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0. Introduction

The purpose of this paper is to prove the Lp boundedness of singular
Radon transforms and their maximal analogues. These operators differ from
the traditional singular integrals and maximal functions in that their definition
at any point x in Rn involves integration over a k-dimensional submanifold of
Rn, depending on x, with k < n. The role of the underlying geometric data
which determines the submanifolds and how they depend on x, makes the
analysis of these operators quite different from their standard analogues. In
fact, much of our work is involved in the examination of the resulting geometric
situation, and the elucidation of an attached notion of curvature (a kind of
“finite-type” condition) which is crucial for our analysis.

We begin by describing our results, first somewhat imprecisely in order to
simplify the statements. We assume that for each x ∈ Rn there is a smooth
k-dimensional submanifold1 Mx, with x ∈ Mx, so that Mx varies smoothly
with x. Also, for each x we denote by dσx an integration measure on Mx with
smooth density; and Kx = Kx(y) a k-dimensional Calderón-Zygmund kernel
defined, for y ∈ Mx, which has its singularity at y = x. We also assume that
the mappings x→ dσx, and x 7→ Kx, are smooth. Then we form the singular
Radon transform

(0.1) T (f)(x) =
∫
Mx

f(y)Kx(y) dσx(y),

1In this introduction the sets Mx are assumed to be manifolds for the sake of simplicity, but our

main results are formulated in somewhat greater generality.
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and the corresponding maximal operator,

(0.2) M(f)(x) = sup
r>0

1
rk

∣∣∣∣ ∫
Mx∩B(x,r)

f(y) dσx(y)
∣∣∣∣

where B(x, r) is the ball of radius r centered at x.
Among our main results are Theorems 11.1 and 11.2, which state that if

{Mx} satisfies the curvature condition below, then the operators T and M are
bounded on Lp, for 1 < p <∞.2

The curvature condition. One way to make the above statements precise
is in terms of a parametric representation of the submanifolds {Mx}. For
this purpose we assume given a C∞ function γ, defined in a neighborhood of
the origin in Rn × Rk, taking values in Rn, with γ(x, 0) ≡ x. Then we set
Mx = {γ(x, t), t ∈ U} where U is a suitable neighborhood of the origin in
Rk. It is also useful to think of γ as a family of (local) diffeomorphisms of
Rn, {γt}, parametrized by t, and given by γt(x) = γ(x, t). Next, starting with
a standard Calderón-Zygmund kernel K on Rk, a suitable C∞ cut-off function
ψ, and a small positive constant a, we redefine (0.1) in a precise form as the
principal-value integral

(0.1)′ T (f)(x) = ψ(x)
∫
|t|≤a

f(γ(x, t))K(t) dt.

M(f) can be handled similarly.
The curvature condition needed can now be stated in a number of equiv-

alent ways:

(i) A first form is in terms of a noncommutative version of Taylor’s formula.
This formula is valid for all families {γt} of diffeomorphisms as above, and
is interesting in its own right: it states that there exist (unique) vector
fields {Xα}, with α = (α1, . . . αk) 6= 0, so that asymptotically γt(x) ∼
exp

(∑
α

tα

α! Xα

)
(x), as t → 0. The curvature condition (Cg) is then

that the Lie algebra generated by the Xα should span the tangent space
to Rn. In the special Euclidean-translation-invariant situation, when
γt(x) = x − γ(t), the condition is that the vectors

(
∂
∂t

)α
γ(t)

∣∣∣
t=0

span
Rn. The general condition, unlike that special case, is diffeomorphism
invariant. Moreover it is highly suggestive, bringing to mind Hörmander’s
condition guaranteeing sub-ellipticity. However our proofs require, in
addition, the equivalent formulation below.

2It is known that without some curvature conditions, these conclusions may fail utterly.
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(ii) An equivalent condition, (CJ), is stated in terms of repeated compositions
of the mapping γt. One defines Γ(τ) = Γ(τ, x) by

Γ(τ, x) = γt1 ◦ γt2 · · · ◦ γtn(x)

with τ = (t1, t2, . . . tn) ∈ Rnk. The condition states that for some
n × n sub-determinant J of ∂Γ/∂τ , and some multi-index α, we have(
∂
∂τ

)α
J(τ) 6= 0 at τ = 0.

The way the mapping τ → Γ(τ) arises can be understood as follows.

We decompose the operator T in (0.1)′ as T =
∞∑
j=0

Tj , in the standard

dyadic way writing

Tj(f)(x) =
∫
f(γt(x))ψj(x, t) dt,

with ψj supported where |t| ≈ 2−j . The key point (for the L2 theory) is
the almost orthogonality estimate

‖TiT ∗j ‖ + ‖T ∗i Tj‖ ≤ C2−ε|i−j|,(0.3)

and in fact, the more elaborate form from which it is deduced

‖(TjT ∗j )N Ti‖ ≤ C2−ε
′|i−j|, when i ≥ j.(0.4)

Now such products as (Tj)n can be written as

(Tj)n(f)(x) =
∫
f(Γ(τ, x)) Φ (τ, x) dτ

and (TjT ∗j )N can be similarly expressed.

(iii) A third equivalent condition, (CM ), has a very simple statement in the
case γt is real-analytic: it is that there is no submanifold (of positive
co-dimension) which is (locally) invariant under the γt. In the C∞ case
the requirement becomes the noninvariance up to infinite order, as in
Definition 8.3 below.

There are a number of other equivalent ways of stating the basic curva-
ture condition, but unlike the geometric formulations (i)–(iii) above, the one
that follows is analytic in nature. We consider a variant of the operator (0.1)
(or (0.1)′), where the singular kernel K is replaced by a C∞ density, with small
support in t. Then the condition is that this operator (which in appearance
is now more like a standard Radon transform) is smoothing of some positive
degree, either in the Sobolev-space sense, or as a mapping from Lp to Lq, with
q > p.
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Background. The first example of the operator (0.1) arose when the
method of rotations was applied to the singular-integrals associated to the heat
equation. The operator obtained was the Hilbert transform on the parabola,
where n = 2, and γ(x, t) = x− (t, t2) (Fabes [10]). The L2 theorem contained
there was generalized in Stein and Wainger [44]; see also Alpár [1], Halasz
[17] and Kaufman [21]. The method of rotations also suggested the study of
the maximal operator (0.2) in connection with Poisson integrals on symmetric
spaces (Stein [40]). The initial Lp results were then obtained by Nagel, Riviere,
and Wainger [26], [27] and the general Euclidean-translation-invariant theory,
when k = 1, was worked out in Stein and Wainger [45]; see also Stein [42]. All
these results relied in a crucial way on the use of the Plancherel formula; here
curvature entered via the method of stationary phase and the estimation of
certain Fourier transforms.

