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Entropy of convolutions on the circle

By Elon Lindenstrauss, David Meiri, and Yuval Peres

Abstract

Given ergodic p-invariant measures {µi} on the 1-torus T = R/Z, we
give a sharp condition on their entropies, guaranteeing that the entropy of the
convolution µ1 ∗ · · · ∗ µn converges to log p. We also prove a variant of this
result for joinings of full entropy on TN. In conjunction with a method of
Host, this yields the following. Denote σq(x) = qx (mod 1). Then for every
p-invariant ergodic µ with positive entropy, 1

N

∑N−1
n=0 σcnµ converges weak∗ to

Lebesgue measure as N −→ ∞, under a certain mild combinatorial condition
on {ck}. (For instance, the condition is satisfied if p = 10 and ck = 2k + 6k or
ck = 22k .) This extends a result of Johnson and Rudolph, who considered the
sequence ck = qk when p and q are multiplicatively independent.

We also obtain the following corollary concerning Hausdorff dimension
of sum sets: For any sequence {Si} of p-invariant closed subsets of T, if∑

dimH(Si)/| log dimH(Si)| =∞, then dimH(S1 + · · ·+ Sn) −→ 1.

1. Introduction

Let p ≥ 2 be any integer (p need not be prime), and T = R/Z the 1-
torus. Denote by σp the p-to-one map x 7→ px (mod 1). The pair (T, σp) is
a dynamical system that has additional structure: T is a commutative group
(with the group operation being addition mod 1), and σp is an endomorphism
of it. Even in such a simple system, the interaction between the dynamics and
the algebraic structure of T can be quite subtle; the present work continues
the study of this interaction, inspired by the fundamental work of Furstenberg
[8].

Say that a measure µ on T is p-invariant if σpµ = µ, where for every set
A ⊂ T

(σpµ)(A) def= µ(σ−1
p A).
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(All measures we consider are Borel probability measures.) Lebesgue mea-
sure on T, denoted λ, has entropy log p with respect to σp, and is the unique
p-invariant measure of maximal entropy. Given two p-invariant measures µ
and ν, the group structure of T naturally yields another p-invariant measure
— the convolution µ ∗ ν.

Our main results, Theorems 1.1 and 1.8, concern the entropy growth for
convolutions of p-invariant measures and their ergodic components. These re-
sults have applications to the Hausdorff dimension of sum sets and to genericity
of the orbits of measures with positive entropy under multiplication by certain
integer sequences.

Theorem 1.1 (the Convolution Theorem). Let {µi} be a sequence of
p-invariant and ergodic measures on T whose normalized base-p entropies hi =
h(µi, σp)/ log p satisfy

(1)
∞∑
i=1

hi
| log hi|

=∞.

Then

h(µ1 ∗ · · · ∗ µn, σp) −→ log p monotonically, as n −→∞.
In particular, µ1 ∗ · · · ∗ µn −→ λ weak∗ and in the d̄ metric (with respect to the
base-p partition).

It is relatively easy to see that under hypotheses of the theorem,
µ1 ∗ · · · ∗ µn −→ λ weak∗. This means that∫

f(x) dµ1 ∗ · · · ∗ µn −→
∫
f(x) dλ

for all continuous f , and gives very little information on the dynamics of
µ1 ∗ · · · ∗ µn.

The convergence of the entropy to log p is equivalent to the much stronger
statement that µ1 ∗ · · · ∗ µn −→ λ in the d̄ metric. As we will not use this
metric in our arguments, we only recall its definition and refer the reader to
Rudolph [17] for further information. Consider two p-invariant measures ν1

and ν2 on T. What d̄(ν1, ν2) < ε means is that there exists a p-invariant
measure ν̃ on T2 that projects to ν1 in the first coordinate and to ν2 in the
second coordinate, such that for ν̃-almost every (x, y) ∈ T2, the set of integers
k ≥ 1 for which the kth digits in the base p expansions of x and y differ, has
asymptotic density less than ε. Once we establish the entropy convergence, the
d̄ convergence of µ1 ∗ · · · ∗ µn to λ is an immediate corollary of the fact that
λ is a Bernoulli measure, and hence is finitely determined; see Rudolph [17,
Chaps. 6 and 7], for the relevant definitions and proofs.

The entropy condition in Theorem 1.1 is sharp: if {hi} is a sequence
of numbers in the range (0, 1) with

∑
hi/| log hi| < ∞, then there exists a
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sequence of p-invariant ergodic measures {µi}, such that h(µi, σp)/ log p = hi,
yet µ1 ∗ · · · ∗ µn does not converge to Lebesgue measure λ even in the weak∗

topology; see Example 10.2.
The convolution theorem has implications for Hausdorff dimension of sum

sets:

Corollary 1.2. Let {Si} be a sequence of p-invariant closed subsets of
T, and suppose that

∞∑
i=1

dimH(Si)
| log dimH(Si)|

=∞.

Then dimH(S1 + · · ·+ Sn) −→ 1.

By Furstenberg [8, III, 2], the conclusion is equivalent to htop(S1 + · · · +
Sn, σp)→ log p.

If the measures µi are not weakly-mixing, the measure µ1 ∗ · · · ∗ µn might
be nonergodic, with different fibers carrying different entropies (see Exam-
ple 9.4). The reason for this is that for two measures µ and ν on T, the
convolution µ∗ν is the projection of the product measure µ×ν on T×T to T;
if µ and ν are not weakly mixing, then µ× ν need not be ergodic (indeed, µ is
weakly mixing if and only if µ×µ is ergodic). In this case, ergodic components
of µ × ν can project to ergodic components of µ ∗ ν with distinct entropies
(however, it is easy to see that the entropy of almost all ergodic components
of µ ∗ ν is at least the entropy of µ — see Corollary 9.3). In this more general
situation, when µi are not assumed to be weakly mixing, it turns out to be
both natural and important for the applications to give more accurate infor-
mation than that provided by Theorem 1.1 regarding the ergodic components
of µ1 ∗ · · · ∗ µn. This is done in Theorem 1.8 below; the proof of this more de-
tailed result is rather delicate. As before, such a result can be used to obtain
an estimate of Hausdorff dimension of sum sets:

Theorem 1.3. Let {µi} be a sequence of p-invariant ergodic measures
on T, and suppose that infi h(µi, σp) > 0. Let {Si} be a sequence of Borel
subsets of T, and suppose that µi(Si) > 0 for all i ≥ 1. Then dimH(S1 + · · ·+
Sn) −→ 1.

Note that the the measures µi(Si) can tend to zero arbitrarily fast.
Our initial motivation for studying entropy of convolutions of p-invariant

measures was to find conditions on a sequence of integers {cn} and a measure

µ, which imply that µ is {cn}-generic, i.e., the averages 1
N

N−1∑
n=0

σcnµ converge

weakly to Lebesgue measure λ. In certain cases, this could be established for
ergodic p-invariant measures of sufficiently high entropy, and the idea was to
deduce {cn}-genericity for all ergodic p-invariant measures of positive entropy
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by repeated convolutions. Indeed, we establish Theorem 1.4 below using this
scheme.

The works of Host [9] and Meiri [13] indicate that combinatorial proper-
ties of {cn} can be used to prove {cn}-genericity for invariant measures with
positive entropy. The combinatorial property we need is weaker than those
assumed in the quoted papers; we require that the number of pairs among the
first pn elements of {cn} which are congruent mod pn, is exponentially smaller
than p2n.

Definition 1.1. Given an integer-valued sequence {cn} and an integer
p > 1, we define the p-adic collision exponent of the sequence as

Γp({cn}) = lim sup
n→∞

log |{0 ≤ k, ` < pn : ck ≡ c` (mod pn)}|
n log p

.

Since pairs with k = ` are allowed, we always have 1 ≤ Γp({cn}) ≤ 2. For
example, whenever p, q > 1 are relatively prime, the p-adic collision exponent
of {qn} is 1. If we assume only that there is some prime factor of p which does
not divide q, then {qn} has p-adic collision exponent < 2. (See §3.2 for more
details and refinements of this definition.)

Using this definition we can state our results on genericity of orbits of
p-invariant measures:

Theorem 1.4. Let {cn} be a sequence with p-adic collision exponent < 2,
for some p > 1. Then any p-invariant ergodic measure µ on T with positive
entropy is {cn}-generic, i.e.,

(2)
1
N

N−1∑
n=0

σcnµ −→ λ in the weak∗ topology.

For instance, the hypothesis is satisfied if p = 10 and cn = 2n + 6n or
cn = 22n ; see Section 4 for other examples. In fact, the following stronger
form of convergence holds. Recall that the space of probability measures on T
endowed with the weak∗ topology is a compact metric space, and take ρ∗ be
some metric on it.

Theorem 1.5. Under the conditions of Theorem 1.4, µ is {cn}-normal
in probability, i.e.,

(3)
∫
ρ∗
( 1
N

N−1∑
n=0

δcnx , λ
)
dµ(x) −→ 0.

To be more specific, let

µ̂(k) =
∫
e2πikx dµ .
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Then ρ∗(µ, ν) =
∞∑

k=−∞
2−|k||µ̂(k) − ν̂(k)|2 is a metric on the space of all

p-invariant probability measures on T with the weak∗ topology. Define for
any integer k 6= 0,

(4) g
(k)
N (x) def=

1
N

N−1∑
n=0

e(kcnx),

where e(x) def= e2πix. Then (2) is equivalent to for all k 6= 0,
∫
g

(k)
N (x) dµ −→ 0,

while (3) is equivalent to the stronger property: for all k 6= 0,
∫
|g(k)
N (x)|2 dµ

−→ 0.
The case cn = qn is known, and inspired our general investigation. Even

though there are multiplicatively-independent p and q with Γp({qn}) = 2, the
following is still a corollary of the above results.

