorphisms and the corresponding
modules are free with a canonical geometric basis. For k = q all terms are
stably free and after stabilization we equip these modules with a preferred
basis such that the Whitehead torsion of all three pairs is 0.

ii) V := Hq+1(W −
◦
U, ∂ U ∪ M0; Λ) is a half rank direct summand in

Hq(∂U ; Λ).

We denote wi(B) := p?wi(BO) the qth Stiefel-Whitney class, where p

: B → BO is the projection.

Definition. For (W, ν̄) with the properties above and either q 6= 3, 7 or
q = 3, 7 and 〈wq+1(B), πq+1(B)〉 = 0, define θ(W, ν̄) ∈ l2q+1(π1(B), w1(B)) by:

θ(W, ν̄) := [Hq(∂U ; Λ), V ],

where V is based as under i). If q = 3, 7 and 〈wq+1(B), πq+1(B)〉 6= 0, then we
consider θ(W, ν̄) ∈ l∼2q+1(π,w) instead.

We will show below that this invariant is a well-defined bordism invariant
relative to the boundary. The definition of this invariant is with respect to
M0. Of course one could use M1 instead and would get a different invariant
(Hq(∂U ; Λ), V ′) which carries the same information since V ′ = V ⊥ with the
induced basis, as one can easily check.

Remark. If the smoothings on Mi are normal k-smoothings for some
k ≥ q, the invariant is contained in the subgroup L2q+1(π1(B), w1(B)) and
if, in addition, B is a finite simple Poincaré complex and the smoothings are
simple homotopy equivalences the obstruction sits in Ls2q+1(π1(B), w1(B)) and
is equal to Wall’s surgery obstruction [W1, 6.1].

Definition. We call an element θ ∈ l2q+1(π,w) (resp. θ ∈ l∼2q+1(π,w))
elementary if and only if it has a representative (Hr

ε , V ) with V ⊕{0}×Λr = Hr

and the basis of V together with the standard basis of {0} × Λr is equivalent
to the standard basis of Λ2r.
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The following equivalent formulation of this definition is sometimes useful.
A lagrangian complement of a half rank direct summand V in H(Λr) is a
based half rank direct summand V̂ in Λ2r such that λ and µ vanish on V̂ and
V ⊕ V̂ = Λ2r as based modules. Now θ ∈ l2q+1(π,w) (resp. θ ∈ l∼2q+1(π,w) )
is elementary, if and only if there is a representative (Hr

ε , V ) of θ such that V
and Λr × {0} have a common lagrangian complement.

Next, we can formulate the main result for W odd-dimensional.

Theorem 4. Let M0 and M1 be connected 2q-dimensional manifolds
(q ≥ 2) with the same Euler characteristic and f : ∂M0 → ∂M1 be a dif-
feomorphism. Suppose that there are normal (q − 1)-smoothings in a fibration
B over BO compatible with f . Let W together with a normal B-structure ν̄
be a B-zero bordism of M0 ∪f M1. Then θ(W, ν̄) ∈ l2q+1(π1(B), w1(B) (resp.
θ(W, ν̄) ∈ l∼2q+1(π1(B), w1(B), if q = 3, 7 and 〈wq+1(B), πq+1(B)〉 6= 0) is a
bordism invariant relative to the boundary and (W, ν̄) is bordant relative to the
boundary to a relative s-cobordism if and only if θ(W, ν̄) is elementary.

Proof. Let (W, ν̄) be a normal (q − 1)-smoothing. Consider a fixed set
of generators x1, . . . , xk of im(πq+1(B,W ) −→ πq(W )) and represent them by
compatible embeddings (Sq × Dq+1)i. We first discuss the effect of a change
of the framings (compatible with the B-structure). They correspond to com-
position with diffeomorphisms Sq × Dq+1 → Sq × Dq+1 mapping (x, y) to
(x, α(x) · y) for an appropriate map α : Sq → O(q + 1). Such a composition
leads again to a compatible embedding if and only if α ∈ πq(O(q + 1)) ∼=
πq+1(BO(q + 1)) maps to 0 under πq+1(BO(q + 1)) → πq+1(BO) → πq(F ),
where F is the fibre of B → BO (see proof of Lemma 2). The induced map on
Hq(Sq ×Sq; Λ) maps e 7→ e+ deg(ρα) · f and f 7→ f , where ρ is the evaluation
map SO(q + 1) → Sq. For q 6= 1, 3, 7 the degree deg(ρα) is always even and
thus the induced map in homology is contained in RU ε(Λ), showing that the
invariant θ(W, ν̄) does not depend on the choice of the compatible framing. If
q = 1, 3, 7, there is an α with deg(ρα) = 1. The degree deg(ρα) is mod 2 equal
to 〈wq+1(Eα), [Sq+1]〉, where Eα is the vector bundle over Sq+1 corresponding
to α. Thus, if there is no element in πq+1(B) on which wq+1 evaluates nontriv-
ially, i.e. 〈wq+1(B), πq+1(B)〉 = 0, then the composition with the corresponding
diffeomorphism is not compatible, since α ∈ πq(O(q + 1)) ∼= πq+1(BO(q + 1))
maps nontrivially under πq+1(BO(q + 1)) → πq+1(BO) → πq(F ). Thus again
only those changes of framings are possible where the induced map in ho-
mology is contained in RU ε(Λ) showing that the invariant θ(W, ν̄) does not
depend on the choice of the compatible framings if 〈wq+1(B), πq+1(B)〉 = 0.
On the other hand if 〈wq+1(B), πq+1(B)〉 6= 0, then there is a compatible
change of framing whose induced map in homology Hq(Sq × Sq; Λ) maps
e 7→ e + f and f 7→ f . This is not contained in RU ε(Λ) but in RU ε(Λ)∼
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and so in the case 〈wq+1(B), πq+1(B)〉 6= 0, the invariant is only well-defined in
l∼2q+1(π1(B), w1(B)). An easy consideration shows that RU ε(Λ)∼ is generated
by the isometries mapping ei 7→ ei + fi and fi 7→ fi and by RU ε(Λ). For the
rest of the argument keep in mind that we can realize the map ei 7→ ei + fi
and fi 7→ fi by the change of framing above. This is the only place where the
argument for q = 3, 7 and 〈wq+1(B), πq+1(B)〉 6= 0 differs from the other cases.

The rest of the proof goes along the same scheme as in [W1, §6]. The
embeddings (Sq×{0})i are uniquely determined by xi up to regular homotopy,
i.e. an immersion of Sq × I into W extending the two embeddings. By the
same argument as in [W1, p. 58], the invariant θ(W ) changes by the action of
an element in the subgroup of RU εk(Λ) given by those isometries fixing Λk×{0}
identically. By choice of an appropriate regular homotopy each element of this
subgroup occurs.