With this, attention turned to the problem of “variable” manifolds, i.e.
the non-translation invariant case, where new tools were needed. In Nagel,
Stein, Wainger [28] such an L2 result is obtained in the special case of certain
curves in the plane; it was an early indication that orthogonality (e.g. the
consideration of TT ∗ instead of T ) may be decisive. The efforts then focused
on the setting of nilpotent Lie groups, with the results of Geller and Stein
[11] for the Heisenberg group, various extensions by Müller [22], [23], [24] and
culminated with Christ [5], where the general group-invariant case for k = 1
was established; this last was generalized to higher k in Ricci and Stein [34].

Meanwhile, prompted by the connections with the ∂̄-Neumann problem
for pseudo-convex domains, Phong and Stein [31] worked out the theory under
the assumption of nowhere vanishing rotational curvature (which is the “best
possible” situation, and which also arises naturally in the theory of the Fourier
integral operator); see also Greenleaf and Uhlmann [14].

Methods used. Here we want to highlight three techniques which are very
useful in our work. First, in order to exploit the curvature condition as ex-
pressed in (i), we lift matters to a higher-dimensional setting, where the cor-
responding vector fields are “free.” One of the consequences of this lifting is
that we now have local dilations, which essentially allow us to re-scale crucial
estimates to unit scale (e.g. in effect to reduce (0.4) to the case j = 0). In ap-
plying this lifting, we have imitated a general approach used in Rothschild and
Stein [36]. It should be noted, however, that the lifting technique is not used
in establishing the equivalence of the various curvature conditions. Nor is it
used in our proof of the smoothing property of nonsingular generalized Radon
transforms with K ∈ C∞. A second key idea is the fact that the Cotlar-lemma
estimates (0.3) can be reduced to inequalities like (0.4). This method already
occurred in Christ [5]. Thirdly, in proving the inequalities (0.4), we need to
know that the integral kernel of the operator (T0T

∗
0 )N has some smoothness,
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and for this we utilize the curvature condition in the form (ii). This is ac-
complished by a theorem guaranteeing that certain transported measures have
relatively smooth Radon-Nikodym derivatives, generalizing earlier forms of this
principle in Christ [5], and Ricci and Stein [34].

Organization of the paper. We have divided this work into three parts.
Part 1 contains the background material. In it we recall a number of facts
needed, and we also state reformulations of some theorems in the literature.
Therefore detailed proofs are not given here. Part 2 is devoted to the defini-
tions and study of the various curvature conditions, and to the proof of their
equivalence. Numerous illustrative examples are also provided. Part 3 contains
the proofs of the Lp estimates.

A word of explanation about the writing of this paper may be in order.
The main results grew out of work begun over a dozen years ago. At that time
the four of us joined forces, basing our work in part on the manuscript Christ
[6], and ideas developed by the three other authors. A draft containing all the
main results of the present work was prepared about a year later, and over
the next few years the results were described in several lectures given by the
authors; in addition they were the subject of graduate courses at Princeton in
1991 and 1996 given by one of us (E.M.S.). However, a final version was not
prepared until recently, one reason being that our efforts were viewed as part
of a larger project which we had hoped to complete. With that project still
not done, it seemed best not to delay publication any longer.

We are grateful to the referee for useful corrections.

Part 1. Background and preliminaries

This first part is devoted to recalling or elaborating several known ideas
needed for the proofs of the theorems in parts 2 and 3 below. The proofs
of the assertions made here will for the most part be omitted, because the
statements are either well-known, or can be established by minor modification
of the existing proofs in the literature.

1. Vector fields and the exponential mapping

We begin by recalling some basic facts concerning vector fields and the
exponential mapping. A vector field is given in local coordinates by

X =
n∑
j=1

aj(x)
∂

∂xj
= a(x) · 5x

with a(x) = (a1(x), . . . , an(x)), where the aj are real-valued C∞ functions
defined on some open subset O of Rn.
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Associated to the vector field X is the flow ϕt = ϕt(x). It satisfies the
differential equation

d

dt
ϕt = a(ϕt)

and the initial condition

ϕ0(x) = x, for every x ∈ O.
The existence and uniqueness theorems for ordinary differential equations guar-
antee that the mappings x 7−→ ϕt(x), defined for sufficiently small t, satisfy

(1.1) (ϕt ◦ ϕs)(x) = ϕt+s(x)

if x ∈ O1, with Ō1 ⊂ O, when t and s are sufficiently small. (For later purposes
we should note that the above theorems guarantee the existence of ϕt(x), up
to t = 1, if x ∈ O1 with Ō1 a compact subset of O, and with the C0 norm of
a sufficiently small.) For any f ∈ C∞ defined near O,

d f(ϕt(x))
dt

∣∣∣∣
t=0

= X(f)(x),

and more generally,

(1.2)
d f(ϕt(x))

dt
= X(f) (ϕt(x)), x ∈ O1

if t is sufficiently small; this is merely a restatement of the defining equation
dϕt/dt = a(ϕt).

These facts suggest that we write ϕt = exp (tX) = etX , also ϕt(x) =
(exp tX)(x). Using (1.2) repeatedly, we obtain a version of Taylor’s formula,
namely

(1.3) f(exp (tX)(x)) =
N∑
k=0

(Xk(f))(x)
k!

+ O(tN+1), as t → 0

for every x ∈ O1, whenever f ∈ C(N+1) (O).
Next, let X1, . . . , Xp be a finite collection of vector fields defined in O. For

u = (u1, . . . up) ∈ Rp sufficiently small, and keeping in mind the parenthetical
remark made earlier, we can define exp (u1X1 + . . . upXp) to be exp (tX), with
t = 1, where X = u1X1 + u2X2 . . .+ upXp. As a result the mapping

(x, u) 7→ exp (u1X1 . . .+ upXp)(x)

is smooth jointly in x and u, as long as x ∈ O1 and u is sufficiently small.
There are two consequences one should note. First, the generalization of (1.3),
namely

(1.4) f(exp(u1X1 . . .+ upXp)x) =
N∑
k=0

( p∑
j=1

ujXj

)k
(f)(x)/k! +O(|u|N+1)

as u→ 0, wheneverf ∈ C(N+1)(O) .
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Second, suppose X1, . . . Xn are n vector fields, linearly independent at
each point x ∈ O. Then for each y ∈ O1, the mapping (u1, u2, . . . un) 7→
exp (u1X1 + . . . + unXn)(y) is a local diffeomorphism of a small neighbor-
hood of the origin in Rn onto a corresponding neighborhood of y. As a re-
sult, (u1, . . . un) can be taken to be a coordinate system for the point x =
exp (u1X1 + . . . unXn)(y), which is centered at y. These are the exponential
coordinates, determined by X1, . . . , Xn and centered at y.

Finally, we recall that if X and Y are a pair of vector fields defined in O,
so is their commutator bracket [X,Y ] = XY − Y X. This bracket makes the
vector fields defined on O into a Lie algebra, to which topic we now turn.

2. Lie algebras

For our purposes a Lie algebra L is a (non-associative) algebra over R,
whose product, denoted by [X,Y ], with X,Y ∈ L, satisfies [X,Y ] = −[Y,X]
and

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0, for all X,Y, Z ∈ L.

We consider several examples.