Corollary 1.6 (Johnson and Rudolph [11, Thm. 8.6]). Suppose that
p, q > 1 are multiplicatively-independent and µ is a p-invariant and ergodic
measure on T with positive entropy. Then µ is {qn}-normal in probability.

Our proofs of Theorems 1.4–1.5 use two main tools. Host [9] developed
a harmonic analysis method which is most powerful when the entropy of µ is
large. The following general result then allows us to use Host’s method for
all measures with nonzero entropy by reduction (via convolutions) to the case
where the entropy of the measure µ is sufficiently high.

Theorem 1.7 (the Bootstrap Lemma). Suppose that C is a class of
p-invariant measures on T with the following properties:

(i) If µ is p-invariant and ergodic and µ ∗ µ ∈ C, then µ ∈ C.

(ii) If µ is p-invariant and almost every ergodic component of µ is in C, then
µ ∈ C.

(iii) There exists some constant h0 < log p such that every p-invariant and
ergodic measure µ with h(µ, σp) > h0 is in C.

Then C contains all p-invariant ergodic measures with positive entropy.

We derive Theorem 1.7 from a variant of Theorem 1.1 for joinings of full
entropy:

Definition 1.2. Let {µi}i≥1 be a sequence of p-invariant and ergodic mea-
sures on T. A measure ν(n) on Tn is called a joining of µ1, . . . , µn if

(i) ν(n) is σp × · · · × σp invariant,

(ii) The projection of ν(n) on the ith coordinate is µi, for i = 1, . . . , n.
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The measure ν(n) is called a joining of full entropy of µ1, . . . , µn if in addition

h(ν(n), σp × · · · × σp) =
n∑
i=1

h(µi, σp).

A measure µ̃ on TN is called a joining of full entropy of {µi}∞i=1 if for every
n, the projection of µ̃ to the first n coordinates is a joining of full entropy of
µ1, . . . , µn.

Theorem 1.8. Let {µi}∞i=1 be a sequence of p-invariant and ergodic
measures on T such that infi h(µi, σp) > 0. Suppose that µ̃ is a joining of full
entropy of {µi}. Define Θn : TN → T by Θn(x) = x1 + · · · + xn (mod 1).
Then

h(Θnµ̃, σp) −→ log p monotonically, as n −→∞.

Theorem 1.8 is not valid under the weaker entropy assumptions of Theo-
rem 1.1. Indeed, it is possible to find a joining of full entropy µ̃ with entropies
satisfying (1), such that Θnµ̃ does not even converge weak∗ to λ. See Exam-
ple 10.5.

1.1. Background. In Furstenberg [8] many aspects of the dynamics of
(T, σp) are discussed, and in particular it is shown that there are no nontrivial
σp-invariant closed subsets of T that are also invariant under σq for p and q

multiplicatively independent (i.e. log p/ log q 6∈ Q), the trivial examples being
the whole of T and some finite sets of periodic points. Furstenberg conjectured
the following stronger result:

Furstenberg’s Conjecture. The only ergodic invariant measures
for the semi-group of circle endomorphisms generated by σp, and σq for p and
q multiplicatively independent are Lebesgue measure λ, and atomic measures
concentrated on periodic orbits.

Most of the research on the dynamics of (T, σp) has been related to this
conjecture. It has been proven for measures with positive entropy — a partial
result was proved by Lyons [12], and the case of p and q relatively prime was
settled by Rudolph [18]. The case of p and q multiplicatively independent
but not relatively prime is harder, and was proved by Johnson [10]. Another
argument along the lines of Lyons [12] for the multiplicatively independent case
was given by Feldman [6]. To tackle the case of measures with zero entropy it
seems that a totally different method is needed.

In Feldman and Smorodinsky [7], Johnson and Rudolph [11], and Host
[9], the measure is only assumed to be σp-invariant, and the authors consider
the action of σcn on µ for the special case of cn = qn. As shown in Meiri [13],
the methods of Host imply the following result:
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Theorem A. For p > 1, let {cn} be a sequence with p-adic collision
exponent 1. Then any p-invariant ergodic measure µ with positive entropy is
{cn}-normal a.e., i.e., {cnx (mod 1)} is uniformly distributed for µ-almost
every x ∈ T.

This theorem gives a significantly stronger statement than Theorems 1.4–
1.5, but for a smaller class of sequences {cn} — and in particular gives no
information for the case cn = qn, with p and q not relatively prime. (Recalling
the definition of g(k)

N in (4), this assertion is equivalent to for all k 6= 0, g(k)
N

−→ 0 µ−a.e.) A more detailed history of this problem can be found in Host
[9] and Meiri [15].

For the convolution results (Thms. 1.1 and 1.8), the case of measures with
zero entropy is not interesting, as the entropy of a convolution of measures,
each having zero entropy, has zero entropy, and hence does not converge d̄ to λ.

Regarding Theorems 1.2–1.3, one can ask if a stronger conclusion holds,
namely, that S1 + · · · + Sn contains an interval for all n sufficiently large.
Brown and Williamson [4] showed that if µ is a measure on T which makes
the digits in base p i.i.d. nondegenerate variables, and µ(Si) > 0 for all i, then
this stronger assertion is true. However, under our weaker assumptions, this
conclusion is not valid, even if all the sets Si coincide: By Furstenberg [8,
Thm. III.2] there exists a minimal p-invariant closed set S ⊂ T with positive
dimension. By Proposition IV.1 of the same article, the sum sets S + · · ·+ S

of any finite order have Lebesgue measure zero. For more information about
Lebesgue measure of sum sets see Brown, Keane, Moran, and Pearce [3].

1.2. Overview. The paper is organized as follows. In Section 2 we show
how one can deduce the Bootstrap Lemma from Theorem 1.8, and proceed
to prove Theorem 1.4. In Section 3 we discuss convergence in probability and
prove Theorem 1.5. In Section 4 we derive Corollary 1.6 from Theorem 1.4, and
discuss p-adic combinatorial properties, and in particular we give an algorithm
for computing the p-adic collision exponent of linear recursive sequences.

In Sections 5–7 we prove our main results, Theorems 1.1 and 1.8. The
simplest case is proving Theorem 1.1 for prime p. In this case, however, one
does not need to use a substantial part of the ideas behind the proof. We
recommend for first reading to have in mind the case p = 10, with µi = µ for
all i for Theorem 1.1. Theorem 1.8 is interesting already when p is a prime
(and we again recommend considering first the case where all µi are identical).

Section 5 contains results about finite cyclic groups which are crucial to
the proof of the convolution theorems. Lemmas 5.1 and 5.2 study convolutions
of measures on a finite cyclic group and contain one key idea in the proof,
namely that the convolution of a sequence of measures on a finite cyclic group
of order N (we shall use N = pk) tends to be invariant under a subgroup



      

878 ELON LINDENSTRAUSS, DAVID MEIRI, AND YUVAL PERES

that will typically be rather large (in the cases we will be interested in, this
subgroup will be of order approximately pαk for some 0 < α < 1). Lemma 5.3
shows that if a measure on Z/pkZ is almost invariant under a subgroup of size
pαk, the distribution of the αk high order digits is nearly uniform.

In Section 6 we begin to show how convolutions of measures on Z/pkZ

relate to convolutions of measures on T, where we get measures on Z/pkZ

from measures on T by considering the conditional distribution of the first k
digits in the base-p expansion of x ∈ T, given the rest of the digits. In Section 7
we continue in this approach and prove Theorem 1.1. The basic argument is
that if the entropy of µ1 ∗ · · · ∗ µn is almost

sup
N∈N

h(µ1 ∗ . . . ∗ µN , σp),

then for any k ≥ 1 the distribution of the first k digits of x given the rest
of the digits (x chosen according to µ1 ∗ · · · ∗ µn) must be nearly invariant
under a subgroup G ⊂ Z/pkZ of size pαk — for if it is not, then the entropy
of µ1 ∗ · · · ∗ µn can be significantly increased by further convolutions. This
implies that the first αk digits of x are distributed nearly uniformly. Since k
is arbitrary, it follows that h(µ1 ∗ · · · ∗ µn, σp) ' log p.

In Section 8 we prove Theorem 1.8. The main observation is that if one
chooses an element in TN according to a joining of full entropy, the components
of this vector are almost independent (Lemma 8.1). This allows us to prove
Theorem 1.8 along similar lines as Theorem 1.1. In Section 9 we use the
connection between entropy of measures and Hausdorff dimension, to derive
Theorems 1.2–1.3 from the results about convolutions of measures. Section 10
contains some concluding remarks, questions and examples.

2. Proof of the Bootstrap Lemma and Theorem 1.4

In order to derive the Bootstrap Lemma from Theorem 1.8, we need the
following lemma:

Lemma 2.1. Let µ denote a p-invariant and ergodic measure on T, and
let µ × µ =

∫
νγ dγ denote the ergodic decomposition of µ × µ. Then νγ is a

self-joining of µ for a.e. γ, and h(νγ , σp × σp) = 2h(µ, σp) a.e.