Thus the invariant is described once a set of generators of im(πq+1(B,W )
−→ πq(W )) is chosen. To show that it is independent of the set of generators,
it is enough to show that it is the same for x1, . . . , xk and x1, . . . , xk, 0 and
for x1, . . . , xk, 0 and x1, . . . , xk, y for an arbitrary y in im(πq+1(B,W ) −→
πq(W )). For, then we can inductively go from one set of generators to another
one, if we also allow permutation of the generators, something that does not
change the equivalence class. The first step corresponds to changing the invari-
ant by stabilizing (note that we have a slightly different convention from [W1],
where Wall stabilizes instead by σ). The second step can, using permutations,
be replaced by a sequence of one of the following steps: replace the first element
by its product with ±g for some g ∈ π1(B) or replace the first element by the
sum of the first two elements. Obviously, neither step changes our equivalence
class. The first changes the obstruction by the isometry mapping e1 7→ ±g ·e1,
f1 7→ ±w1(B)(g) · f1 and fixing ei and fi for i ≥ 2. The second corresponds
to changing by the isometry mapping e1 7→ e1 + e2, e2 7→ e2, f1 7→ f1 and
f2 7→ f2− f1 and fixing ei and fi for i > 2. Thus we have shown that for fixed
W the invariant θ(W, ν̄) is independent of all choices.

Now, we show the bordism invariance. We first note that surgery on
(Sq ×Dq+1)i replaces θ(W, ν) by the action of

1 0
. . .

σ
. . .

0 1

 .

On the other hand, if W and W ′ are bordant relative to the boundary
under a highly connected bordism, then one can pass from W to W ′ by a
sequence of surgeries where the cores of the embeddings Sq ×Dq+1 represent
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classes in im(πq+1(B,W ) −→ πq(W )), and the surgeries are compatible with
the B-structure (compare [W1, p. 61]). As we are free in the choice of our
system of embeddings representing generators of im(πq+1(B,W ) −→ πq(W ))
we can assume that the surgeries are all performed on (Sq×Dq+1)′s contained
in U , proving the bordism invariance.

Now, we want to show that if θ(W, ν) is elementary, W is bordant relative
to the boundary to an s-cobordism. For this we first show that if we apply the
action of an element of RU ε(Λ) to (Hq(∂U ; Λ), V ) the resulting pair is equal
to (Hq(∂U ′; Λ), V ′) for some (W ′, ν ′), which has the same properties as W and
is bordant to W relative to the boundary. The action of RU ε(Λ) corresponds
on the one hand to stabilization which can geometrically be realized with the
same W by adding to U an embedding Sq ×Dq+1 which is contained in a ball
D2q+1 ⊂ W disjoint to the other embeddings. On the other hand we have to
realize the action of an element α ∈ RU ε(Λ). The group RU ε(Λ) is generated
by the following isometries: (a) the flip σ, (b) permutation of the hyperbolic
summands, (c) the isometry mapping e1 7→ ±g · e1, f1 7→ ±w1(B)(g) · f1 and
fixing ei and fi for i ≥ 2, where g ∈ π1(B), (d) by the isometry mapping
e1 7→ e1 + e2, e2 7→ e2, f1 7→ f1 and f2 7→ f2 − f1 and finally (e) by the
isometries mapping ei 7→ ei and fi 7→ fi+

∑
cijej , where cij = εc̄ji and cii is of

the form ci− εc̄i [W1, pp. 57–60]. We have to realize all these transformations
geometrically. (a) The flip interchanging ei and fi corresponds to carrying out
surgery on (Sq×Dq+1)i so that W is replaced by W ′, which has the same prop-
erties as W and is bordant to W relative to the boundary. (b) Permutation
corresponds to permutation of the components of U . (c) This transformation
corresponds to the action of π1 on generators of im(πq+1(B,W ) −→ πq(W )).
(d) This corresponds to a base change of im(πq+1(B,W ) −→ πq(W )) replacing
(Sq×Dq+1)1 by the fibre bundle connected sum with (Sq×Dq+1)2 and leaving
the other embeddings unchanged. (e) These transformations form the sub-
group given by those isometries fixing Λk × {0} identically and as mentioned
above Wall shows that one can realize this action by changing the embeddings
through appropriate regular homotopies.

By these arguments we can now assume that we have found a W ′ in
the B-bordism class relative to the boundary of W such that the invariant
(Hq(∂U ′; Λ), V ′) has the property: V ′ ⊕ {0} ×Λr = Λ2r = Hq(∂U ′; Λ) and the
basis of V ′ together with the standard basis of {0} × Λr is equivalent to the
standard basis of Λ2r. We claim that then W ′ is an s-cobordism. For this we
consider the exact sequences with Λ-coefficients (see Figure 1.)

Since all other homology groups of (W,M0) vanish and π1(Mi) ∼= π1(W ),
W is an s-cobordism if and only if the map Hq+1(U ′, ∂U ′; Λ) → Hq(W −
◦
U ′,M0; Λ) is a simple isomorphism, where Hq(W −

◦
U ′,M0; Λ) is based

in such a way that the vertical sequence has trivial Whitehead torsion. But
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0

↓

Hq+1(W−
◦
U ′,M0∪ ∂U ′)

↓

Hq+1(U ′,∂U ′) −→ Hq(∂U ′)

↓∼= ↓

0 → Hq+1(W,M0) → Hq+1(W,W−
◦
U ′) → Hq(W−

◦
U ′,M0) → Hq(W,M0) → 0.

↓

0

Figure 1.

Hq+1(U ′, ∂U ′; Λ) maps in Hq(∂U ′; Λ) injectively to the based submodule with
basis fi, thus to {0} × Λr with the canonical basis. Then the fact that in the

vertical sequence the image of Hq+1(W −
◦
U ′,M0 ∪ ∂U ′; Λ) in Hq(∂U ′; Λ) is

V ′ and that V ′ ⊕ {0} × Λr = Λ2r = Hq(∂U ′; Λ) and the basis of V ′ together
with the standard basis of {0} × Λr is equivalent to the standard basis of Λ2r

implies the desired statement.
To finish the proof we have to show that if in turn (W, ν) is bordant relative

to the boundary to an s-cobordism, then θ(W, ν) is elementary. Obviously this
is the case if W is an s-cobordism and the statement follows since the invariant
is a cobordism invariant.

Remark. If B is a finite simple Poincaré complex and the normal smooth-
ings are simple homotopy equivalences then Theorem 4 is the same as Wall’s
result [W1, Th. 5.6].

Remark. One can also ask for obstructions for replacing (W, ν̄) as in Theo-
rem 4 by an h-cobordism instead of an s-cobordism. As in the even-dimensional
case the only difference in the proof of Theorem 4 is that one could drop the
bases everywhere. Thus one would have to modify the obstruction monoids (or
groups) by omitting the bases everywhere. This remark might be helpful in
understanding the definition of L2q+1(π,w) where we require that V be based
but do not require that the base change between the standard basis on Hr

ε and
the basis obtained from the basis α1, . . . , αr on V and dual elements β1, . . . , βr
with λ(αi, βj) = δi,j be simple.
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7. Analysis of obstructions in l2q+1 under some stability assumptions

The aim of this section is to prove that in the situation of Theorem 4 the
obstruction θ(W, ν) ∈ l2q+1(π1(B), w1(B)) is elementary if B is simply con-
nected and q odd, or q even and Ker(πq(M0)→ πq(B)) splits off a hyperbolic
plane H+(Z), or if π1(B) is finite and Ker (πq(M0) → πq(B)) splits off two
hyperbolic planes: H(−1)q(Λ2). We only discuss obstructions in l2q+1 and leave
the obvious modifications for the case of obstructions in l∼2q+1 to the reader.
Denote ε = (−1)q. Recall that a lagrangian complement of a half rank direct
summand V in Hε(Λr) is a based half rank direct summand V̂ in Λ2r such that
λ and µ vanish on V̂ and V ⊕ V̂ = Λ2r as based modules. We begin with the
following proposition:

Proposition 8. For W as in Theorem 4 write θ(W, ν) = (Hε(Λr), V ).

i) There is a surjective isometry of quadratic forms

V −→ Ker(πq(M0) −→ πq(B)).

ii) Let π : S −→ Ker(πq(M0 −→ πq(B))/rad be a surjection from a free based
Λ-module, where rad is the radical consisting of all x with λ(x, y) = 0 for
all y and µ(x) = 0. Equip S via π with a quadratic form. Then there is
an isometric embedding of S into a half rank direct summand of Hε(Λs)
and ρ ∈ L2q+1(π1(B), w1(B)) such that

θ (W, ν) = [Hε(Λs), S] + ρ.

iii) If (Hε(Λr), V ) has a lagrangian complement, then there is a ρ ∈
L2q+1(π1, w1) such that (Hε(Λr), V ) ⊥ ρ is elementary.

Proof. i) Consider the sum of boundary operators

Hq+1(W −
◦
U, ∂U ∪M0; Λ)→ Hq(∂U,Λ)⊕Ker(πq(M0)→ πq(B)).

The first component d1 of this map maps Hq+1(W −
◦
U, ∂U ∪M0; Λ) iso-

morphically to V and the second component d2 is surjective since U generates
Ker(πq(W ) → πq(B)). By Proposition 5, λ and µ vanish on image (d1, d2).
Thus d2d

−1
1 : V −→ Ker(πq(M0)→ πq(B)) is a surjective isometry by the fact

that, since ∂U and M0 are disjoint, intersection numbers between cycles in
them are zero.

ii) Suppose θ(W, ν) is (Hε(Λr), V ) with isometric projection

p : V −→ K : = Ker (πq(M0)→ πq(B))/rad

as in i). After perhaps stabilizing θ(W, ν) by orthogonal sum with (Hε(Λs),Λs×
{0}) we construct a surjective homomorphism V −→ S commuting with the
projections p and π. From this, one obtains, after adding to V the module S
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with the trivial map to S and using a splitting of V ⊕ S → S, a commutative
diagram

V ⊕ S
∼=
−→
Φ

S ⊕ V
↘ p+ 0 ↙ π + 0

K

.

Pull the quadratic form on K back via p+0 and π+0 to obtain quadratic
forms such that Φ is an isometry. After perhaps stabilizing V further and
composing with an appropriate automorphism of V on the right side, one can
assume that Φ is a simple isometry.

Choose a simple isomorphism S → Λs and identify the trivial element in
l2q+1(π1(B), w1(B)) given by (Hε(Λs),Λs × {0}) with (Hε(S), S × {0}). Then

θ(W, ν) = [Hε(Λr), V ] = [Hε(Λr), V ] ⊥ [Hε, (V1), S × {0}]
= [Hε(Λr+s, V ⊕ S] = [Hε(Λr+s),Φ−1(S ⊕ V )],

where on the right side the form on S ⊕ V is induced by π + 0. In particular,
S is orthogonal to V .

Since the quadratic form vanishes on Φ−1(V ) and this is a direct sum-
mand in Λ2(r+s), we can embed Φ−1(V ) into a lagrangian and, since the
group of isometries of a hyperbolic form acts transitively on the lagrangians,
there is an isometry A such that AΦ−1(V ) = 〈e1, . . . , er〉. After perhaps em-
bedding S differently into S ⊕ V by an isometry we can assume AΦ−1(S) ⊂
〈e1, . . . , er, ; f1, . . . , fr〉⊥. Thus,

[Hε(Λr+s), A(Φ−1(S ⊕ V ))] = [Hε(Λs), AΦ−1(S)].

On the other hand, if B is an isometry of H(Λt) and U ⊂ Hε(Λt) is a
based half rank direct summand, then

[Hε(Λt), B(U)] = [Hε(Λ2t), (Id⊕B)(Λt × {0} ⊕ {0} × U)]

[Hε(Λ2t), (B ⊕ Id)(Λt × {0} ⊕ {0} × U)]

= [Hε(Λt), B(Λt × {0})] ⊥ [Hε(Λr), U ]

and with this we obtain

[Hε(Λr+s), A(Φ−1(S ⊕ V ))]

= [Hε(Λr+s), A(Λr+s × {0})] ⊥ [Hε(Λr+s),Φ−1(S ⊕ V )]

and the first summand is in L2q+1(π1(B), w1(B)).
iii) Let V̂ be a lagrangian complement of V . Then there is an isom-

etry A mapping V to {0} × Λr. Thus [Hε(Λr), A(V )] is elementary and
[Hε(Λr), A(V )] = [Hε(Λr), V ] ⊥ [Hε(Λr, A(Λr × {0})] = [Hε(Λr), V ] ⊥ ρ

with ρ ∈ L2q+1(π1, w1).

Now, we prove the theorem announced at the beginning of this section.
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Theorem 5. For W as in Theorem 4 there is another bordism W ′ be-
tween the same ends such that θ(W ′, ν) is elementary if one of the following
conditions is fulfilled.

i) q odd and B 1-connected,
ii) q even, B 1-connected and Ker (πq(M0)→ πq(B))/rad splits off H+(Z).
iii) π1(B) is finite and Ker (πq(M0)→ πq(B))/rad splits off Hε(Λ2).

Corollary 4. Let M0 and M1 be 2q-dimensional manifolds, with the
same Euler characteristic, which admit B-bordant normal (q − 1)-smoothings
in a fibration B over BO. Then they are diffeomorphic (homeomorphic if
q = 2) if one of the conditions i), ii) or iii) is fulfilled.

The statement under condition iii) was, for q = 2, proved in [H-K1]. A
similar argument holds in higher dimensions.

Proof. The main ingredient is the following proposition which is a conse-
quence of a result by Bass [Ba2].

Proposition 9. Let V be a submodule of Hε(Λr) and let H1 be equal
to Hε(Λ). If either q is odd and π1 = {0}, or q is even, π1 = {0} and V =
V ′ ⊥ H+(Z) or π1 is finite and V ∼= V ′ ⊥ Hε(Λ2) then for each hyperbolic
plane H ⊂ V ⊥ H1 there is an element A of RU ε(Λ) and so an isometry (after
stabilization if required) of Hε(Λr) ⊥ H1 mapping H to H1 and V ⊥ H1 to
itself.