Example 2.0. The Lie algebra of vector fields defined over O ⊂ Rn, as
above in Section 1.

Example 2.1. Let A be an associative algebra over R with product X ·Y .
If we define the bracket [X,Y ] = X ·Y −Y ·X, then A becomes a Lie algebra,
which we denote by L(A).

Example 2.2. In example 1, we start with A the free associative algebra,
freely generated by p generators, X1, . . . , Xp. The algebra A can be character-
ized by its universal properties as follows: First A is generated by X1, . . . , Xp,
that is, no proper subalgebra of A contains {X1, . . . Xp}. Second, if A′ is any
associative algebra, and Φ is a mapping from the set {X1, . . . Xp} to A′, then
Φ can be extended (uniquely) to a homomorphism from A to A′. The algebra
A can be realized as

⊕∞
k=1 V

(k), where V (k) is the tensor product of k copies
of V , and V is the vector space spanned by X1, X2, . . . Xp. (Further details
can be found in [20].)

From the associative algebra A we form the Lie algebra L(A) as in Exam-
ple 1, and then pass to L0(A) which is the Lie subalgebra of L(A) generated
by X1, . . . , Xp. This will be called the free Lie algebra (with p generators), and
will be written Fp = L0(A).

Fp has the following universal property:
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Proposition 2.1. Suppose that L′ is any Lie algebra, and Φ is a map-
ping from the set {X1, . . . , Xp} into L′. Then Φ can be (uniquely) extended to
a Lie algebra homomorphism of Fp to L′.

The proof that Fp has this universal property can be found in [20]. Once
p is fixed, Fp is uniquely determined (up to Lie algebra isomorphism) by this
property. This uniqueness is closely related to the following assertion, which
is itself a simple consequence of the proposition.

Corollary 2.2. Let V be the vector subspace of Fp spanned by X1, . . . Xp.
Then any linear isomorphism Φ of V can be (uniquely) extended to a Lie al-
gebra automorphism of Fp.

We now come to (nonisotropic) dilations of Fp. We fix p strictly posi-
tive integers, a1, a2, . . . ap; these will be the exponents of the dilations. For
each r > 0, we consider the mapping Φr defined on V by Φr(

∑p
j=1 cjXj) =∑p

j=1 cjr
ajXj . Then by the corollary, Φr extends in a unique way to an auto-

morphism of Fp; this extension will also be denoted by Φr. One also notes that
Φr1 ◦Φr2 = Φr1r2 . We call a repeated commutator [Xi1 , [Xi2 . . . [Xik−1

, Xik ] . . .]
involving generators Xi1 , Xi2 , . . . , Xik , a commutator of length k; such a com-
mutator undergoes multiplication by the factor rai1+ai2 ...+aik under the action
of Φr, and is said to be homogeneous of degree ai1 + ai2 . . . + aik . Since the
linear span of commutators of all lengths is Fp, we can write Fp as a direct
sum

(2.1) Fp =
∞⊕
`=1

F `p ,

where F `p denotes the subspace of all elements that are homogeneous of degree
` under Φr. The decomposition (2.1) makes Fp into a graded Lie algebra, with
[F `1p ,F `2p ] ⊂ F `1+`2

p . We should note that of course the free Lie algebra Fp is
infinite-dimensional.

Example 2.3. Taking into account the gradation above for Fp, for any
positive integer m we define Im =

⊕
`>m F `p. Since Im is spanned by elements

homogeneous of degree > m, it is clear that Im is a (Lie algebra) ideal. For
any m ≥ max(a1, . . . ap) we may therefore form the quotient Lie algebra N =
Fp/Imp . We let Y1, . . . Yp denote the images of X1, . . . Xp respectively under
the natural projection. Then Y1, . . . , Yp are linearly independent elements of
N which generate the Lie algebra N . The automorphism Φr of Fp induces a
corresponding automorphism Φ̃r of N , with Φ̃r(Yj) = rajYj . Note that N is
naturally identifiable with

⊕
`≤m F `p. We shall also use the notation N a1, ... ap

m

for N , to indicate its dependence on the exponents a1, a2, . . . ap, and the
order m.
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Definition 2.3. N a1, ... ap
m is called the relatively free nilpotent Lie algebra

of order m with p generators.

We will also refer to N as being free up to order m. N has a universal
mapping property: If g is an arbitrary Lie algebra containing distinguished
elements X1, . . . Xp of which any iterated commutator having degree > m

vanishes, then there exists a unique Lie algebra homomorphism from N to g
mapping Yj to Xj for each 1 ≤ j ≤ p.3 This degree is defined in the same
weighted sense as for N a1, ... ap

m .
For any ordered k-tuple of integers I = {i1, i2, . . . ik} with 1 ≤ ij ≤ p, we

let YI denote as above the commutator [Yi1 [Yi2 . . . [Yik−1
, Yik ] . . .]]. Because of

the homogeneity induced by the automorphisms Φ̃r, we assign to I the degree

|I| = ai1 + ai2 . . .+ aik .

Thus, we can choose a basis of N a1, ... ap
m to consist of {YI}, as I ranges over

an appropriate subset of the collection of all multi-indices satisfying |I| ≤ m.
Given m and p, we choose this collection {I} and the resulting basis {YI} once
and for all. We shall refer to the chosen fixed collection {I} as basic. Note
that each element Y ∈ N can be written as Y =

∑
I basic

cI YI , and the dilations

Y =
∑
I basic

cI YI →
∑
I basic

cI r
|I| YI , r > 0,

are automorphisms of N . The “relatively free” Lie algebra N will be one of
our chief tools in what follows.

3. The Baker-Campbell-Hausdorff formula

Let A be an associative algebra over R. We define a formal power series
to be an expression in the indeterminate t of the form

A(t) =
∞∑
k=0

akt
k

where the coefficients ak are elements of A. No restriction is placed on the
sequence {ak}∞k=0; therefore giving the formal power series A(t) is the same as
prescribing the (arbitrary) sequence {ak}.

These series can be added and multiplied in the standard way. Also
if a ∈ A, we can define exp (ta) to be the formal power series given by

3An alternative method for constructing N is to show first that given any p,m, there exists

M <∞ such that for any nilpotent Lie algebra g generated by p of its elements X1, . . . Xp, such that

any iterated commutator having degree > m vanishes, the dimension of g is at most M . A second step

is to show that any such g having maximal dimension has the required universal mapping property.
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k=0 a

ktk/k!. Note that if A(t) is a formal power series without constant term,
then exp (A(t)) =

∑∞
k=0 (A(t))k/k! is itself a formal power series

∑∞
k=0 bkt

k,
where each bk is a (noncommutative) polynomial in a1, . . . ak.

Given any two elements a, b ∈ A, we define a Lie polynomial in a

and b to be a finite linear combination of repeated commutators of the form
[ai1 , [ai2 . . . [aik−1

, aik ] . . .]], where each ai is either a or b. The Baker-Campbell-
Hausdorff formula then states:

Proposition 3.1. Suppose a and b belong to A. Then there is a formal
power series

C(t) =
∞∑
k=1

ckt
k

so that

(3.1) exp (ta) · exp (tb) = exp (C(t)) .