Proof. By ergodicity of µ, almost-surely νγ projects to µ in both coordi-
nates. Obviously, h(νγ , σp× σp) ≤ h(µ×µ, σp× σp) = 2h(µ, σp). On the other
hand, by Rokhlin’s theorem, h(µ× µ, σp × σp) =

∫
h(νγ , σp × σp) dγ, therefore

h(νγ , σp × σp) = 2h(µ, σp) a.e.
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Proof of Theorem 1.7 (the Bootstrap Lemma). Let µ be some p-invariant
and ergodic measure with positive entropy. We claim that µ ∈ C. Suppose
that this is not the case, and write ν(1) def= µ and h

def= h(µ, σp) > 0. From
property (i) of C, also µ ∗ µ /∈ C. Let µ × µ =

∫
νγ dγ denote the ergodic

decomposition of µ× µ with respect to σp × σp. Then

µ ∗ µ = Θ2(µ× µ) =
∫

Θ2(νγ) dγ,

where as before Θk(x1, . . . , xk)
def= x1 + · · ·+ xk (mod 1). From property (ii),

for a set of γ with positive measure, Θ2(νγ) /∈ C. By Lemma 2.1, there exists
an ergodic component of µ × µ, which we designate ν(2), such that ν(2) is
an ergodic self-joining of µ with entropy 2h and Θ2(ν(2)) /∈ C. Apply now
the same procedure to ν(2), finding an ergodic component ν(4) of ν(2) × ν(2),
such that ν(4) is a self-joining of ν(2) with entropy 4h, and Θ4(ν(4)) /∈ C.
Continuing this way we obtain a sequence of measures {ν(k)}, defined for k
a power of 2, such that Θk(ν(k)) /∈ C, ν(k) is an ergodic self-joining of µ in
Tk, and h(ν(k), σp × · · · × σp) = kh. Define ν(k) for other values of k by
projection, and let µ̃ be the inverse limit of these measures, defined on TN.
Then µ̃ is a joining of full entropy. Applying Theorem 1.8 we conclude that
h(Θkν(k), σp) = h(Θkµ̃, σp) −→ log p. As Θkµ̃ /∈ C for k a power of 2, this
contradicts property (iii).

We next deduce Theorem 1.4 from the Bootstrap Lemma. Given an
integer-valued sequence {cn}, say that a measure µ is {cn}-generic if

1
N

N−1∑
n=0

σcnµ −→ λ weakly, asN −→∞.

The basic tool we use is the following observation in Meiri [13, Thm. 3.1, and
note in §8, problem 3], based on Host [9]:

Proposition 2.2. Fix an integer p > 1 and a sequence {ck} with p-adic
collision exponent < 2. Then there exists a constant h0 < log p such that every
p-invariant and ergodic measure µ with h(µ, σp) > h0 is {cn}-normal a.e.; in
particular, µ is {cn}-generic.

Remark. This proposition, as well as Theorems 1.4–1.5, hold under the
weaker assumption that the reduced p-adic exponent of {ck} is less than 2; see
Section 3.2 for the definition and more details.

The following lemma is a consequence of the extremality of ergodic mea-
sures:
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Lemma 2.3 (Johnson and Rudolph [11]). Suppose that ν, ν1, ν2, . . . are
invariant measures, and that ν is ergodic. Suppose also that

1
N

N∑
n=1

νn −→ νweakly.

Then there exists a zero-density set J ⊂ N such that νn −→ ν (weakly) as
n−→
n/∈J
∞.

Proposition 2.4. An invariant measure µ is {cn}-generic if and only if
µ ∗ µ is {cn}-generic.

Proof. By the previous lemma, µ is {cn}-generic if and only if there exists
a zero-density set J ⊂ N such that σcnµ −→ λ as n−→

n/∈J
∞. This is equivalent

to

(5) lim
n/∈J

µ̂(acn) = 0, for all a ∈ Z r {0}.

Since \µ ∗ µ = µ̂2, equation (5) holds if and only if it holds when µ is replaced
by µ ∗ µ.

Proof of Theorem 1.4. From Propositions 2.2 and 2.4 it follows that the
class of p-invariant measures which are {cn}-generic satisfies the conditions of
the Bootstrap Lemma (Theorem 1.7), and the assertion follows.

3. Convergence in probability and proof of Theorem 1.5

Recall the definition (4) of g(k)
N . Given a measure µ, define µ# by µ#(A) =

µ(−A).

Lemma 3.1. For any measure µ,∫
|g(k)
N (x)|2 dµ ≤

(∫
|g(k)
N (x)|2 dµ∗µ#

) 1
2

.

Proof. As \µ∗µ# = |µ̂|2, by Cauchy-Schwarz we have∫
|g(k)
N (x)|2 dµ =

1
N2

N−1∑
m,l=0

∫
e(k(cl − cm)x) dµ =

1
N2

N−1∑
m,l=0

µ̂(k(cl − cm))

≤ 1
N

 N−1∑
m,l=0

|µ̂(k(cl − cm))|2
 1

2

=
(∫
|g(k)
N (x)|2 dµ∗µ#

) 1
2

.
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Proof of Theorem 1.5. A slight change in the proof of the Bootstrap
Lemma lets us replace the first condition by the following:

(i′) If µ is p-invariant and µ∗µ# ∈ C, then µ ∈ C. Taking C to be the class
of p-invariant measures for which (3) holds, condition (i′) is satisfied by the
last lemma, (ii) is immediate by Lebesgue dominated convergence, while (iii)
follows from Proposition 2.2.

The type of convergence in Theorem 1.5 is, in general, stronger than weak
convergence:

Example. Let cn = 22n . For j = 0, 1 consider random variables X(j) =∑∞
i=1 x

(j)
i 2−i, where x(j)

k2 = j for all k, and all other digits are i.i.d. uniform on
{0, 1}. Let µj be the distribution of Xj , and take µ = 1

2(µ1 + µ2). Then µ is
{22n}-generic, but is not {22n}-normal in probability.

However, there are cases where the stronger type of convergence follows
from the weaker one. The following proposition was obtained by Johnson and
Rudolph [11, §8] using general convex analysis. Here we give a more direct
argument.

Proposition 3.2. Let q > 1. Then if µ is {qn}-generic, it is also
{qn}-normal in probability.

Proof. For any L, by Cauchy-Schwarz,∣∣∣∣ 1
N

N−1∑
n=0

g
(k)
L ◦ σqn

∣∣∣∣2 ≤ 1
N

N−1∑
n=0

|g(k)
L |2 ◦ σqn ,

and so by (2) applied for cn = qn,

lim sup
N→∞

∫ ∣∣∣∣ 1
N

N−1∑
n=0

g
(k)
L ◦ σqn

∣∣∣∣2 dµ ≤ lim sup
N→∞

1
N

N−1∑
n=0

∫
|g(k)
L |2 ◦ σqn dµ

=
∫
|g(k)
L |2 dλ =

1
L
.

Since ∣∣∣∣g(k)
N −

1
N

N−1∑
n=0

g
(k)
L ◦ σqn

∣∣∣∣ ≤ 2L
N
,

we conclude that for any L,

lim sup
N→∞

∫
|g(k)
N |2 dµ ≤

1
L

it follows that µ is {qn}-normal in probability.
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4. The p-adic collision exponent

Denote by ordG(x) the order of an element x in a finite group G. The
following statement was noted by Host [9]:

Proposition 4.1. If p, q > 1 and p, q are relatively prime, then there
exists α > 0 such that

for all n ≥ 1, ordZ/pnZ(q) ≥ αpn.

In particular, in this case the p-adic collision exponent of {qn} is 1.

Proposition 4.2. Suppose that p, q > 1 and there exists some prime
factor p∗ of p that does not divide q. Then the p-adic collision exponent of
{qn} is < 2.

Proof. Define on
def= ordZ/pn∗Z(q), and use Proposition 4.1 to find α > 0

such that on ≥ αpn∗ . If qk ≡ q` (mod pn) then pn∗ |q|k−`| − 1; hence on|k − `.
Thus ∣∣∣{0 ≤ k, ` < pn : qk ≡ q` (mod pn)}

∣∣∣ ≤ pn · (pn/on).

Hence

Γp({qn}) = lim sup
n→∞

log
∣∣∣{0 ≤ k, ` < pn : qk ≡ q` (mod pn)}

∣∣∣
n log p

≤ lim sup
n→∞

log(pn · (pn/on))
n log p

≤ 2− log p∗
log p

< 2.

Proof of Corollary 1.6. By Proposition 3.2, it is enough to prove weak
convergence. If some prime factor of p does not divide q, we are done by
the last proposition and Theorem 1.4. Otherwise, note the following simple
observations:

(A) If the theorem holds replacing q by some power q`, then it holds for q as
well. The reason is that we can decompose

1
N`

N`−1∑
n=0

σqnµ =
1
`

`−1∑
k=0

1
N

N−1∑
n=0

σq`n(σqkµ)

and apply the theorem to the measures σqkµ, for k = 0, . . . , `− 1.

(B) If p|q and the theorem holds for p and q/p, then it also holds for p and
q. This is because σq/pµ = σqµ for p-invariant µ.
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For any multiplicatively independent p, q we can find some k, ` such that
pk|q` and some prime factor of p does not divide q′ = q`/pk, and use the above.

It is easy to see that Theorems 1.4–1.5 are not affected if we only assume
that {cn} differs on a set of arbitrarily small density from a sequence with p-
adic collision exponent smaller than 2. This motivates the following definition:

Definition 4.1. The reduced p-adic collision exponent of a sequence {cn}
is

Γ′p({cn}) = lim
ε→0

inf
{c′n}

Γp({c′n}),

where {c′n} ranges over sequences which agree with {cn} on a set of indices
with density ≥ 1− ε.