Proof. In the case of finite nontrivial π1 the result follows immediately
from [Ba2, Cor. 3.5, p. 236] when we note that the group G1 (in this corollary),
which acts transitively on the hyperbolic planes, is contained in RU ε(Λ) and
preserves V ⊥ H1. In the case of π1 trivial one uses the fact that RU ε(Λ) is
the full group of isometries [W1, Th. 13A.1]. Thus one only has to find some
isometry mapping H to H1. This can be done using transvections [Ba2, p. 91]
which are isometries given by two elements u and v with 〈u, v〉 = 0, 〈u, u〉 = 0
and 〈v, v〉 = 0:

σu,v(x) := x+ 〈v, x〉u− (−1)q〈u, x〉v.
We begin with the case q odd. If H and H1 are equipped with standard bases e,
f and e1 , f1 write e = x+ae1 + bf1 with x ∈ V . Since the group of isometries
of H1 is SL2(Z), we can assume b = 0: e = x+ ae1. Write f = y + be1 + cf1.
Now, σre,e1(f) = y′ + (b+ rca+ r)e1 + cf1. Thus we can assume (b, c) = 1 and
after applying an appropriate isometry of H1 obtain f = y + e1. Applying
σ−1
y,−f1

maps f to e1. Thus we can assume f = e1 and write e = x+ ae1 + bf1.
Since 〈e, f〉 = 1, we have e = x+ ae1 − f1. Replacing e by e− af and making
another base change we can assume e = e1, f = y+ f1. Applying σ−1

y,e1 maps e
to e1 and f to f1, finishing the case q odd.
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In case q is even write V = V ′ ⊥ H2 and equip H2 with the standard basis
e2, f2. Since the group of isometries of H1 ⊥ H2 acts transitively on unimodular
elements of fixed length [Ba2, Th. 3.4] we can assume e = x+k(e2 +af2) with
x ∈ V ′.

Since e is a unimodular element in V ′ ⊥ H1 there is z ∈ V ′ ⊥ H2 with
〈e, z〉 = 1 and 〈z, z〉 = 0. Then σz,−e1(e) = e + e1. Using again the transitive
actions of isometries of H1 ⊥ H2 on unimodular elements of fixed length, we
can assume e = x + e1 + e2 + rf2. Application of σ−1

x+e2+rf2,f1
maps e to e1.

Thus we can assume e = e1 and write f = y + ae1 + f1 + be2 + cf2. Now
consider the isometry which is the identity on V ′ and on H1 ⊥ H2 maps
ae1 + f1 + be2 + cf2 to f1 + (bc+ a)e2 + f2, e1 to e1, e2 → e2 + (c− 1)e1 and f2

to f2 + (b− a− bc)e1. After applying this isometry we can assume e = e1 and
f = y + f1 + (bc+ a)e2 + f2. We finish by applying σ−1

y+(bc+a)e2+f2,f1
, mapping

e to e1 and f to f1 + ae1.

Now, we use this proposition to finish the proof of Theorem 5. By The-
orem 2 there are a k and a relative s-cobordism between M0]k (Sq × Sq) and
M1]k(Sq × Sq).

After perhaps modifying W by disjoint union with a closed (2q + 1) -
dimensional B-manifold X to obtain W ′ we can assume that the relative B-
bordism W ′ ∪ k (Sq ×Dq+1 × I) glued along k disjoint embeddings of I ×D2q

with {0} × D2q ⊂ M0 and {1} × D2q ⊂ M1 is B-bordant relative to the
boundary to the s-cobordism. Thus θ (W ′∪k (Sq×Dq+1×I), ν̄) is elementary.
But θ(W ′ ∪ k(Sq × Dq+1 × I), ν ′) = θ(W ′, ν ′) ⊥ (Hε(Λ2k), Hε(Λk)), where
the embedding of Hε(Λk) into Hε(Λ2k) is the orthogonal sum of isometric
embeddings Hε(Λ) into Hε(Λ) ⊥ Hε(Λ). We denote Hε(Λ) in Hε(Λ) ⊥ Hε(Λ)
by H1 and split Hε(Λ) ⊥ Hε(Λ) = H1 ⊥ H2.

With the proposition above we first show inductively that θ(W ′, ν̄ ′) =
(Hε(Λk), V ) has a lagrangian complement. From Proposition 8, ii) we know
that V fulfills the assumptions of Proposition 9 above. Assume that θ(W ′, ν̄ ′) ⊥
(H1 ⊥ H2, H1) has a lagrangian complement. Let V̂ be a hamiltonian comple-
ment of V ⊥ H1. Let ei, fi be a symplectic basis of Hi. Write e2 = xe+ye with
xe ∈ V ⊥ H1 and ye ∈ V̂ and f2 = xf + yf with xf ∈ V ⊥ H1 and yf ∈ V̂ .
Then xe and −xf are the symplectic basis of a hyperbolic plane H in V ⊥ H1.
Namely, using λ(ye, ye) = 0, since V̂ is a lagrangian, we conclude:

0 = λ(xe, ye) = λ(xe, ye) + λ(xe, xe) = λ(xe, ye) + λ(e2 − ye, e2 − ye)
= λ(xe, ye)− λ(e2, ye)− λ(ye, e2) = λ(xe, ye)− λ(xe, ye)− λ(ye, xe)

= −λ(ye, xe).

Again using 0 = λ(xe, ye) + λ(xe, xe), we conclude: λ(xe, xe) = 0. Similarly
λ(xf , xf ) = 0. Using λ(ye, yf ) = 0 and 0 = λ(xf , e2) = λ(xf , ye) + λ(xf , xe)
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and 0 = λ(xe, f2) = λ(xe, yf ) + λ(xe, xf ) we conclude:

1 = λ(e2, f2) = λ(ye, xf ) + λ(xe, yf ) + λ(xe, xf )

= −λ(xe, xf )− λ(xe, xf ) + λ(xe, xf ) = −λ(xe, xf ).

Now, let A be an isometry as in Proposition 9 above. Then V̂ ′

:= (A ⊥ Id)(V̂ ) is another lagrangian complement of V ⊥ H1. Denote B

:= ker(V̂ ′ → H1) and check that V̂ ′ = B ⊥ 〈e1 − e2, f1 − f2〉. Thus B is a
lagrangian complement of V .

By Proposition 8, iii) and the vanishing of L2q+1({e}) [W1] the proof
that π1 is trivial is finished. In case π1 is nontrivial finite, the existence
of a lagrangian complement implies that there is an isometry A such that
[Hε(Λr), A(V )] is elementary. Under the assumption that V = V ′ ⊥ H, where
H ∼= Hε(Λ2), we will show that there is an isometry B ∈ RU ε(Λ) such that
BA|H⊥ = Id. In particular BA(V ) = V and so [Hε(Λr), V ] is elementary.

The existence of B follows again from [Ba2, Th. 3.5, p. 236]. That is,
we choose a symplectic basis e1, f1, . . . , er−2, fr−2 of H⊥ and apply this result
inductively to find a B ∈ RU ε(Λ) such that BA(ei) = ei and BA(fi) = fi.

Now, we prove Theorem E. Recall the surgery sequence:

[Σ(M), G/O]→ Ls2q+1(π1(M), w1(M))→ S(M)→ [M,G/O]

where S(M) is the set of ismorphism classes of pairs f : N → M , f a (lo-
cal) orientation-preserving simple homotopy equivalence [W1]. The quotient
π0(Auts(M))/π0(Diff(M)) embeds into S(M) under the obvious map. Thus
we consider π0(Auts(M))/π0(Diff(M)) as a subset of S(M). This subset is pre-
served by the action of the L-group. Namely, the action on S(M) assigns to
θ ∈ Ls2q+1(π1(M), w1(M)) and a simple homotopy equivalence from M → M

a simple homotopy equivalence f : N →M which is over M normally bordant
to the given simple homotopy equivalence M →M . Since M fulfills the prop-
erties of Theorem 5, there is a diffeomorphism g : M → N . Thus f : N → M

is in S(M) equal to f · g : M → M . Thus we obtain the exact sequence of
Theorem E.