Here ck = ck(a, b) is a homogeneous Lie polynomial of degree k in a and b.

A proof of this theorem may be found in [20]. The assertion that ck is
homogeneous of degree k means that ck(ra, rb) = rkck(a, b), when r ∈ R. The
first few polynomials in the formula are c1(a, b) = a+b, c2(a, b) = 1

2 [a, b], c3 =
1
12 [a, [a, b]] + 1

12 [b, [a, b]].
As a consequence of the above formal identity we can obtain the following

analytic version for vector fields. Let X1, X2, . . . Xp, Y1, . . . , Yp be a collection
of real smooth vector fields defined on some open set O ⊂ Rn. For u =
(u1, . . . up) and v = (v1, . . . , vp) in Rp write u ·X = u1X1 + u2X2 . . . + upXp,
v · Y = v1Y1 + . . . + vpYp. Note that by what was said in Section 1, we can
define the local diffeomorphisms exp (u ·X) and exp (v · Y ) when u and v are
sufficiently small.

Corollary 3.2. As local diffeomorphisms, for each N > 0,

(3.2) exp (vY ) · exp (u ·X) = exp
( N∑
k=1

ck(u · X, v · Y )
)

+O(|u|+ |v|)N+1

as |u|+ |v| → 0 .

Note that ck(u · X, v · Y ) is itself a vector field whose coefficients depend
on u and v as homogeneous polynomials of degree k; this is because ck(a, b) is
a Lie polynomial in a, b of degree k. Thus, each of the exponentials in (3.2) is
well-defined as long as u and v are sufficiently small.

To prove the corollary we write for a, b ∈ A,

SN (a, b) =
N∑
k=1

ck(a, b) ,
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and note that

(3.3)

(
N∑
k=0

tkak

k!

) (
N∑
k=0

tkbk

k!

)
=

N∑
k=0

(SN (ta, tb))k

k!
+ E(t)

where E(t) is a polynomial in t, whose coefficients of tk vanish for all k ≤ N .
Indeed (3.3) is a direct consequence of the formal identity (3.1) once we observe
that

exp (ta) =
N∑
k=0

tkak

k!
+ E1(t), exp (tb) =

N∑
k=0

tkbk

k!
+ E2(t)

and

exp (C(t)) =
N∑
k=0

(SN (ta, tb))k

k!
+ E3(t) ,

where the Ej(t) are formal power series whose coefficients of tk vanish for all
k ≤ N . Now (3.3) shows that

(3.4)

(
N∑
k=0

ak

k!

) (
N∑
k=0

bk

k!

)
=

N∑
k=0

(SN (a, b))k

k!
+ R

where R is a (noncommutative) polynomial in a and b whose terms are each
homogeneous of degree > N . Finally, (3.2) follows from the Taylor formula
(1.4), when a = u1X1 . . .+ upXp, and b = v1Y1 + . . .+ vpYp.

We shall also need a more extended version of Corollary 3.2 which can be
deduced in the same way from (3.4). We use the notation uα = uα1

1 uα2
2 . . . u

αp
p ,

if u ∈ Rp. Let

P (u,X) =
∑

0<|α|≤m
uαXα, Q(v, Y ) =

∑
0<|α|≤m

vα Yα

be polynomials in u, v, without constant term, whose coefficients are vector
fields.

Corollary 3.3. For each N > 0,

exp (Q(v, Y )) · exp (P (u,X))(3.5)

= exp
( N∑
k=1

ck(P (u,X), Q(v, Y ))
)

+ O((|u|+ |v|)N+1),

as |u|+ |v| → 0.

4. The Lie group corresponding to N

By the use of the Baker-Campbell-Hausdorff formula we can describe a Lie
group corresponding to the Lie algebra N a1, ... ap

m . As is well-known from the
general theory of Lie groups, there is a unique connected, simply connected
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Lie group N = N
a1,... ap
m whose Lie algebra is N a1, ... ap

m ; since the latter is
nilpotent, the corresponding exponential mapping is a diffeomorphism, and
the underlying space of N may be identified with Rd, where d = dimension
(N a1, ... ap

m ). For these facts see [18],[33],[46].
The above assertion may be described more explicitly as follows. In

the identification of N with Rd, the group identity is the origin in Rd, and
the Lie algebra N consists of the left-invariant vector fields on N (i.e. on
Rd). The exponential map leads to the identification of each u ∈ N with

exp
( ∑
I basic

uI YI

)
(0), which we write more simply as exp

( ∑
I basic

uI YI

)
. Here

u = (uI)I basic are coordinates for Rd.
The multiplication law in N is a consequence of the formula (3.1). It takes

the form

(4.1) exp
( ∑
I basic

vI YI

)
· exp

( ∑
I basic

uI YI

)
= exp

( ∑
I basic

PI (u, v)YI
)
.

where PI (u, v) is a polynomial in u and v which is homogeneous of degree |I|
in the following sense. Recall the dilations defined on N a1, ... ap

m . They induce
corresponding dilations δr : Rd 7→ Rd:

Definition 4.1. For any x = exp(
∑
I basic uIYI) and r > 0,

δr(x) = exp
( ∑
I basic

r|I|uIYI

)
.

Then PI is homogeneous in the sense that

PI (δr(u), δr(v)) = r|I| PI(u, v).

Definition 4.2. The norm function ρ and quasi -distance d on N are

ρ(u) =
∑
I

|uI |1/|I|, and d(x, y) = ρ(x−1y).

These are linked with the dilation structure through the identity

ρ(δru) = rρ(u) for all u ∈ N, r ∈ R+.

5. Free vector fields

Next we treat the notion of a collection of real vector fields, {X1, . . . Xp}
being “free”, relative to exponents a1, a2, . . . ap and the order m. We assume
that X1, . . . Xp are real, smooth vector fields defined (on some open set O)
in Rd. Here d = dim(N a1, ... ap

m ). For any k-tuple I = {i1, i2, . . . ik} with
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1 ≤ ij ≤ p, we write as before XI for the corresponding k-fold commutator,
and |I| = ai1 + ai2 . . . + aik .

Definition 5.1. A collection of vector fields {X1, . . . Xp} defined in an open
subset O of Rd is said to be free relative to the exponents a1, a2, . . . ap, and
the order m, if d equals the dimension of N a1, ... ap

m and

(5.1) {XI(x)}|I|≤m spans the tangent space of Rd, for each x ∈ O.

Note that if (5.1) holds, then the collection {XI}I basic already spans and
thus forms a basis, because any linear relation among the YI inN with |I| ≤ m,
implies the corresponding linear relation among the XI .

Now a fundamental idea we shall use (as in [36],[12],[19]) is that a collection
of free vector fields (relative to a1, . . . ap and m) can in many ways be well
approximated by the Lie algebra N a1, ... ap

m and its action as a collection of
left-invariant vector fields on the group N . In particular, on N there are the
following objects of importance: the multiplication law of the group (in the
form of the mapping (x, y) → x−1 · y of N ×N → N); the automorphic
dilations on N , coming from the dilations on N ; and the corresponding norm
function and quasi-distance on N , as defined in Section 4.