We always have 1 ≤ Γ′p({cn}) ≤ Γp({cn}) ≤ 2. The sequence cn = n`

for ` ≥ 2 has p-adic collision exponent 2(1 − `−1), while its reduced collision
exponent can be seen to be 1.

Computation of Γ′q({cn}) for a linear recursion. We conclude this section
with an algorithm for computing the reduced q-adic collision exponent of any
linear recursion sequence and any integer q > 1. Let {ck} be such a sequence,
i.e., for certain integers a0, . . . , an−1 (a0 6= 0) we have

(6) for all k > n, ck + an−1ck−1 + an−2ck−2 + · · ·+ a0ck−n = 0.

Denote by f(x) = xn + an−1x
n−1 + · · · + a1x + a0 the recursion polynomial

of (6). We can assume that f is of minimal degree. If {ck} is constant along
some arithmetic progression, surely Γ′q({cn}) = 2. Call f nondegenerate if the
only sequence {ck} satisfying f and having a constant arithmetic subsequence
is the zero sequence. We quote the following results:

Theorem 4.3 ([13, Thms. 5.1–5.2]). Let f denote a linear recursion.

(i) f is nondegenerate if and only if no roots of f , or their ratios, are roots
of unity.

(ii) Let {ck} be a sequence of integers satisfying f , and suppose that {ck} has
no constant arithmetic subsequences. Then Γ′q({ck}) = 1 for any q > 1
relatively prime to f(0).

Note. In fact a stronger result is proved there: after discarding a set of
arbitrarily small density, {ck} has bounded cells, i.e.,

sup
n

max
0≤t<qn

|{0 ≤ k < qn : ck ≡ t (mod qn)}| <∞.
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For proofs of the results in the rest of this section, see Meiri [15].
Call a sequence {ck} an intertwining of the sequences {c(1)

k }, . . . , {c
(N)
k } if

cN(k−1)+r = c
(r)
k for all k ≥ 1 and r = 1, . . . , N .

Lemma 4.4. If {ck} is an intertwining of the sequences {c(1)
k }, . . . , {c

(N)
k },

then

(7) Γq({ck}) = max
1≤r≤N

Γq({c(r)
k }),

and a similar result holds for the reduced collision exponent.

For a polynomial f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, define

gcd[f ] = gcd(a0, a1, . . . , an−1).

Theorem 4.5. Let {ck} be a linear recursion sequence, and suppose that
its minimal recursion polynomial f is nondegenerate. Decompose q = q1q2

such that q1 is the maximal factor of q that is relatively prime to gcd[f ]. Then

(8) Γ′q({ck}) = 2− log q1

log q
= 1 +

log q2

log q
.

In particular we have Γ′q({ck}) = 1 if and only if no prime factor of q divides
gcd[f ], and Γ′q({ck}) = 2 if and only if all prime factors of q divide gcd[f ].

Algorithm. Computing the reduced q-adic collision exponent of a linear
recursion sequence.

1. Compute the minimal recursion polynomial f of {ck}.
Method: solve linear equations on the coefficients of f .

2. If f(−1) = 0, consider separately {c2k} and {c2k+1}: each satisfies a
recursion of lower degree; apply Lemma 4.4.

3. If f(1) = 0, f ′(1) 6= 0, find constants r, s such that the minimal polyno-
mial of {rck − s} does not vanish at 1, and replace {ck} by the latter
sequence. The minimal polynomial of the new sequence does not vanish
at 1.
Method: find a rational number s/r such that {ck − s/r} satisfies
f(x)/(x− 1).

4. If f(1) = f ′(1) = 0, then Γ′q({ck}) = 1.

5. Check if f is an intertwining of sequences, satisfying shorter recursions.
Method: find the maximal number D such that ϕ(D) ≤ n, where ϕ is
Euler’s totient function. For d = 2, . . . , D, display {ck} as an intertwin-
ing of d subsequences, and compute their minimal polynomials. If for
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some d all the resulting polynomials have degree less than deg f , apply
Lemma 4.4. If not, then f is nondegenerate.

6. If f is nondegenerate, apply (8) to compute Γ′q({ck}).

Examples.
1. The sequence 4, 9, 39, 219, . . . which satisfies the recursion ck =

7ck−1 − 6ck−2 has minimal polynomial f(x) = x2 − 7x + 6. In step 3 we see
that f(1) = 0; indeed, ck = 3 + 6k and so Γ′q({ck}) = Γq({ck}) = Γq({6k}) =

1 + log 2m3`

log q , assuming that 2m‖q, 3`‖q. On the other hand, a sequence {ck}
whose minimal polynomial is (x−1)f(x) satisfies Γ′q({ck}) = 1 for every q > 1.

2. Suppose that f(x) = 1 + x3 + x6 is the minimal recursion of {ck}.
Then {ck} is an intertwining of 3 sequences, each satisfying the Fibonacci
recursion Fk = Fk−1 + Fk−2. If either of these sequences is identically zero,
then Γ′q({ck}) = 2. Otherwise, Γ′q({ck}) = 1.

3. If the minimal polynomial f of {ck} is nondegenerate, and some prime
factor of q does not divide gcd[f ], then Γ′q({ck}) < 2.

4. Suppose that ck = r1(k)qk1 + . . .+ rN (k)qkN , where ri are polynomials.
Suppose also that there exists some prime factor of q that does not divide some
qi. Then Γ′q({ck}) < 2.

5. Uniform distribution in subgroups

The next three simple lemmas are the key to proving Theorem 1.1.

Lemma 5.1. Let {Xn} be an infinite sequence of independent random
variables with values in ZN

def= Z/NZ, for some fixed integer N > 1. Suppose
that for some nonzero g ∈ ZN ,

(9)
∞∑
j=1

N−1∑
x=0

min{P(Xj = x),P(Xj = x+ g)} =∞.

Let Sn = X1 + · · ·+Xn (mod N). Then for any x ∈ ZN ,

(10) lim
n→∞

(
P(Sn = x+ g)− P(Sn = x)

)
= 0 .

Proof. We first prove the following property of Fourier coefficients of Sn:

(11) for all ` ∈ ZN , g` 6≡ 0 (mod N) =⇒ lim
n→∞

Ŝn(`) = 0.
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For some x ∈ ZN ,
∞∑
j=1

min{P(Xj = x),P(Xj = x+ g)} =∞.

Set pj = min{P(Xj = x),P(Xj = x+ g)}. Denoting ϕ`(t) = exp(2πi`t/N), we
have

Ŝn(`) = Eϕ`(
n∑
j=1

Xj) =
n∏
j=1

Eϕ`(Xj).

Write

|Eϕ`(Xj)| =
∣∣∣∣N−1∑
k=0

P(Xj = k)ϕ`(k)
∣∣∣∣

≤ pj

∣∣∣∣ϕ`(x) + ϕ`(x+ g)
2

∣∣∣∣+ (1− pj)

= pj

∣∣∣∣1 + exp(2πi`g/N)
2

∣∣∣∣+ (1− pj) .

SinceN - g`, we have |1+exp(2πi`g/N)|/2 ≤ γ < 1, for γ def= |1+exp(2πi/N)|/2.
Hence

|Eϕ`(Xj)| ≤ 1− (1− γ)pj .

By our assumptions,
∞∑
j=1

(1 − γ)pj = ∞; hence lim
n→∞

n∏
j=1
|Eϕ`(Xj)| = 0, and

(11) follows.
To prove (10), use inverse Fourier transform to write

P(Sn = x+ g)− P(Sn = x) =
1
N

N−1∑
`=0

Ŝn(`)
(
ϕ−`(x+ g)− ϕ−`(x)

)
.

If N |g` we have ϕ−`(x+ g)− ϕ−`(x) = 0. If N - g`, apply (11).

Lemma 5.2. Let {Xn} be an infinite sequence of independent random
variables with values in ZN

def= Z/NZ, for some fixed integer N > 1. Suppose
that there exists a subgroup G ⊆ ZN , generated by g1, . . . , gr, such that (9)
holds for g = g1, . . . , gr. Let Sn = X1 + · · ·+Xn (modN), and let Sn mod G
denote the projection of Sn to ZN/G. Then

EH(Sn|Sn mod G) −→ log |G|.

Proof. Let g0 ∈ G be a generator of G. Applying Lemma 5.1 for g =
g1, . . . , gr, we see that (10) holds for g = g0 as well. Denote for a moment
S̃n = Sn mod G. If G = ZN , the result is clear: S̃n is constant, while the
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distribution of Sn converges to the uniform distribution on ZN , whose entropy
is log |ZN | = log |G|. In the general case, write

EH(Sn|S̃n) =
∑

t+G∈ZN/G
P(S̃n = t+G)H(Sn|S̃n = t+G).

By (10) for g = g0, the conditional distribution of Sn on every coset t + G

converges to the uniform distribution whose entropy is again log |G|, and we
are done.

In the next lemma we restrict our attention to N = pk and identify Zpk
with k-digit numbers in base p. For n ≤ k, let πn : Zpk −→ Zpn denote the
projection to the n most-significant digits, i.e., πn(z) = bz/pk−nc.

Lemma 5.3. Let Y be a Zpk-valued random variable. Let G be a subgroup
of Zpk , and suppose that n satisfies pn ≥ |G|. Then

H(πn(Y )) ≥ H(Y |Y mod G) = H(Y )−H(Y mod G).