We finish this section with a proof of Theorem F. The normal 1-type
of a topological spin 4-manifold M with fundamental group Z is B = S1 ×
BTOPSpin −→ BTOP (we work here in the topological category and thus
we replace BO by BTOP and BSpin by the 3-connected cover BTOPSpin
over BTOP). A normal 1-smoothing is determined by the choice of a spin-
structure and a generator of π1(M). The bordism group Ω4(B) is equal
to ΩTOPSpin

4 (S1) ∼= ΩTOPSpin
4 ⊕ ΩTOPSpin

3
∼= Z determined by the signature

[F-Q]. Thus any two closed topological Spin 4-manifolds with the same signa-
ture are B-bordant and the obstruction for finding a topological s-cobordism
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sits in l5(Z) (Theorem 4). Since the signature is determined by the intersec-
tion form on π2(M), two such manifolds with isometric intersection forms are
B-bordant. To analyse the obstructions in l5(Z) we first note that π2(M) is a
free Λ = Z[π1(M)]-module. For this ring Λ, stably free modules are actually
free [Ba1]. Thus, it is enough to show that π2(M) is stably free. Now we note
that replacing M by M#CP 2 changes π2(M) by adding Λ. Thus, it is enough
to show that π2(M#CP 2) is stably free. The normal 1-type of M#CP 2 is
B′ = S1 × B STOP → BTOP, where B STOP is classifying space for stable
topological oriented vector bundles. Ω4(B′) = ΩTOP

4 (S1) ∼= Z×Z/2 where the
isomorphism is given by the signature and the Kirby-Siebenmann obstruction
[F-Q]. Thus, M#CP 2 is stably homeomorphic to S1×S3#rCP 2, where r is the
signature of M#CP 2 (Theorem C). Since π2(S1 × S3#rCP 2) is free, π2(M)
is stably free and thus free.

Now we apply Proposition 8, ii). Modulo the sum with an element of
L5(Z), the obstruction θ(W, ν) for a B-bordism W between two such mani-
folds M0 and M1 with the same intersection form on π2 is given by an iso-
metric embedding of (π2(M0), λ, µ) into Hε(Λr), where r = rank π2(M0).
If we replace M0 by M1 in the definition of θ(W, ν) we obtain an embed-
ding of (π2(M1),−λ,−µ) into Hε(Λr) which is the orthogonal complement
of (π2(M0), λ, µ) in Hε(Λr). Thus, we have an isometric embedding of
(π2(M0), λ, µ) ⊥ (π2(M1),−λ,−µ) into Hε(Λr). Now π2(M0, λ, µ) and
(π2(M1), λ, µ) are isometric and this form is unimodular, which implies that

Hε(Λr) ∼= (π2(M0), λ, µ) ⊥ (π2, (M0),−λ,−µ).

Then the diagonal embedding of π2(M0)is a lagrangian complement, and we
obtain from Proposition 8, iii) that θ(W, ν) is elementary modulo the sum with
an element of L5(Z). The Wall obstruction group L5(Z) is isomorphic to Z
[W1, Th. 13A.8]. Replacing W by the connected sum of W with S1×r ·M(E8),
where M(E8) is the closed Spin 4-manifold with signature 8 [F-Q], we can for
appropriate r modify θ(W, ν̄) by an arbitrary element of L5(Z). Thus we can
assume that θ(W, ν̄) is elementary and by Theorem 4 this finishes the proof of
Theorem F.

Remark. Working with the normal 2-type instead of the normal 1-type,
one can show for all oriented closed 4-manifolds with infinite cyclic fundamental
group that any isometry between the intersection forms on π2 can be realized
by a homeomorphism provided that in the nonspin case the Kirby-Siebenmann
obstructions agree.

Furthermore, one can classify the pseudoisotopy classes of these homeo-
morphisms. This problem was studied in [F-Q] and[S-W] but the answers there
are slightly incorrect. An analysis using the methods developed in this paper
will be given in [Kr-Te].
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8. Applications to complete intersections

In this section we want to prove Theorem A. We begin with a reformula-
tion. If i : Xn

δ → CP∞ is the inclusion, the normal bundle of Xn
δ is i?ξ(n, δ)

where ξ(n, δ) = −(n + r + 1) · H ⊕ Hd1 ⊕ · · · ⊕ Hdr . Since i? is injective in
cohomology up to dimension 2n and is determined by the total degree d, the
Pontrjagin classes of two complete intersections Xn

δ and Xn
δ′ with the same

total degree are equal if and only if pi(ξ(n, δ)) = pi(ξ(n, δ′)) for 2i ≤ n.
Our first step is to note that if pi(ξ(n, δ)) = pi(ξ(n, δ′)), the two com-

plete intersections have the same normal (n − 1)-type. In Proposition 3 we
determined the normal (n − 1)-type of a complete intersection Xn

δ as B =

CP∞ ×BO〈n+ 1〉 ξ(n,δ)⊕p−−−−−→ BO. Two such normal (n− 1)-types are equal, if
the restrictions of ξ(n, δ) to CP [n/2], the n-skeleton of CP∞×BO〈n+1〉 are sta-
bly isomorphic. For m 6= 2, 3 mod 8 two stable real bundles over CPm is stably
isomorphic if and only if they have same Pontrjagin classes p1, . . . , p[m/4] [Sa].
Since we also control p[n/4]+1, the equality of the Pontrjagin classes pi(ξ(n, δ))
for 2i ≤ n implies that the restriction of ξ(n, δ) to CP[n/2], the n-skeleton of
CP∞ ×BO〈n+ 1〉 is stably isomorphic.

If n is odd we have by Corollary 4 only to show that Xn
δ and Xn

δ′ admit
B-bordant normal (n− 1)-smoothings. If n is even we can apply this corollary
only if Ker (πn(Xn

δ ) → πn(B))/rad splits off a hyperbolic plane. Denote the
Poincaré dual of xn/2 by h ∈ Hn(Xn

δ ;Z). Then by the Hurewicz theorem
Ker (πn(Xn

δ ) → πn(B))/rad = h⊥. If bn(Xn
δ ) − |sign(Xn

δ )| ≥ 4 one can find a
hyperbolic plane in h⊥. But for n ≥ 3 the only complete intersections with
bn/2(Xn

δ ) − |sign(Xn
δ )| ≤ 4 are Xn

1 , Xn
2 , and Xn

(2,2) [L-W2]. We summarize
these considerations as:

Proposition 10. Two complete intersections Xn
δ and Xn

δ′ of complex
dimension n > 2 are diffeomorphic if and only if the total degrees, the Pontrja-
gin classes and the Euler characteristics agree and they admit bordant normal
(n− 1)-smoothings in B.

The next step is to show that the total degree and the Pontrjagin classes
determine the element in Ω2n(B) ⊗ Q. This is a standard application of the
collapsing of the Atiyah-Hirzebruch spectral sequence over Q.