The analogue of the first of these in our general setting will be the mapping
Θ defined as follows. For each x ∈ Rd (more precisely, for x ∈ O), we consider
the mapping y → Θx(y) from a neighborhood of x to a neighborhood of the
origin, given by:

Definition 5.2. Θx(y) = (uI) where y = exp(
∑
I basic uI XI) (x).

By the properties of the exponential mapping described in Section 1, the
mapping y → Θx(y) is a diffeomorphism of a neighborhood of x ∈ O with a

neighborhood of the origin. Note that since exp
(
− ∑
I basic

uI YI

)
(y) = x, we

have

(5.2) Θx(y) = −Θy(x).

Consider now the special case when {Xi}pi=1 equals the collection {Yi}pi=1

of left-invariant vector fields on the group N discussed in Section 4. Then by
left invariance,

exp
( ∑
I basic

ui YI

)
(x) = x · exp

( ∑
I basic

uI YI

)
.

So, via the identification of N with N , we see that Θx(y) = x−1 · y in this
case.

Recall the dilations, norm function, and left-invariant quasi-distance on N
defined in Section 4. In our more general context, this leads us to the following
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two definitions. First, the quasi-distance

(5.3) d(x, y) = ρ(Θx(y)) =
∑
I basic

|uI |1/|I|, if y = exp
(∑

uIXI

)
(x).

We claim that whenever y and z are in a sufficiently small neighborhood
of x,

(5.4)


(i) d(x, y) ≥ 0, and d(x, y) = 0 only when x = y

(ii) d(x, y) = d(y, x)
(iii) d(x, z) ≤ c(d(x, y) + d(y, z)).

Now d(x, y) = 0 only if x = y, since the exponential mapping is a local dif-
feomorphism; so property (i) is clear. Property (ii) follows directly from the
anti-symmetry property (5.2) of the Θ mapping. Now turning to property (iii),
we write

y = exp
∑
I basic

(uIXI)(x), and z = exp
∑
I basic

(vIXI)(y).

Then
d(x, y) =

∑
I basic

|uI |1/I , d(y, z) =
∑
I basic

|vI |1/|I|.

Express

(5.5) z = exp
( ∑
I basic

wIXI

)
(x),

and note the alternative representation

(5.6) z = exp
( ∑
I basic

vIXI

)
· exp

( ∑
I basic

uIXI

)
(x).

We shall apply the Baker-Campbell-Hausdorff formula to compare (5.5)
with (5.6). In order to do this we make two remarks regarding commutators
involving uI1XI1 , uI2XI2 , . . . etc. First, when |I1| + |I2| ≤ m,

(5.7) [XI1 , XI2 ] =
∑
I basic

cIXI

where the cI are the same constants determined by the identical relation that
holds in the Lie algebra N a1, ... ap

m , namely [YI1 , YI2 ] =
∑

I basic
cIYI ; this is be-

cause N is free up to order m. When |I1| + |I2| > m, (5.7) no longer holds
(in N the corresponding right-hand side is zero). In this case, we note that
each coefficient of the vector field [uI1XI1 , vI2XI2 ] is O(|uI1 | |vI2 |), which is
O(ρ(u)|I1| ρ(v)|I2|) = O(ρ(u)m + ρ(v)m).

Applying the corollary in Section 3 to (5.6), and taking into account the
product formula (4.1), we see that
(5.8)

z = exp
( ∑
I basic

PI(u, v)XI

)
(x) +O (ρ(u)m + ρ(v)m) +O

(
|u|m+1 + |v|m+1

)
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where |u| =
∑
I basic |uI |. Since |u| ≤ cρ(u) and |v| ≤ cρ(v), the second O

term can be subsumed in the first when u and v are small. Given the dif-
feomorphic character of the exponential mapping occurring in (5.8), it follows
that

z = exp
( ∑
I basic

wIXI

)
(x), where wI = PI(u, v) + O(ρ(u)m + ρ(v)m).

Now by homogeneity, PI(u, v) = O(ρ(u)|I|+ρ(v)|I|). Thus, clearly
∑

I basic
|wI |1/|I|

≤ c(ρ(u) + ρ(v)) and since d(x, z) =
∑

I basic
|wI |1/|I|, the triangle inequality

(5.4)(iii) is proved.4

Finally, we come to the appropriate notion of dilations in our context.
These are (local) dilations δxr , centered at x:

Definition 5.3. For y = exp(
∑

I basic
uIXI)(x), sufficiently close to x, and r

sufficiently small,

(5.9) δxr (y) = exp
( ∑
I basic

uIr
|I|XI

)
(x).

An equivalent expression for these local dilations is

δxr (y) = Θ−1
x δrΘx (y).

Here “sufficiently small” parameters r might be quite large; what is required is
merely that |uI |r|I| = O(1), so that the right-hand side of (5.9) will be defined.

Note that by (5.3),

d(x, δxr (y)) = r d(x, y).

If we let B(x, r) denote the ball = {y : d(x, y) < r} then clearly δxr (B(x, s)) =
B(x, rs). Also, if |B(x, r)| denotes the measure of B(x, r),

(5.10) |B(x, r)| ≈ rQ, as r → 0

where Q =
∑
I basic |I| is the homogeneous dimension of N a1, ... ap

m . The symbol
≈ means that the ratio |B(x, r)|/rQ tends to a positive constant as r → 0,
uniformly for x in any compact subset of O.

Indeed, the mapping y → Θx(y) = (uI) is a local diffeomorphism of y
near x, to points near the origin in the u-space; and y ∈ B(x, r) exactly when∑
I basic

|uI |1/|I| < r. Of course∣∣∣∣{u :
∑
I basic

|uI |1/|I| < r

}∣∣∣∣ = crQ,

4For the study of (5.4) in a more general setting, see also [29].
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for an appropriate constant c > 0, as a simple homogeneity argument shows.
This establishes (5.10), and with it the doubling property

(5.11) |B(x, 2r)| ≤ c|B(x, r)|

for all sufficiently small r > 0.
A last point of significance is a fact which also implies the triangle inequal-

ity (5.4), and which will be quite useful in Part III below. It is the assertion
that

(5.12) ρ(Θx(y2)−Θx(y1)) ≤ C{d(y1, y2) + d(y1, y2)1/m d(x, y1)1−1/m}.

(See also the analogous statement in [36, §12].)
To prove (5.12) we may assume that y1 is close to y2, and also close to x.

Then we can write

y1 = exp
(∑

I

uIXI

)
(x), y2 = exp

(∑
I

vIXI

)
(y1)

and alternatively y2 = exp (
∑
I wIXI) (x). Here, and below, the sums

∑
I are

taken over the basic I’s. So we have

u = (uI) = Θx(y1), w = Θx(y2),

and
d(y1, y2) = ρ(v), d(x, y1) = ρ(u).