Proof. In every coset t+G, the projection πn is one-to-one. Thus πn(Y )
and Y mod G determine Y ; hence H(πn(Y )) +H(Y mod G) ≥ H(Y ).

Finally, we state the following simple lemma that will be used to show
that the subgroup G we get in 5.1 will be large. For t =

∑k
i=1 tip

k−i ∈ Z/pkZ
we call ti the ith digit of t.

Lemma 5.4. Let t ∈ G ⊂ Z/pkZ, and suppose that the ith digit of t is
nonzero. Then t generates in G a subgroup of order at least pi∗, where p∗ is the
smallest prime divisor of p.

We leave the proof of this lemma to the reader.

6. Entropy and subgroups

Notation. Suppose that µ̃ is a σp × σp × · · ·-invariant measure on TN.
For x ∈ TN we denote its projection on coordinates by superscripts, e.g.,
xa...b = πa...b(x) denotes projection to coordinates a, . . . , b. Similarly, xa =
xa...a = πa(x). We identify numbers in T with their base-p expansion. In this
identification, σp is equivalent to a shift map on {0, . . . , p−1}N, and we denote
by xic...d the d − c + 1 digits starting at point c in the base-p expansion of xi.
For every i let αi1 denote the partition of TN according to the first digit of xi,
and we use the notation

αa...bc...d
def=

b∨
i=a

d∨
j=c

σ−j+1
p αi1
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for the partition of TN according to the digits c, . . . , d of xa, . . . , xb. By a slight
abuse of notation αi1 also denotes the analogous partition of πi(TN). Recall
the definition of the function Θn:TN → T as the sum mod 1 of x1, . . . , xn. We
denote the partition of TN according to the first k digits of Θn(x) by θn1...k, etc.

We also use the following notation for a measure µ and a finite partition
γ: we denote by Dµ(γ) the probability vector {µ(C) : C ∈ γ}, and by Hµ(γ) =
H(Dµ(γ)) its entropy. Similarly, given a σ-algebra B we denote by Dµ(γ|B)
the conditional distribution of γ given B, and by Hµ(γ|B) = H(Dµ(γ|B)) its
entropy; note that this is a function on the measure space, not a constant.

In our context it is natural to view xa1...k as an element of Z/pkZ, and thus
if G is a subgroup of Z/pkZ, it makes sense to consider xa1...k mod G or the
corresponding partition of πa(TN), which is αa1...k mod G.

Proposition 6.1. Let µ, ν be two p-invariant measures, and G a sub-
group of Z/pkZ for some k ∈ N. Then

EHµ∗ν(x1...k mod G|xk+1...∞) ≥ EHµ(x1...k mod G|xk+1...∞).

Proof. Define independent random variables X,Y with X ∼ µ and Y ∼ ν.
Then X + Y ∼ µ ∗ ν. Denote by α, β, γ the partitions according to the first
digit in the base-p expansion of X,Y and X + Y , respectively. We have
(12)

EHµ∗ν(x1...k mod G|xk+1...∞) = EHµ×ν(γ1...k mod G|γk+1...∞)

≥ EHµ×ν(γ1...k mod G|αk+1...∞ ∨ β1...∞).

However, given all we have conditioned upon on the right-hand side of (12),
α1...k mod G uniquely determines γ1...k mod G, and vice versa. Hence

Hµ×ν(γ1...k mod G|αk+1...∞∨β1...∞) = Hµ×ν(α1...k mod G|αk+1...∞∨β1...∞)

= Hµ×ν(α1...k mod G|αk+1...∞),

using the independence of α and β in the last equality. This gives the required
inequality.

Corollary 6.2. Let {µi} be a sequence of p-invariant measures, and
denote µ̃ =

∏
µi. Suppose that G is a subgroup of Z/pkZ for some k ∈ N.

Then
EHµ̃(θn1...k mod G|θnk+1...∞)

is monotone nondecreasing in n.

Lemma 6.3. Let µ be a measure on T, and suppose that G ⊂ Z/pkZ is a
group of size ≥ p`. Then

H(α1...`) ≥ (`− 1) log p− log |G|+
∫
H(α1...k|α1...k mod G ∨ αk+1...∞) dµ.
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Proof. Let n = dlog |G|/ log pe. Applying Lemma 5.3 in each fiber we get

H(α1...n) ≥
∫
H(α1...n|αk+1...∞) dµ ≥

∫
H(α1...k|α1...k mod G ∨ αk+1...∞) dµ.

Since n ≥ `, we also have

n log p−H(α1...n) ≥ ` log p−H(α1...`).

Now combine the two inequalities.

Finally, we quote the following extension of the Borel-Cantelli Lemma
([2, ex. 22.4]).

Lemma 6.4. Let Y1, Y2, . . . be a sequence of nonnegative bounded in-
dependent random variables. Suppose that

∑
EYi = ∞. Then

∑
Yi = ∞

almost-surely.

7. The Convolution Theorem

In this section we prove Theorem 1.1. Fix p, and consider the function

(13) ψ(β) = H(1− β, β

p− 1
, . . . ,

β

p− 1
).

Clearly ψ : [0, 1 − 1
p ] → [0, log p] is increasing, onto and concave. A quick

calculation shows that the inverse function ψ−1 satisfies

(14) ψ−1(h) ≥ C · h

| log(h/ log p)|
for some constant C and for all h sufficiently small.

Given a probability distribution ν on {0, . . . , p− 1} define

‖ν‖∞ = max
k=0,...,p−1

ν(k).

It can be easily verified that

(15) 1− ‖ν‖∞ ≤
1
p

p−1∑
x=0

p−1∑
g=1

min{ν(x), ν(x+ g mod p)}

and also

(16) H(ν) ≤ ψ(1− ‖ν‖∞).

Let µ denote an nonatomic measure on T, not necessarily invariant. For
x ∈ T denote by x =

∑
xip
−i its expansion in base p, and define

Ik(µ)(x) = − logµ(x1...k|xk+1...∞).



      

890 ELON LINDENSTRAUSS, DAVID MEIRI, AND YUVAL PERES

Then E Ik(µ) = EHµ(x1...k|xk+1...∞). Similarly, given a subgroup G ⊂ Zpk
def=

Z/pkZ define

IG(µ)(x) = − logµ(x1...k|x1...k mod G ∨ xk+1...∞).

Then Ik = IG for G = Zpk . We remark that

E IG(µ) = −
∫

log
(

dµ

dδG ∗ µ

)
dµ,

where δG
def=

∑
g∈G

δg/pk .

Lemma 7.1. Let G ⊂ Zpk , and suppose that µ and ν are nonatomic
measures on T. Then

E Ik(µ ∗ ν)−E Ik(µ) ≥ E IG(µ ∗ ν)−E IG(µ).

Proof. Rewrite the desired inequality as

(17) E Ik(µ ∗ ν)−E IG(µ ∗ ν) ≥ E Ik(µ)−E IG(µ).

We have

E Ik(µ)−E IG(µ) = EHµ(x1...k|xk+1...∞)

− EHµ(x1...k|x1...k mod G ∨ xk+1...∞)

= EHµ(x1...k mod G|xk+1...∞).

Applying the same consideration to µ ∗ ν, we see that (17) is equivalent to

EHµ∗ν(x1...k mod G|xk+1...∞) ≥ EHµ(x1...k mod G|xk+1...∞),

which follows from Proposition 6.1.

Lemma 7.2. Let {µn} be a sequence of probability measures on T, and
form the product measure µ̃ =

∏
µi. Suppose that for some fixed number k,

(18)
∞∑
i=1

Eψ−1
(
Hµi(x

i
k|tik+1...∞)

)
=∞.

Then for µ̃-almost-every t ∈ TN there exists a group Gk(t) ⊂ Zpk such that

(19) E IGk(t)(µ1 ∗ · · · ∗ µn) −→ E log |Gk(t)| .
Furthermore, the map t 7→ Gk(t) is measurable, and |Gk(t)| ≥ pk∗ a.e., where
p∗ is the smallest prime factor of p.

Proof. We claim that
(20)
∞∑
n=1

p−1∑
xk=0

p−1∑
gk=1

min{µn(xk|tnk+1...∞), µn(xk + gk mod p|tnk+1...∞)} =∞ µ̃-a.e.
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Indeed, by Lemma 6.4, for every t in a set of full µ̃ measure,
∞∑
i=1

ψ−1
(
Hµi(x

i
k|tik+1...∞)

)
=∞.

By (16), for all such t we have
∞∑
n=1

(
1− ‖Dµn(αnk |tnk+1...∞)‖∞

)
=∞ .

Using (15), we conclude that a.e. t satisfies (20).
Define for t ∈ TN a group Gk(t) by

Gk(t) =

〈
g ∈ Zpk

∣∣∣∣ ∞∑
n=1

pk−1∑
x=0

min{µn(x|tnk+1...∞), µn(x+ g mod pk|tnk+1...∞)} =∞
〉
.

To prove the lemma, take some t satisfying (20). We first show that
|Gk(t)| ≥ pk∗. There exist distinct xk, yk ∈ {0, . . . , p− 1} such that

∞∑
n=1

µn(xk|tnk+1...∞) =∞,

and similarly for yk. Since

µn(xk|tnk+1...∞) =
∑

x=0,...,pk−1
x≡xk (mod p)

µn(x|tnk+1...∞),

there exists x ∈ {0, . . . , pk − 1} with x ≡ xk (mod p) such that
∞∑
n=1

µn(x|tnk+1...∞) =∞.