Thus the difference of two complete intersections Xn
δ and Xn

δ′ of com-
plex dimension n > 2 with the same total degrees and Pontrjagin classes
equipped with appropriate normal (n − 1)-smoothings is a torsion element in
Ω2n(B). Using the Pontrjagin-Thom construction we identify this group with
π2n(Mξ(n, δ) ∧ MO〈n + 1〉), where Mξ(n, δ) is the Thom spectrum of the
bundle ξ(n, δ) and MO〈n + 1〉 is the Thom spectrum of the pullback of the
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universal bundle over the n-connected cover of BO. Now, one can use the
Adams spectral sequence to analyze these groups. The key point is that there
is a vanishing line for the Adams spectral sequence, meaning that if a torsion
element has sufficiently high Adams filtration, then it is actually trivial. The
mod p Adams filtration of the image of an element under a map inducing the
trivial map in Z/p homology increases by at least one. Using the inductive
construction of complete intersections one can determine an upper bound of
the mod p Adams filtration depending on how many powers of p divide the
total degree. Combining this with the vanishing line leads to Theorem A. The
details of this idea were carried out by Claudia Traving following suggestions
by Stephan Stolz. In the following we will discuss this in more detail.

Write the total degree d =
∏
pprime p

νp(d).

Proposition 11 [Tr]. The mod p Adams filtration of Xn
δ equipped with

an appropriate normal (n− 1)-smoothing is at least νp(d).

One can actually show that this is the precise filtration which in any case
is independent of the normal (n − 1)-smoothing since these smoothings only
differ by the action of Aut(B) which preserves the filtration.

The proof uses an obvious translation of the process of taking the trans-
verse intersection of manifolds into stable homotopy via Pontrjagin-Thom con-
struction. We first note that a complete intersection actually admits a normal
(n − 1)-smoothing in the fibration ξ(n, δ) : CP∞ = CP∞ × BO〈∞〉 → BO,
since the normal bundle is a pullback from a bundle over CP∞. From this
structure we obtain a normal (n − 1)-smoothing over B by factorization of
ξ(n, δ) : CP∞ → BO over B. Using this structure we consider Xn

δ via
Pontrjagin-Thom construction as an element of Mξ(n, δ). Consider the map
fdr : Mξ(n, (d1, . . . , dr−1))→ Σ2(Mξ(n+ 1, (d1, . . . , dr)) induced by inclusion

−(n+ r + 1)H ⊕Hd1 ⊕ · · · ⊕Hdr−1 → −(n+ r + 1)H ⊕Hd1 ⊕ · · · ⊕Hdr

(note that we assume that the Thom class of a Thom spectrum sits in dimension
0 explaining the occurrence of Σ2). This maps the element corresponding to
Xn+1

(d1,... ,dr−1) to the element corresponding to Xn
(d1,... ,dr)

. Thus we are finished
if fdr increases the mod p Adams filtration at least by νp(dr). For this, one
factors fdr further. Write dr =

∏
1≤i≤t si and consider the map

gj : Mξ(n, d1, . . . , dr−1,
∏
i≤j−1

si)→Mξ(n, d1, . . . , dr−1,
∏
i≤j

si)

induced by the sj-fold tensor product mapping H
∏
i≤j−1

si to H
∏
i≤j si . If p|sj

this map is trivial in mod p-homology and thus increases the Adams filtration.
On the other hand we can write fdr = gt · . . . · g1 · f1 and thus fdr increases the
mod p Adams filtration at least by νp(dr).



     

SURGERY AND DUALITY 747

The final step is to show that torsion elements of sufficiently high filtration
vanish.

Proposition 12 [Tr]. Let Xn
δ and Xn

δ′ be complete intersections with
n ≥ 3, the same total degree d and equal Pontrjagin classes. If νp(d) ≥ 2n+1

2(p−1) +
1 for all p with p(p−1) ≤ n+1, then Xn

δ and Xn
δ′ are, with respect to appropriate

normal (n− 1) smoothings, B-bordant.

The proof of this result in stable homotopy theory is a bit technical.
Thus we will only give a sketch from which an expert should be able to fill
in the details. For a spectrum S with only finitely many nontrivial homotopy
groups in negative dimensions and finitely generated integral cohomology in
all dimensions, the mod p Adams spectral sequence has the structure of a
Z/p[h0]-module where, if g is a degree p map in the sphere spectrum, h0 is
the corresponding element in Ext1,1

A (Z/p,Z/p) ∼= Z/p, A the mod p Steenrod
algebra. Then denote TEr := {x ∈ Er|hn0 (x) = 0 for some n ∈ N}. Then,
as Z/p[h0]-module Er splits into TEr and a free Z/p[h0]-module FEr and
the filtration quotients of the p-torsion in π∗(S) correspond to TE∞. Thus
one wants to know when the map ZTEs,t2 := ZEs,t2 ∩ TE

s,t
2 → TEs,t∞ is sur-

jective, where ZEs,t2 is the subgroup of permanent cycles in the E2-term. If
we from now on consider our relevant spectrum S = Mξ(n, δ) ∧MO〈n + 1〉,
then using information from [M-M] and some information from [Gi] about the
cohomology of BO〈n + 1〉 and the Bockstein spectral sequence for the exten-
sion 0 → Z → Z → Z/p → 0, one shows that for t − s ≤ 2n + 1 the map
ZTEs,t2 → TEs,t∞ is surjective.

Combining information from [M-M] with a vanishing result for A0-free A-
modules (A0 the sub-Hopf algebra of A generated by the Bockstein homomor-
phism β for the extension 0→ Z→ Z→ Z/p→ 0) by [A] for p = 2 and by [Li]
for p > 2, one shows that for (−1)-connected spectra S the groups TExts,t2 van-
ish, if s ≥ 2 and t−s ≤ 2(p−1)·s−1. Our spectrum S = Mξ(n, δ)∧MO〈n+1〉
is (−1)-connected and thus this vanishing result can be applied. The differ-
ence of our two complete intersections Xn

δ and Xn
δ′ in π2n(S) has by assumption

Adams filtration s ≥ 2n+1
2(p−1) + 1 for all p with p(p− 1) ≤ n+ 1. The vanishing

result implies that for p with p(p − 1) ≤ n + 1 we have TExts,t2 = {0} for
t− s = 2n and thus we only have to deal with primes p with p(p− 1) > n+ 1.
Since n ≥ 3 this implies p is odd. The proof is finished by using the well known
result that T ⊕t−s=2nExts,tA (Z/p,Z/p) = 0 for odd primes with (p−1)p > n+1
(cf. [Na]). Starting from this, one proves inductively that if M = ⊕Mk is a
(−1)-connected graded A-module with Mk finitely generated and M2k+1 = 0
for all k ≤ n, then T ⊕t−s=2nExts,tA (M ;Z/p) = 0. Since H?(S;Z/p) fulfills this
condition the proof of Proposition 12 is finished.
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9. Analysis of certain obstructions in l0({e})

In this section we study a special class of 7-manifolds with very sim-
ple normal 2-type. We will show that under appropriate assumptions the l8
(= l0)-obstruction for a B-bordism between such manifolds can be controlled
by characteristic numbers. The special class of manifolds is motivated by the
classification of certain homogeneous spaces which fall into this class [Kr-St1],
[Kr-St2], [Kr-St3]. Let M be a 1-connected compact 7-dimensional manifold
with H2(M;Z) torsion free of rank r. The normal 2-type B of such manifolds is

ξ : CP∞ × . . .× CP∞︸ ︷︷ ︸
r-copies

×B Spin
H(w2)⊕p−→ BO,

where p : B Spin −→ BO is the canonical projection. The map H(w2) is
trivial, if w2(M) = 0 or the classifying map for the Hopf bundle over one
copy of CP∞, if w2(M) 6= 0. Now H4(B Spin;Z) ∼= Z is generated by a class
denoted p1

2 . Thus for a spin vector bundle the characteristic class p1

2 can be
defined as the pullback of this class.