Also

exp
(∑

I

vIXI

)
· exp

(∑
I

uIXI

)
(x) = exp

(∑
I

wIXI

)
(x).

We apply to this the Baker-Campbell-Hausdorff formula in the same way
as in the argument leading to (5.8) and obtain

(5.13) wI = uI + vI + QI(u, v) + RI(u, v).

Here uI + vI + QI(u, v) = PI(u, v) is the term arising in the multiplication
formula (4.1) for the group N , so PI is homogeneous of degree |I|; the error
term RI is O(ρ(u)m+1 + ρ(v)m+1). Observe next that when v = 0, we have
y2 = y1, which means that QI(u, 0) ≡ 0 and RI(u, 0) ≡ 0. Thus, writing QI
as a sum of homogeneous monomials, we see that

|QI(u, v)| ≤ C
∑

k+`=|I|, `≥1

ρ(u)k ρ(v)` ≤ C ′
(
ρ(v)ρ(u)|I|−1 + ρ(v)|I|

)
.

Since RI(u, v) is likewise a smooth function of u and v which vanishes when
v = 0, each monomial in its Taylor expansion is O(ρ(u)kρ(v)`) for some k, `
satisfying ` ≥ 1 and k + ` > m, and hence we get

RI(u, v) = O (|v||u|m−1 + |v|m) = O (ρ(v) ρ(u)|I|−1 + ρ(v)|I|),
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because |I| ≤ m. Hence

(Θx(y2)−Θx(y1))I = wI − uI = vI + O(ρ(v) ρ(u)|I|−1 + ρ(v)|I|).

Thus

ρ(Θx(y2)−Θx(y1)) =
∑
I

|wI − uI |1/|I| ≤ C{ρ(v) + ρ(v)1/m ρ(u)1−1/m}.

Since ρ(v) = d(y1, y2) and ρ(u) = d(x, y1), the assertion (5.12) is proved.

6. Freeing vector fields

Let us revert to a neighborhood O of the origin in Rn. Suppose we are
given p smooth real vector fields, X1, . . . Xp, defined on O. We write

(6.1) Xi =
n∑
j=1

aji (x)
∂

∂xj
, i = 1, . . . p.

Suppose that we have by some procedure assigned a degree aj to each Xj ,
where the aj are strictly positive integers. With these exponents we keep to the
notation used previously, and write XI for the repeated commutator involving
Xi1 , Xi2 , . . . Xik , where I = (i1, i2, . . . ik), with |I| = ai1 + ai2 . . . + aik .

For the present we make the following assumption on X1, . . . Xp:

(6.2) {XI}|I|≤m spans the tangent space of Rn for each x ∈ O.

Let d be the dimension of N a1, ... ap
m . In Rd we adopt coordinates u =

(x, z) ∈ Rn × Rd−n.

Proposition 6.1. Under the assumption (6.2), the Xi can be extended
to vector fields X̃i defined in a neighborhood of the origin in Rd, taking the
form

(6.3) X̃i =
n∑
j=1

aji (x)
∂

∂xj
+

d−n∑
k=1

bki (x, z)
∂

∂zk
,

so that {X̃i : i = 1, . . . , p} is free relative to exponents a1, . . . ap and order
m, in Rd.

This is the “lifting” theorem proved in [36] for the case a1 = a2 . . . =
ap = 1. (See also the alternate derivations in [12] and [19].) The case where
a1 = a2 . . . = ap−1 = 1 and ap = 2 already occurred in [36]. One can adapt any
of those proofs, with minor changes, to establish the more general formulation
given here. A different proof will be given in an appendix, Section 22.
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7. Transporting measures

We shall consider the following situation: Φ will be a given C∞ mapping
from a closed finite ball B̄ in Rd to Rn, with d ≥ n. We shall designate the
typical point in Rd by τ , and that in Rn by y. Consider a measure ψ(τ)dτ in
Rd, whose density ψ is in C1(B̄), and which has compact support in B. We
let dµ = Φ∗(ψdτ) be the transported measure in Rn; that is, µ is defined by
the integration formula∫

Rn
f(y) dµ(y) =

∫
B̄
f(Φ(τ))ψ(τ)dτ.

Our goal is to show that under appropriate conditions µ is absolutely continu-
ous with respect to Lebesgue measure, and that its Radon-Nikodym derivative
h, defined by dµ(y) = h(y)dy, possesses the following degree of smoothness.

Definition 7.1. For 0 < δ ≤ 1, L1
δ(R

n) is the Banach space consisting of
all functions h ∈ L1(Rn) that satisfy

(7.1)
∫
Rn
|h(y − z)− h(y)| dy ≤ A|z|δ, for all z ∈ Rn.

The norm on L1
δ is defined to be ‖h‖L1 plus the smallest constant A for which

(7.1) holds. With these definitions we can state our result.

Proposition 7.2. Let J be the determinant of some n × n sub-matrix
of the Jacobian matrix ∂Φ/∂τ of Φ. Assume that for some α,

(7.2) ∂ατ J(τ) 6= 0 for every τ ∈ B̄.

Then the transported measure dµ = Φ∗(ψdτ) is absolutely continuous, and its
Radon-Nikodym derivative h belongs to L1

δ for all δ < (2k)−1, where k = |α|.
Moreover, the L1

δ norm of h can be controlled in terms of the Ck+2(B̄) norm
of Φ, a lower bound for ∂ατ J(τ) in B̄, the C1 norm of ψ, and the numbers δ
and k.

The proposition is an easy variant, in the C∞ context, of a parallel result
formulated for real-analytic mappings in [34]; see also [5]. We will be able to
follow closely the proof given in [34, §2], once we have the following lemma.

Lemma 7.3. Suppose F is a real -valued function in C(k+1) (B̄), and for
some α, there is |∂ατ F (τ)| ≥ b > 0, throughout B̄. Let k = |α|. Then

(7.3)
∫
B̄
|F (τ)|−σ dτ ≤ A <∞,

for any σ < 1/k. The constant A in (7.3) depends only on the norm
‖F‖Ck+1(B̄), the bound b, the volume of B, and σ, k.



    

508 CHRIST, NAGEL, STEIN, AND WAINGER

Versions of this lemma appeared in [23] and [24].

Proof. We need to consider only the case k ≥ 1. We may use Lemma 3.4
in [5], or argue as follows. As is well known, if 0 < σ < 1,

|u|−σ = cσ

∫ ∞
−∞

eiλu |λ|−1+σ dλ,

for an appropriate constant cσ. Therefore

(7.4)
∫
B̄
|F (τ)|−σ dτ = cσ

∫ ∞
−∞

I(λ) |λ|−1+σdτ, where I(λ) =
∫
B̄
eiλF (τ) dτ.