Similarly, there exists y ∈ {0, . . . , pk − 1} with y ≡ yk (mod p) and
∞∑
n=1

µn(y|tnk+1...∞) =∞.

By definition, y−x ∈ Gk(t). But the least significant digit of y−x is yk−xk 6= 0.
By Lemma 5.4, |Gk(t)| ≥ pk∗.

It remains to prove (19). Clearly, IGk(t)(µ1 ∗ · · · ∗ µn) ≤ log |Gk(t)|. But

E IGk(t)(µ1 ∗ · · · ∗ µn) = EHµ̃(θn1...k|θn1...k mod Gk(t) ∨ θnk+1...∞)

≥ EHµ̃(θn1...k|θn1...k mod Gk(t) ∨ t1...nk+1...∞)

−→ E log |Gk(t)|,

by an application of Lemma 5.2 for the random variablesXi ∼ Dµi(α
i
1...k|tik+1...∞).

This concludes the proof of (19).
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Lemma 7.3. Under the assumptions of Lemma 7.2, define

(21) hk = sup
n

1
k

EHµ1∗···∗µn(x1...k|xk+1...∞).

For any m, if 1
kEHµ1∗···∗µm(x1...k|xk+1...∞) > hk − ε, then

(22) Hµ1∗···∗µm(t1...`) ≥ (`− 1) log p− (k + 1)ε,

where ` = `(k) = bk log p∗
log p c.

Proof. We have |Gk(t)| ≥ pk∗ ≥ p` almost-everywhere. By Lemma 6.3,

(23) Hµ1∗···∗µm(t1...`) ≥ (`− 1) log p−
∫ [

log |Gk| − IGk(µ1 ∗ · · · ∗ µm)
]
dµ̃.

By Lemma 7.2, there exists some n > m such that E IGk(µ1 ∗ · · · ∗ µn) ≥
E log |Gk| − ε. Applying Lemma 7.1 we get

kε ≥ E Ik(µ1 ∗ · · · ∗ µn)−E Ik(µ1 ∗ · · · ∗ µm)

≥ E IGk(µ1 ∗ · · · ∗ µn)−E IGk(µ1 ∗ · · · ∗ µm)

≥ E log |Gk| − ε−E IGk(µ1 ∗ · · · ∗ µm).

By substituting this into (23) we obtain the desired result.

Proof of Theorem 1.1. By convexity of ψ−1,
∞∑
n=1

Eψ−1
(
Hµn(tk|tk+1...∞)

)
≥

∞∑
n=1

ψ−1
(

EHµn(tk|tk+1...∞)
)

=
∞∑
n=1

ψ−1
(
h(µn, σp)

)
= ∞,

applying (1) and (14). Hence the assumptions of Lemmas 7.2–7.3 hold.
By Proposition 6.2, h(µ1 ∗ · · · ∗ µn, σp) is monotone nondecreasing in n.

Define
h

def= lim
n→∞

h(µ1 ∗ · · · ∗ µn, σp) = sup
n
h(µ1 ∗ · · · ∗ µn, σp).

We need to show that h = log p.
The hk defined in (21) satisfy hk = h for all k, by invariance of µ1 ∗ · · · ∗ µn.

For arbitrary ε, let m be big enough so that h(µ1 ∗ · · · ∗ µm, σp) > h − ε. By
Lemma 7.3, (22) holds for every k, with `(k) = bk log p∗

log p c. Hence

h(µ1 ∗ · · · ∗ µm, σp) ≥ lim
k→∞

(`(k)− 1) log p− (k + 1)ε
`(k)

= log p− ε log p
log p∗

.

Letting ε ↓ 0 proves the theorem.
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8. Joinings of full entropy

In this section we study basic properties of joinings of full entropy, and
prove Theorem 1.8.

Let αa...b def= αa...b1...∞, and denote by T i def=
∧∞
j=1 α

i
j...∞ the tail σ-algebra of

πi(TN). We denote by T the σ-algebra
∨∞
a=1

(∧∞
j=1 α

1...a
j...∞

)
.

The simplest example of a joining of full entropy is a product measure
µ̃ =

∏
µi. The following lemma shows that in the general case, a similar

independence property holds.

Lemma 8.1. Let µ̃ be a joining of full entropy of {µi}∞i=1. Then the
random variables {xi} are conditionally independent given T .

Proof. For any k, n ≥ 1 we have∫
Hµ̃(α1...n

1...k |α1...n
k+1...∞) dµ̃ ≤

∫ n∑
i=1

Hµ̃(αi1...k|α1...n
k+1...∞) dµ̃(24)

≤
∫ n∑

i=1

Hµi(α
i
1...k|αik+1...∞) dµi .(25)

Since h(π1...n(µ̃), σp × · · · × σp) =
n∑
i=1

h(µi, σp), both inequalities must in fact

be equalities. Equality in (24) implies that the random variables {xi1...k}ni=1

are independent given α1...n
k+1...∞. A reverse martingale argument shows that in

fact {xi1...k}ni=1 are independent given
∧∞
j=1 α

1...n
j...∞. By a standard martingale

argument, {xi1...k}ni=1 are independent given T =
∨∞
a=1

(∧∞
j=1 α

1...a
j...∞

)
. Since

this is true for any k, n ≥ 1, the assertion follows.

We obtain the following corollary:

Lemma 8.2. Let µ̃ denote a joining of full entropy of {µi}∞i=1, and denote

by L =
∞∧
a=1

αa...∞1...∞ the tail σ-algebra of the stochastic process {xi}. Then L ⊂ T .

(“The bottom tail is contained in the right tail.”)

Proof. Let A be some L-measurable set. Denote by τ the factor map
corresponding to T . By Lemma 8.1, given τ(x) the random variables {xi}∞i=1

are independent. By Kolmogorov’s 0-1 Law, µ̃(A|T ) is either 0 or 1.

We cite the following technical lemma:

Lemma 8.3. Let (X,T,D, ν) denote a measure preserving system, and
suppose that β and γ are two finite partitions of X. Denote by Tγ the tail
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σ-algebra corresponding to γ and ν. Then for all k ≥ 1,

D(β1...k|βk+1...∞ ∨ Tγ) = D(β1...k|βk+1...∞) ν − a.e.

The same applies if instead of Tγ one takes a limit of an increasing sequence
of tails of finite partitions.

Proof. See [17, Cor. 5.28, p. 99], or [16, Lemma 7, p. 65].

We also need the following monotonicity property of conditional entropy,
which follows from Jensen’s inequality.

Lemma 8.4. Let α, β, β′, γ denote partitions in a measure preserving
system (X,T,D, ν), and suppose that γ ≤ β ≤ β′. Then

E
(
Hν(α|β)

∣∣∣∣ γ)(x) ≥ E
(
Hν(α|β′)

∣∣∣∣ γ)(x) ν − a.e.

The same applies if β and γ are limits of increasing sequences of partitions.

Proposition 8.5. Let µ̃ be a joining of full entropy, k ∈ N, and G a
subgroup of Z/pkZ. Then for a.e. x,

E
(
Hµ̃(θn1...k mod G|θnk+1...∞)

∣∣∣∣ T )(x)

is monotone nondecreasing in n.

Proof. By Lemma 8.3, we have µ̃-a.e.

E
(
Hµ̃(θn1...k mod G|θnk+1...∞)

∣∣∣∣ T )(x)

= E
(
Hµ̃(θn1...k mod G|θnk+1...∞ ∨ T )

∣∣∣∣ T )(x).

Now apply 6.2 in each fiber.

We leave the proof of the following estimate to the reader.

Lemma 8.6. Let X be a random variable such that 0 ≤ X ≤ M and
EX ≥ η. Then

P(X >
η

2
) ≥ η

2M
.

Corollary 8.7. If X is as in Lemma 8.6, g a monotone nondecreasing
function, then

E (g(X)) ≥ ηg(η/2)
2M

.
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The last lemma we need is the following variant of Shannon’s theorem.
Denote by (µ|F ) the measure µ conditioned on F , i.e.,

(µ|F )(A) = µ(A ∩ F )/µ(F ).

Lemma 8.8. Let β be a finite partition in an ergodic measure preserving
system (X,µ, T ), and denote β1...k = β ∨ . . . ∨ T−(k−1)β. Suppose that for
some sequence of subsets {Fk} and a constant γ > 0, for every k large enough
µ(Fk) ≥ γ. Then

hµ(β, T ) ≥ lim sup
k→∞

1
k
Hµ|Fk(β1...k).

Proof. Let ε > 0, and denote by N the number of atoms in β. By
Shannon’s theorem, for k large enough it is possible to cover a subset of X of
µ-measure 1−εγ by at most exp

(
k(hµ(β, T )+ε)

)
atoms of β1...k. In particular,

the µ|Fk-measure of the union of these atoms is at least 1 − ε. Hence by a
standard property of entropy (see Rudolph [17, Cor. 5.17])

1
k
Hµ|Fk(β1...k) ≤

1
k
·
(
H(ε, 1− ε) + k(hµ(β, T ) + ε) + εk logN

)
.

Letting k →∞ and ε→ 0 proves the lemma.

Proof of Theorem 1.8. Arguing as in Lemma 2.1, the ergodic components
of µ̃ are also joinings of full entropy of {µi}. Since by Rokhlin’s theorem the
entropy of a measure is the average of the entropies of its ergodic components,
it is enough to consider the case where µ̃ is ergodic.

By Proposition 8.5, h(Θnµ̃, σp) is monotone nondecreasing in n. Define

h
def= lim

n→∞
h(Θnµ̃, σp) = sup

n
h(Θnµ̃, σp).