Theorem 6. Let M0 and M1 be 1-connected 7-dimensional, compact
manifolds, either both Spin or both non-Spin such that H2(Mi;Z) is torsion
free of rank r and H4(M0;Z) ∼= H4(M1;Z) is finite and generated by products
of classes in H2(Mi;Z) and p1

2 (Mi), if Mi is Spin or p1

2 (TMi ⊕ L), if Mi is
not Spin and L is a complex line bundle with w2(L) = w2(Mi).

Then M0 is diffeomorphic to M1 if and only if there exist normal B-
smoothings of Mi and a B-bordism (W, ν) with

(i) sign W = 0.
(ii) 〈ν̄?x ∪ ν̄?y, [W,∂W ]〉 = 0 for all x, y ∈ H4(B;Q).

The second condition is to be understood as follows. As H3(∂W ;Q) =
0 = H4(∂W ;Q) there is an isomorphism H4(W,∂W ;Q)

∼=−→ H4(W ;Q). So
regard ν̄?x and ν̄?y as elements in H4(W,∂W ;Q) before taking the cup product
and evaluating on the fundamental class [W,∂W ]. As H4(B;Z) is generated
by p1

2 and products zi ∪ zj , where the zi’s generate the second cohomology
of B, the condition on H4(Mi;Z) means that H4(Mi;Z) is finite and that
ν̄? : H4(B;Z) → H4(Mi;Z) is surjective. This result implies Theorem G. A
generalization of it was proved in [Be].

Proof. By Proposition 4 we can assume that W ν−→ B is a 4-equivalence.
Then by Theorem 3 the surgery obstruction θ(W, ν̄) for transforming W into
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an h-cobordism is given by

θ(W, ν̄) := (H4(W,M0;Z)
f← im(d : π5(B,W )

→ π4(W ))
g→ H4(W,M1;Z), λ, µ).

Since µ is, in our situation, determined by λ we omit it. We are going to show
that θ(W, ν̄) is elementary. Since the intersection form can be better treated
in cohomology we will translate θ(W, ν̄) to cohomology:

θ(W, ν̄) := (H4(W,M1;Z)← KH4(W,∂W ;Z)→ H4(W,M0;Z), λ),

where KH4(W,∂W ;Z) = Ker ρ : H4(W,∂W ;Z) ∼= H4(W ;Z)→ H4(B;Z) and
λ is the cup-product pairing between H4(W,M1) and H4(W,M0). From the
long exact sequences for the pair (W,Mi) we see that H4(W,Mi;Z) can be
considered as a kernel of H4(W ;Z) −→ H4(Mi;Z).

Now we introduce some notation: V := H4(W,∂W ;Z), A := H4(B;Z),
ρ : V → A the map above. We identify H4(M0;Z) by some isomorphism with
H4(M1;Z) and denote this finite abelian group by H. We identify H4(W ;Z)
with V ? via Kronecker isomorphism and Poincaré duality and denote the ad-
joint of the intersection form by S : V → V ?. The cohomology sequence of the
pair (W,∂W ) translates into a short exact sequence:

0→ V
S−→ V ? j−→ H ⊕H → 0.

We denote the projection to the i-th factor (i = 0 or 1) by pi : H ⊕H → H.
Then our obstruction θ(W, ν̄) translates to

θ(W, ν̄) = (Ker p1 j
f←− Ker ρ

g−→ Ker p0j, λ) ∈ l0({e}),

where the maps f and g are the restriction of S to Ker ρ (Ker ρ maps under S
injectively to Ker p0j ∩Ker p1j) and λ is induced by S. We note that the dual
sequence of 0 → Ker ρ i−→ V

ρ−→ A → 0 is again exact (since the groups are
free):

0←− (Ker ρ)? i?←− V ? ρ?←− A? ←− 0.

The following algebraic data can be derived from our topological assumptions:

a) S is symmetric and nondegenerate and sign S = 0.
b) If S(vi) = ρ∗(αi) for vi ∈ V, αi ∈ A∗ : (i = 1, 2), then S(v1)(v2) = 0.
c) For all ϕ ∈ V ∗ satisfying p1j(ϕ) 6= 0 and p0j(ϕ) = 0 we have ρ(S−1(rϕ))
6= 0 for all positive multiples rϕ of ϕ lying in the image of S (and the
same holds if we interchange the indices 0 and 1).

Now a) follows from signW = 0, b) is a consequence of assumption (ii),
and c) follows from the unimodularity of the linking forms on Mi:
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Let L denote the cohomology linking form of M1. For a contradiction we
assume ϕ ∈ H4(W ;Z) = V ∗ and a nontrivial ψ ∈ H4(M1;Z) = H ⊕ {0} with

jϕ = (ψ, 0) ∈ H ⊕H = H4(M1;Z) ⊕ H4(M0;Z) = H4(∂W ;Z)

such that for some r ∈ N we have rϕ ∈ ImS and ρS−1(rϕ) = 0. We will show
then that ψ = 0, contradicting our assumption. Since the linking form L on
H4(M1) is unimodular this is equivalent to showing that L(α, ψ) = 0 for all
α ∈ H4(M1). Since

−∗
ν1 : H4(B;Z) −→ H4(M1;Z) is surjective by assumption,

we have to check L(
−∗
ν0η, ψ) = 0 for all η ∈ H4(B;Z). In the situation above

the relation between the intersection form on W and the linking form on ∂W

implies:

L(
−∗
ν0η, ψ) = ±1

r
〈η, ρS−1(rϕ) 〉.

The latter expression vanishes since ρS−1(rϕ) = 0.
The following proposition finishes the proof of Theorem 6.

Proposition 13. Let V , A, ρ : V → A and S be as introduced above.
Then, if the assumptions a)–c) are fulfilled

θ(W, ν̄) = (Ker p1j
f←− Ker ρ

g−→ Ker p0j, λ) ∈ l0({e})
is elementary.

Proof. We denote the restriction of the symmetric bilinear form S on V

to Ker ρ by SK . The adjoint of SK is given by the composition Ker ρ i→ V
ρ→

V ∗
i∗→ (Ker ρ)∗.
Using property b) one shows:

i) For v ∈ V, α ∈ A∗, S(v) = ρ∗(α) => ρ(v) = 0.
From this and the definition of the radical one has:

ii) S−1(n · Im ρ∗) ⊆ rad (SK), where n is the exponent of H and rad is the
radical and rank (rad (SK)) = rankA∗ = rankA.
Finally we will show:

iii) Cokernel SK is torsion-free; hence the form S̃K on Ker ρ/rad (SK) induced
by SK is unimodular and its signature vanishes.