Now it is known that |I(λ)| ≤ C ′|λ|−1/k (where C ′ depends only on the Ck+1

norm of F in B̄, b, and the radius of B). For this see [43, Ch. 8], where the
result is stated and proved for integrals of the form

∫
eiλF (τ)ψ(τ)dτ with ψ

having compact support in a ball. However, the result holds as well (with nearly
identical proof) if ψ(τ)dτ is replaced by χB̄dτ , where χB̄ is the characteristic
function of B̄. Inserting the decay estimate in (7.4) for |λ| ≥ 1, and the trivial
estimate |I(λ)| ≤ |B̄| for |λ| < 1, gives (7.3) and the lemma.

By the lemma with F = J , it follows that Z = {τ ∈ B̄ : J(τ) = 0} has
Lebesgue measure zero. We shall now cover B̄/Z by a collection of balls {Bj}
as follows. We let c denote a small constant, which we shall fix momentarily.
For each τ ∈ B/Z we consider the Euclidean ball centered at τ , with radius
c|J(τ)|, which we write as B(τ, c|J(τ)|). We choose c so small that

(7.5) 9/10 ≤
∣∣∣∣J(τ ′)
J(τ)

∣∣∣∣ ≤ 11/10, whenever τ ′ ∈ B(τ, 8c|J(τ)|).

The existence of such a constant is guaranteed by the fact that J(τ) is a
Lipschitz function, which in turn follows from the fact that Φ is in Ck+2(B̄).

Next, let B(τj , c|J(τj)|) be a maximal disjoint collection of such balls, and
let
Bj = B(τj , rj), B∗j = B(τj , 2rj), where rj = 4c|J(τj)|. We claim that

(7.6)
⋃
j

Bj ⊃ B/Z.

In fact, if τ ∈ B/Z, either it is one of the centers τj (in which case it is covered),
or it is not. In the latter case, the ball B(τ, c|J(τ)|) must intersect one of the
balls B(τj , c|J(τj)|), for otherwise that collection would not be maximal. Hence
either τ ∈ B(τj , 3c|J(τj)|) or τj ∈ B(τ, 3c|J(τ)|). In either case it follows from
(7.5) that |J(τ)| ≤ 11

9 |J(τj)|, and hence

τ ∈ B(τ, c|J(τ)|) ⊂ B(τj , 4c|J(τj)|) = Bj .

Note that some of the balls Bj may go outside B, but this does not matter.
Next, observe that the B∗j have the bounded intersection property: there exists
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M < ∞ such that no point is covered by more than M of the balls B∗j . In
fact, all balls Bj for which τ ∈ B∗j have comparable radii, are disjoint, and are
contained in a ball of comparable radius, because of (7.5).

Once the balls Bj have been determined, we choose in the standard
way a corresponding partition of unity {ηj}, C∞ functions supported in B∗j ,
with

∑
j ηj = 1 on B/Z, and satisfying |Oηj | ≤ Cr−1

j . We then let dµj =
Φ∗(ψ(τ)ηj(τ)dτ) and prove (as in [34, §2]) that dµj = hj(y)dy with∫

|hj(y)|dy ≤ Crdj ,
∫
|Ohj(y)|dy ≤ Crd−2

j .

Since h =
∑
j hj , it then follows5 that h ∈ L1

δ with δ = σ/2, if
∫
B̄ |J(τ)|−σdτ

<∞. Therefore, Lemma 7.3 establishes the proposition.

Part 2. Geometric theory

8. Curvature: Introduction

This section summarizes the main features of the geometric aspects of
this paper. Proofs, details and elaborations are presented in Sections 9 and 10.
Readers interested primarily in the later estimates might choose to skip over
those two sections on a first reading.

The following notation and language will be used. If F, Fα are C∞ func-
tions of (x, t) and of x, respectively, we write

F ∼
∑
α

tαFα

to mean that the right-hand side is the Taylor series of F with respect to t, at
t = 0. Taylor expansions with respect to other variables will also be denoted by
the symbol ∼ . N denotes the set {0, 1, 2, . . .} of nonnegative integers. When
we say that a function is defined in Rm or maps Rm to Rn, we will mean that
it is defined merely in some open subset of Rm, and that its range is contained
in Rn.

Definition 8.1. The set of all iterated commutators of a collection {Yβ}
of C∞ vector fields in an open set U is defined to be the smallest set S of
vector fields in U such that (i) each Yβ belongs to S, and (ii) if V,W ∈ S then
[V,W ] ∈ S.

The Lie algebra generated by {Yβ} is defined to be the smallest C∞ sub-
module, containing every iterated commutator of {Yβ}, of the set of all C∞

vector fields on U .

5See [34, pp. 62–63]. (A subscript j is missing in equation (8) on page 62.)



    

510 CHRIST, NAGEL, STEIN, AND WAINGER

8.1. Three notions of curvature. Suppose that γ is a C∞ function defined
in some neighborhood of (x0, 0) in Rn × Rk, always satisfying the hypothesis

(8.1) γ(x, 0) ≡ x.

Define
γt(x) ≡ γ(x, t).

Attention will always be restricted to small t.
Such a mapping γ may be regarded in either of two ways. First, x 7→ γt(x)

is a family of diffeomorphisms of Rn, depending smoothly on the parameter
t ∈ Rk. Second, under the auxiliary hypothesis that the differential ∂γ/∂t
has rank k when t = 0, t 7→ γ(x) parametrizes for each x a k-dimensional
submanifold Mx ⊂ Rn containing x, by

(8.2) Mx = {γ(x, t) : t ∈ U}

where U ⊂ Rk is a small neighborhood of the origin.
The inverse diffeomorphism, for each t, will be denoted by either γ−1

t (x)
or γ−1(x, t). The rank condition is natural and will be satisfied in most of our
examples, but our theory does not require it; we permit k to be an arbitrary
positive integer, not necessarily less than the ambient dimension n.

A fundamental notion is that of an invariant submanifold:

Definition 8.2. A submanifold M ⊂ Rn is locally invariant under γ at x0

if there exists a neighborhood V of (x0, 0) in M × Rk such that γ(x, t) ∈ M
for every (x, t) ∈ V .

This notion of invariance would be appropriate and sufficient for our pur-
pose if we were working solely within the class of real analytic mappings. How-
ever because we wish to allow mappings which are merely of class C∞, and
because our theory is more naturally formulated in terms of Taylor expansions
than of convergent power series, the following weaker notion is more germane.

Definition 8.3. A submanifold M of Rn containing x0 is invariant under
γ to infinite order at x0 if for all (x, t) ∈M × Rk sufficiently close to (x0, 0),

distance (γ(x, t),M) = O
(
distance (x, x0) + |t|

)N
as x→ x0 and t→ 0

for every positive integer N .

When γ,M are respectively a real analytic mapping and a real analytic
submanifold, local invariance at x is equivalent to invariance to infinite order at
x. But quantities such as exp(−1/|t|) and exp(−1/|x−x0|), which do not affect
the Taylor expansion of γ, may prevent a submanifold from being genuinely
invariant.
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Definition 8.4. γ satisfies curvature condition (CM ) at x0 if there exists
no C∞ submanifold of Rn, of positive codimension, that is invariant under γ
to infinite order at x0.