We need to show that h = log p.
Define conditional measures µ̄i ∼ Dµ̃(αi1...∞|T ). The sequence {µ̄i} is a

random sequence of measures, depending on a choice of fiber (a point
in T ). By Lemma 8.1, {µ̄i} are independent. We claim that the assump-
tions of Lemmas 7.2–7.3 hold for {µ̄i} with positive probability. To see this,
consider the random variables

Zi = E
(
ψ−1

(
Hµi(α

i
k|tik+1...∞)

) ∣∣∣∣ T )
Wi = E

(
Hµi(α

i
k|tik+1...∞)

∣∣∣∣ T ) .
To prove that (18) holds with positive probability, we need to show that
P(
∑
Zi =∞) > 0. Let η def= infi h(µi, σp) > 0. By Corollary 8.7

(26) Zi ≥
Wiψ

−1(Wi/2)
2 log p

.
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Since E (Wi) = h(µi, σp) ≥ η, by Lemma 8.6 and (26),

P

(
Zi >

ηψ−1(η/4)
4 log p

)
> η∗

def=
η

2 log p
.

Hence P(
∑
Zi =∞) ≥ P(Zi >

ηψ−1(η/4)
4 log p i.o.) ≥ η∗ > 0.

Fix ε ∈ (0, η∗), and choose m with h−h(Θmµ̃, σp) ≤ ε2. For any k, define

Υ(n)
k (t) =

1
k

E
(
Hµ̃(θn1...k|θnk+1...∞)

∣∣∣∣ T )(t),

Υk(t) = sup
n

Υ(n)
k (t).

By Proposition 8.5, Υ(n)
k (t) is almost-surely monotonically increasing in n.

Thus
0 ≤ E (Υk −Υ(m)

k ) = h− h(Θmµ̃, σp) ≤ ε2;

hence by Markov’s inequality

µ̃[Υk −Υ(m)
k ≥ ε] ≤ ε2

ε
= ε.

Define Fk = {∑Zi = ∞} \ {Υk − Υ(m)
k ≥ ε}. The event {∑Zi = ∞} is T -

measurable by Lemma 8.2; hence Fk is T -measurable as well. Clearly µ̃(Fk) ≥
η∗ − ε. Applying Lemma 7.3, we have (denoting ` = `(k) = bk log p∗

log p c)

for all t ∈ Fk, Hµ̃(θm1...`|T )(t) ≥ (`− 1) log p− (k + 1)ε.

Thus by Lemma 8.4

Hµ̃|Fk(θm1...`) = E
(
Hµ̃

(
θm1...`|{Fk, F ck}

) ∣∣∣∣ Fk) ≥ (`− 1) log p− (k + 1)ε.

Dividing by ` and applying Lemma 8.8 we get

h(Θmµ̃, σp) ≥ log p− log p
log p∗

ε.

Letting ε ↓ 0 proves the theorem.

9. Dimension of sum sets

For any measure µ, let

(27) dimµ
def= inf{dimH S | SisaBorelsetwithµ(S) = 1}.

Define the lower dimension of µ by

(28) dimµ def= inf{dimH S | SisaBorelsetwithµ(S) > 0}.
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To compute dimension of measures we use the following lemma from
Billingsley [1].

Billingsley’s Lemma. Let µ be a positive finite measure on T. Assume
K ⊂ T is a Borel set satisfying µ(K) > 0 and

K ⊂
{
x ∈ T : lim inf

ε↓0
logµ[Bε(x)]

log ε
≤ γ

}
.

Then dimH K ≤ γ. If the lim inf is γ a.e., then dimH K = γ.

Here Bε(x) can be the interval of length ε centered at x, or the mesh
interval with edge ε containing x, etc.

In most of this section we restrict attention to p-invariant measures on T,
for some fixed integer p > 1. In this case, by the Shannon-McMillan-Breiman
(SMB) Theorem, it follows that if µ is ergodic then dimµ = h(µ, σp)/ log p. If
µ is not ergodic, denote by µ =

∫
µθ dθ its ergodic decomposition, and then

(29) dimµ = ess supθ dimµθ.

This (known) fact is proved in Meiri and Peres [15] in a more general context.
We wish to derive the equivalent statement for lower dimension.

Theorem 9.1. Let µ be a p-invariant measure on T, and denote its
ergodic decomposition by µ =

∫
µθ dθ. Then dimµ = ess infθ dimµθ.

Proof. Denote γ def= ess inf dimµθ. By the above remarks,

γ = ess inf h(µθ, σp)/ log p.

Let ψ(x) denote the SMB function of µ, i.e., ψ(x) def= lim 1
nIαn−1

0
(x) for the

partition α = {[ jp ,
j+1
p ]}p−1

j=0 (see Meiri and Peres [15] for more details). The
function ψ is constant on fibers, and the SMB theorem for nonergodic trans-
formations implies that for almost every θ we have ψ(x) = h(µθ, σp) µθ-a.e.
(cf. Parry [16, p. 39]). Fix some ε > 0, and let

B =
{
x :

ψ(x)
log p

< γ + ε

}
.

From the definition of γ we have µ(B) > 0, hence dimµ ≤ dimH B. From
Billingsley’s lemma and the SMB theorem we know that dimH B ≤ γ+ε. Since
ε was arbitrary, we conclude that dimµ ≤ γ. The other direction is proved
similarly: if dimµ < γ, then there exists a Borel set B and some ε > 0 such
that µ(B) > 0 and dimH B < γ − ε. Applying once again Billingsley’s lemma
and the SMB theorem we get ψ(x)/ log p ≤ γ − ε for x ∈ B, contradicting the
definition of γ.
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In particular, if µ is p-invariant and ergodic, we conclude that

(30) dimµ = dimµ =
h(µ, σp)

log p
.

Lemma 9.2. Any two measures µ and ν on T satisfy dim(µ ∗ ν) ≥ dimµ.

Proof. Suppose that B is a Borel set with dimH B < dimµ. We need to
prove that (µ ∗ ν)(B) = 0. For any t ∈ T we have dimH(B − t) = dimH B <

dimµ, so µ(B − t) = 0. Hence (µ ∗ ν)(B) =
∫
µ(B − t) dν(t) = 0.

Corollary 9.3. Let µ and ν be p-invariant measures on T, with µ

ergodic. Let µ ∗ ν =
∫
ϕθ dθ be the the ergodic decomposition of µ ∗ ν. Then

h(ϕθ, σp) ≥ h(µ, σp) for almost-every θ.

Proof. Write

ess inf
h(ϕθ, σp)

log p
= dim(µ ∗ ν) by Theorem 9.1

≥ dimµ by Lemma 9.2

=
h(µ, σp)

log p
by (30).

This proves the assertion.

The point in the last corollary is that µ∗ν need not, in general, be ergodic,
even if µ and ν are ergodic. Furthermore, the entropy of its ergodic components
need not be equal, as seen in the following example:

Example 9.4. A nonergodic convolution.

Take p = 2 and let X =
∞∑
i=1

xip
−i denote the random variable on T for

which xi = 0 if i 6≡ 0 (mod 5), and otherwise xi is 0 or 1 with probability
1
2 . Denote by µ the distribution of X + pX + · · · + p4X (mod 1). Then
(T, µ, σp) is ergodic but not weakly-mixing (since σ5

p is not ergodic). Also, µ∗5

is not ergodic, and decomposes to (finitely many) components with different
entropies (one of them is Lebesgue). It is also possible to construct an example
with a continuum of components.

We turn now to topological corollaries of Theorems 1.1 and 1.8.

Proof of Corollary 1.2. By the variational principle for expansive maps
(see Walters [19]), for every i there exists a p-invariant and ergodic measure
µi supported on Si with h(µi, σp) = htop(Si, σp). Recall that

htop(Si, σp)/ log p = dimH Si;

hence dimµi = h(µi, σp)/ log p = dimH Si by (30). By our assumptions, hi
def=

h(µi, σp)/ log p satisfy (1).
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Denote ν(n) = µ1 ∗ · · · ∗ µn. Since ν(n)(S1 + · · ·+ Sn) = 1, we have

dim ν(n) ≤ dimH(S1 + · · ·+ Sn),

so it is enough to show that dim ν(n) −→ 1. Denote by ν(n) =
∫
ν

(n)
θ dθ the

ergodic decomposition of ν(n). Then

dim ν(n) = ess sup{dim ν
(n)
θ } by (29)

=
1

log p
ess suph(ν(n)

θ , σp) by (30)

≥ 1
log p

∫
h(ν(n)

θ , σp) dθ

=
1

log p
h(ν(n), σp) by Rokhlin’s theorem

−→ 1. by Theorem 1.1

Proof of Theorem 1.3. We define inductively a joining of full entropy
µ̃. Let ν(1) = µ1. Consider the ergodic decomposition of µ1 × µ2. Since
µ1 × µ2(S1 × S2) > 0, by Lemma 2.1 we can find an ergodic component ν(2)

such that

(i) h(ν(2), σp × σp) = h(µ1, σp) + h(µ2, σp),

(ii) ν(2) projects to µ1 and µ2, and

(iii) ν(2)(S1 × S2) > 0.