We will prove iii) at the end and finish the proof of Proposition 13 using
i)–iii). By iii) there exists U ⊆ Ker ρ such that U ∩rad (SK) = 0 and U = U⊥ is
a direct summand of Ker ρ/rad (SK) of half rank. We show that U ⊕ rad (SK)
maps under f and g in Ker (pij) to direct summands Bi of half rank, proving
the proposition.

It is clear that they have the right rank since rank Ker (pij) = rank (V ∗) =
rankV = rank (Ker ρ) + rankA = 2 · rank (U) + rank (rad (SK)) + rankA =
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2(rank (U) + rank (radSK)). To show that they are direct summands we first
note that U ⊕rad (SK) is a direct summand in Ker ρ and thus in V . This implies
that if x ∈ Ker p0j represents a nontrivial torsion element in Ker p0j/f(U ⊕
rad (SK)), then x cannot be in the image of S or equivalently p1j(x) 6= 0. But
then by c) we obtain a contradiction since, as x represents a torsion element,
some multiple rx = S(y) for some y in U⊕radSk ⊂ Ker ρ. The same argument
holds if we consider Ker p1j.

We finish the argument by showing iii). Denote the inclusion from Ker ρ to
V by i. Assume cokernel SK has torsion. Then there would exist ϕ ∈ V ∗ with
i∗(ϕ) 6∈ im(SK), but i∗(rϕ) = S(y) for some r ∈ N and y ∈ Ker ρ. Consider
the two cases j(ϕ) ∈ im(jρ∗) and j(ϕ) 6∈ im (jρ∗). We will show that both lead
to a contradiction.

If j(ϕ) ∈ im(jρ∗), there is an α ∈ A∗ with j(ϕ) = jρ∗(α). Define
ϕ′ : = ϕ− ρ∗(α). Then for ϕ′ we have i∗(ϕ) = i∗(ϕ′) and j(ϕ′) = 0. The latter
implies that ϕ′ has a pre-image v ∈ V under S. On the other hand S(r·v−i(y))
∈ im ρ∗. By i) we get 0 = ρ(r ·v− i(y)) = rρ(v). As A is torsion free, it follows
v ∈ Ker ρ, a contradiction.

If jϕ 6∈ im(jρ∗) choose α ∈ A∗ such that p0jρ
?(α) = p0j(ϕ) and define

ϕ′ : = ϕ−ρ∗(α). Then we have i∗ϕ′ = i∗ϕ and p0j(ϕ′) = p0j(ϕ)−p0j ρ
∗(α) = 0.

The assumption j(ϕ) 6∈ Im(jρ∗) implies p1j(ϕ′) 6= 0. Next we will show that
ρS−1(n · rϕ′) = 0, giving a contradiction to c). As above, we conclude from i)
that S−1(nrϕ′ − i(n · y)) ∈ Ker ρ and hence ρS−1(n · rϕ′) = 0.

To show that sign(SK) = 0, choose X ⊆ Ker ρ such that Ker ρ = rad (SK)
⊕X. This is possible because Ker ρ/rad (SK) is free. As SK |X×X is unimod-
ular, we have V = X +X⊥. We can choose Y ⊂ X⊥ such that ρ|Y : Y −→ A

is an isomorphism, since A is free. Starting from the decomposition V =
X⊕ rad (SK)⊕Y we note that sign(S|rad (SK)⊕Y ) is zero, because rad (SK) has
the same rank as Y and the form vanishes on rad (SK). On the other hand X
is orthogonal to rad (SK)⊕ Y and thus

0 = sign(S) = sign(S|X) + sign(S|rad (SK)⊕Y ) = sign(S|X) = sign(SK).

Fachbereich Mathematik, Universität Mainz, 55099 Mainz

and

Mathematisches Forschungsinstitut Oberwalfach, 77709 Oberwolfach,

Federal Republic of Germany

E-mail address: kreck@mfo.de

References

[A] J. F. Adams, A periodicity theorem in homological algebra, Proc. Camb. Phil. Soc.
62 (1966), 365–377.

[Ba1] H. Bass, Projective modules over free groups are free, J. Alg. 1 (1964), 367–373.



     

752 MATTHIAS KRECK

[Ba2] H. Bass, Unitary algebraic K-theory, in Algebraic K-Theory III: Hermitian K-
theory and Geometric Applications Lectures Notes in Math. 343 (1973), 57–265,
Springer-Verlag, New York.

[Bau] H. J. Baues, Obstruction Theory on Homotopy Classification of Maps, Lectures
Notes in Math. 628 (1977), Springer-Verlag, New York.

[Be] F. Bermbach, On simply-connected 7-manifolds, Ph.D. thesis, Mainz (1991).
[Br] W. Browder, Surgery on Simply-Connected Manifolds, Springer-Verlag, New York,

1972.
[Bro] K. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer-Verlag, New

York, 1982.
[C-F] P. Conner and E. E. Floyd, Differentiable Periodic Maps, Springer-Verlag, New

York, 1964.
[Da] J. Davis, The Borel/Novikov conjectures and stable diffeomorphisms of 4-mani-

folds, preprint, Mainz (1994).
[F-K] F. Fang and S. Klaus, Topological classification of 4-dimensional complete inter-

sections, Manuscr. Math. 90 (1996), 139–147.
[F-K-V] S. Finashin, M. Kreck, and O. Viro, Nondiffeomorphic but homeomorphic knot-

tings of surfaces in the 4-sphere, Lectures Notes in Math. 1346 (1988), 157–198.
[Fr1] M. H. Freedman, Uniqueness theorems for taut submanifolds, Pacific J. Math. 62

(1976), 379–387.
[Fr2] , The disk theorem for four-dimensional manifolds, Internat. Conf. (Warsaw

1983), 1984, 647–663.
[F-Q] M. H. Freedman and F. Quinn, Topology of 4-Manifolds, Princeton Math. Series

39, Princeton Univ. Press, Princeton, NJ, 1990.
[Gi] V. Giambalvo, The mod p cohomology of BO〈4k〉, Proc. A.M.S. 20 (1969), 593–

597.
[G-L] M. Gromov and H. B. Lawson, The classification of simply connected manifolds of

positive scalar curvature, Ann. of Math. 111 (1980), 423–434.
[H-K1] I. Hambleton and M. Kreck, Smooth structures on algebraic surfaces with cyclic

fundamental group, Invent. Math. 91 (1988), 53–59.
[H-K2] , Smooth structures on algebraic surfaces with finite fundamental group,

Invent. Math. 102 (1990), 109–114.
[H-K3] , Cancellation of hyperbolic forms and topological four-manifolds, J. reine

angew. Math. 443 (1993), 21–47.
[H-K4] , Cancellation, elliptic surfaces and the topology of certain four-manifolds,

J. reine angew. Math. 444 (1993), 79–100.
[H-K-T] I. Hambleton, M. Kreck, and P. Teichner, Nonorientable 4-manifolds with funda-

mental group of order 2, Trans. A.M.S. 344 (1994), 649–665.
[Hi] M. Hirsch, Differential Topology , Grad. Texts in Math. 33, Springer-Verlag, New

York, 1976.
[Ju] R. Jung, Generalized elliptic homology theories, Ph.D. thesis, in preparation.
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