Consider next the ergodic decomposition of ν(2)×µ3, and find an ergodic
component ν(3) with similar properties. Continue in this manner to define a
sequence of measures ν(n) such that ν(n) is an ergodic joining of full entropy
of µ1, . . . , µn, and ν(n)(S1 × · · · × Sn) > 0. Let µ̃ be the inverse limit of this
system. Then, by Theorem 1.8, h(Θnν(n), σp) −→ log p. As ν(n) is ergodic,
Θnν(n) is ergodic as well. Since (Θnν(n))(S1 + · · ·+ Sn) > 0, by (27) and (30)
we conclude that

dimH(S1 + · · ·+ Sn) ≥ dim Θnν(n) =
h(Θnν(n), σp)

log p
−→ 1,

as stated.

10. Examples and questions

1. Recall that a measure µ on T is {cn}-normal a.e. if {cnx (mod 1)}
is uniformly-distributed for µ-almost every x ∈ T. Suppose that µ is a p-
invariant ergodic measure, such that µ ∗ µ is {qn}-normal. Does it follow that
µ is {qn}-normal as well? For noninvariant measures, the assertion is false:
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Example 10.1. µ ∗ µ normal does not imply that µ is normal.

Let {Xi} and {Yi} be independent sequences of random bits with P(Xi =
0) = 1

2 and P(Yi = 0) = 1/i for all i ≥ 1. For 2k ≤ i < 2k+1 define Zi = XiYk.
Let µ be the distribution of

∑
2−iZi. Then µ is {2n}-normal in probability,

but not {2n}-normal a.e. Also, µ ∗ µ is {2n}-normal a.e.

2. Suppose that µ is a p-invariant and ergodic measure on T with positive
entropy. Does it follow that dim(µ∗n) → 1 as n → ∞? This would mean
that the convergence h(µ∗n, σp) → log p is uniform on all ergodic components
of µ∗n.

3. As we remarked in the introduction, the entropy condition in Theo-
rem 1.1 is sharp.

Example 10.2. Given numbers 0 < hi < 1 with
∑ hi
| log hi|

<∞, we con-

struct a sequence of p-invariant ergodic measures {µi} such that h(µi, σp)/ log p
= hi, yet µ1 ∗ · · · ∗ µn 6−→ λ weak∗.

For a sequence {βi}, let X
(i)
j be independent random variables on

{0, . . . , p − 1} with P(X(i)
j = 0) = 1 − βi, and P(X(i)

j = k) = βi/(p − 1)

for k = 1, . . . , p− 1. Define µi to be the distribution of
∞∑
j=1

X
(i)
j p−j . Then {µi}

are Bernoulli measures, and

h(µi, σp) = H(1− βi,
βi

p− 1
, . . . ,

βi
p− 1

) ∼ βi log
1
βi
.

Define βi by requiring that h(µi, σp) = hi log p. Then from the condition on
{hi} we get

∑
βi < ∞ (see §6). It is not hard to see that |µ̂i(1) − 1| ≤ 4πβi.

Thus
∑ |µ̂i(1)− 1| <∞. But then

|(µ1 ∗ · · · ∗ µn)∧(1)| = |
n∏
i=1

µ̂i(1)| ≥
∞∏
i=1

|µ̂i(1)| > 0,

whence (µ1 ∗ · · · ∗ µn)∧(1) 6−→ 0.

4. Is the dimension condition of Corollary 1.2 sharp as well? Specifically,
given a sequence of numbers 0 < di < 1 such that

∑
di/| log di| < ∞, can

one always find p-invariant closed subsets Si ⊂ T with dimH Si = di and
lim dimH(S1 + · · · + Sn) < 1? Currently we can construct sets satisfying the
desired conclusion, but only when

∑
di/| log di| is small enough.

Example 10.3. Given numbers 0 < di < 1 with
∑ di
| log di|

< c(p) (for

some c(p) that can be made explicit) there is a sequence of p-invariant closed
sets Si such that dimH Si = di, yet lim dimH(S1 + · · ·+ Sn) < 1.
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Indeed, consider the set

S(N, β) =
{
x ∈ T : ∀n ∈ N, (# non-0 digits in xn...n+N−1) ≤ βN

}
.

If µ(β) is constructed in the same way the measures µi were defined in the
previous subsection, then clearly

dimH S(N, β) =
htopS(N, β)

log p
−→ h(µ(β))

log p
as N −→∞.

Thus we can chose Ni and βi so that if Si = S(Ni, βi), then

di < dimH Si < (1 + ε)di, and(31)

(1− ε)di <
h(µ(βi))

log p
< (1 + ε)di.

We also assume Ni|Ni+1 and Ni ≥ 2i/ε for all i. The exact condition we need is
that

∑∞
i=0 βi < 1−ε, which can be translated to a condition on

∑∞
i=0 di/| log di|

via (31).
We shall presently show that lim dimH(S1 + · · ·+Sn) < 1. It is possible to

replace the sets Si by S′i ⊂ Si such that dimH S
′
i = di, using the fact that the

Si’s we defined above are shifts of finite type. Shifts of finite type have many
closed p-invariant subsets, and in particular have a closed p-invariant subset
with any Hausdorff dimension between 0 and the dimension of the full set.
Thus there is a closed p-invariant subset S′i ⊂ Si with the required Hausdorff
dimension (properties of shifts of finite type are discussed in Denker et al. [5];
the above result is a consequence of the Jewett-Krieger theorem, (chap. 29 in
that reference)). Clearly lim dimH(S′1+· · ·+S′n) ≤ lim dimH(S1+· · ·+Sn). The
proof that lim dimH(S1 + · · ·+Sn) < 1 follows from the following proposition:

Proposition 10.4. If N |M ,

S(N, β) + S(M,β′) ⊂ S(M,β + β′ + 1
M ).

Proof. Consider the M -block zn...n+M−1 for any z ∈ S(N, β) + S(M,β′)
as an element of Z/pMZ. Then there are x ∈ S(N, β) and x′ ∈ S(M,β′) such
that

xn...n+M−1 + x′n...n+M−1 mod pM ≤ zn...n+M−1

≤ (xn...n+M−1 + x′n...n+M−1 mod pM ) + p− 1.

Note that for any a, b ∈ N, their base-p expansions satisfy
(32)

(# non-0 digits in a) + (# non-0 digits in b) ≥ (# non-0 digits in a+ b).

This can be shown, for example, by induction.
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Now in xn...n+M−1 there are at most βM non-0 digits, and in x′n...n+M−1

at most β′M non-0 digits. Thus using (32), zn...n+M−1 can have at most
(β + β′)M + 1 non-0 digits, and the proposition follows.

Using the above proposition, we see that for any n,

S1 + . . .+ Sn ⊂ S(Nn, ε+
∑∞
i=1 βi).

As ε+
∑∞
i=1 βi < 1, we see that

lim
n→∞

dimH(S1 + . . .+ Sn) ≤ h(µ(ε+
∑∞
i=1 βi))

log p
< 1.

5. Does Theorem A of Section 1.1 hold under the weaker assumption
that the collision exponent is smaller than two? By the Bootstrap Lemma, a
positive answer to the first question in this section would give a positive answer
to this question. In particular, this would imply that every p-invariant measure
of positive entropy is {qn}-normal, for any p, q such that some prime factor of
p does not divide q. The case where µ is a Bernoulli measure is covered by
Feldman and Smorodinsky [7], for any multiplicatively-independent p, q.

6. The following example shows that Theorem 1.8 is not valid under the
weaker assumptions of Theorem 1.1. In fact, even weak convergence is not
guaranteed:

Example 10.5. A joining of full entropy µ̃ with
∑ hn
| log hn|

= ∞, yet

Θnµ̃ 6−→ λ weak∗.

Take p = 2, and fix some irrational α. Let t0 be a uniform random
variable on the unit interval, and define tn = t0 +nα (mod 1). Let {Y j

i }∞i,j=1

be a sequence of i.i.d. variables with P(Y j
i = 0) = P(Y j

i = 1) = 1
2 . Given a

nonnegative sequence {hj}, define

Xj
i =

{
0 if ti ≥ hj ,
Y j
i if ti < hj

and let Xj =
∞∑
i=1

Xj
i 2−i. Denote by µj the distribution of Xj , and by µ̃ the

distribution of {Xj}∞j=1 on TN. Then µj is a σ2-invariant and ergodic measure
with entropy hj (in base 2), and µ̃ is a joining of full entropy. Take hj = 1

j+1 .
We claim that for small enough α we have Θkµ̃ 6−→ λ weak∗. To see that,
define the following events:

AN = {∀j ∈ N ∀i = 1, . . . , N Xj
i = 0},

BN = {∀i > N ∀j > 2i/2 Xj
i = 0}.

If ti ≥ h1 then Xj
i = 0 for all j. Take N such that

∞∑
i=N+1

2−i/2 ≤ 1
8 , and fix

α ∈ (0, 1
4N ). Clearly P(AN ) ≥ P(ti ≥ h1 ∀i = 1, . . . , N) ≥ P(t1 ∈ (1

2 ,
3
4)) = 1

4 .
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Also, P(Bc
N ) ≤ P(∃i > N, ti < 2−i/2), since if ti ≥ 2−i/2 for all i > N ,

then for all j > 2i/2 we have ti > 1
j > hj ; hence Xj

i = 0. By our choice of N ,

P(Bc
N ) ≤

∞∑
i=N+1

P(ti < 2−i/2) =
∞∑

i=N+1

2−i/2 ≤ 1
8
,

and we conclude that P(AN∩BN ) ≥ P(AN )−P(Bc
N ) ≥ 1

8 . For (Xj
i ) ∈ AN∩BN ,

for any k the first N/4 digits of the sum X1 + · · ·+Xk (mod 1) are zero, and
so Θkµ̃ 6−→ λ weak∗.
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