A second curvature condition is formulated in terms of certain vector
fields, whose existence and uniqueness are guaranteed by the next theorem.

Theorem 8.5. Let γ be any C∞ mapping from a neighborhood of (x0, 0)
∈ Rn × Rk to Rn, satisfying γ(x, 0) ≡ x. Then there exists a unique collec-
tion {Xα : 0 6= α ∈ Nn} of C∞ vector fields, all defined in some common
neighborhood U of x0, such that

(8.3) γ(x, t) = exp(
∑

0<|α|<N
tαXα/α!)(x) +O(|t|N )

for each positive integer N , for all x ∈ U , as |t| → 0.

Formal Taylor series identities of the form (8.3) will frequently be indicated
by the notation “∼”:

(8.4) γ(x, t) ∼ exp(
∑

tαXα/α!)(x).

Since both the left-hand side and first term on the right in (8.3) are C∞

functions of x, t, so is the term denoted by O(|t|N ). Therefore

∂a+b

∂xa∂tb

[
γ(x, t)− exp(

∑
|α|<N

tαXα/α!)(x)
]

= O(|t|max(N−b,0))

for any a, b, uniformly in x in a neighborhood of x0. Similar considerations
apply to other terms denoted by O(|t|N ) later on.

A note of caution is in order: (8.4) does not mean that the integral curves
of the vector fields

∑
|α|<N t

αXα/α! are subsets of the manifolds parametrized
by γ; this is false for typical mappings γ. Consider the example γ(x1, x2; t)
= (x1+t, x2+t2). Here x ∈ R2 and t ∈ R1, so the index α belongs to {1, 2, . . .}.
The vector fields are X1 = ∂/∂x1 and X2 = 2∂/∂x2, while Xj ≡ 0 for all j > 2.
For each x, t, the integral curve s 7→ exp(s

∑
α t

αXα/α!)(x) is a parametrized
line segment joining x to γ(x, t), whereas the curve t 7→ γ(x, t) is a parabola.
The endpoint s = 1 of the line segment is the point γ(x, t) of the parabola.

Definition 8.6. γ satisfies curvature condition (Cg) at x0 if the vector
fields Xα together with all their iterated commutators span the tangent space
to Rn at x0.

A third curvature condition is phrased in terms of iterates of the map
t 7→ γ(x, t). For any 1 ≤ j ≤ n define Γ1(x, t) = γ(x, t) and

(8.5) Γj(x, t1, . . . tj) = γ
(
Γj−1(x, t1, . . . tj−1), tj

)
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for (t1, . . . tj) ∈ Rkj sufficiently close to 0. Among these we single out the nth

iterate

(8.6) Γ(x, τ) = Γn(x, τ)

for τ ∈ Rkn. The domain of the map τ 7→ Γ(x, τ) is a small neighborhood of
0 ∈ Rnk; its range is contained in a small neighborhood of x ∈ Rn.

Write τ = (τ1, . . . τkn), where the coordinates belong to R1 and are ordered
in any fixed manner. To each n-tuple ξ = (ξ1, . . . ξn) of elements of {1, 2, . . . kn}
is associated the Jacobian determinant

(8.7) Jξ(x, τ) = det

(
∂Γ(x, τ)

∂(τξ1 , . . . τξn)

)

of the n × n submatrix of the differential of Γ with respect to τ . In the next
definition, ∂βτ represents an arbitrary partial derivative with respect to the full
variable τ ∈ Rkn, not merely (τξ1 , . . . , τξn).

Definition 8.7. γ satisfies curvature condition (CJ) at x0 if there exist an
n-tuple ξ and a multi-index β such that

(8.8) ∂βτ Jξ(x0, τ)
∣∣∣
τ=0
6= 0.

The notation is a mnemonic device: condition (CM ) involves a submanifold
M , (Cg) involves a Lie algebra g, and (CJ) involves Jacobians J .

Each of these three conditions plays a role in our analysis of the operators
associated to a mapping γ. (1) (CJ) will be used to show that certain asso-
ciated operators are smoothing. (2) (Cg) will ultimately be used to construct
a coordinate system in which (CJ) can be exploited in a systematic way with
uniform dependence on certain parameters; in particular, in this coordinate
system, γ will possess a form of scale– and basepoint–invariance. (3) (CM ) is
useful in a negative sense; given that it fails, it is easy to establish that various
other curvature conditions or operator estimates fail to hold.

8.2. Theorems. The following theorem is one of the main results of this
paper. It will be used in the proofs of our analytic conclusions concerning the
mapping properties of certain operators.

Theorem 8.8. For every γ, the three conditions (Cg), (CM ), (CJ) are
mutually equivalent at every point.

Definition 8.9. γ is said to be curved to finite order at a point x0, or
equivalently to satisfy condition (C) at x0, if it satisfies these three equivalent
conditions at x0.
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Three additional curvature conditions, (CY ), (CΛ), and (CJ)′, will be in-
troduced in Sections 9 and 10, and will be shown6 also to be equivalent to
(C), as will two analytic properties of integral operators naturally associated
to mappings γ.

The next proposition is a direct consequence of the definitions, but is
nonetheless fundamental.

Proposition 8.10. (C) is invariant under diffeomorphism.

By this we mean the following.7 Let φ be any diffeomorphism of Rn,
and ψ : Rn+k 7→ Rk any C∞ map satisfying ψ(x, 0) ≡ 0, whose differential
with respect to t is invertible at t = 0. Given a mapping γ, set γ̃(x, t) =
φ−1 ◦ γ(φ(x), ψ(x, t)). Then γ̃ satisfies (C) at x if and only if γ satisfies (C)
at φ(x).

A consequence of Proposition 8.10 is that the validity of (C) at x0 does not
depend in any way on the geometry or curvature of an individual manifold Mx

as defined in (8.2);8 it is instead a property of the family of manifolds {Mx}.
For it is always possible to choose a diffeomorphism φ that maps Mx0 to an
affine subspace M̃ , and then t 7→ γ̃(x0, t) parametrizes M̃ near x0.

Under any of several mild supplementary hypotheses, (C) has other equiv-
alent formulations, in terms of the analytic properties of associated operators

(8.9) Tf(x) =
∫
f(γ(x, t))K(x, t) dt

where K ∈ C∞(Rn × Rk). Now K is always assumed to be supported in
a small neighborhood of (x0, 0), and f in a small neighborhood of x0. For
each nonnegative s ∈ R denote by Hs the usual Sobolev space of all functions
defined in some Euclidean space having s derivatives in L2.

Theorem 8.11. If γ satisfies curvature condition (C) at x0 then there
exist s > 0 and a neighborhood U of (x0, 0) such that for every K ∈ C∞

supported in U , the operator T maps L2(Rn) to Hs.
Conversely, suppose that γ does not satisfy curvature condition (C) at x0.

Suppose in addition either that the differential of the map t 7→ γ(x0, t) has
maximal rank k at t = 0, or that K ≥ 0. Then there exists a neighborhood V

of (x0, 0) such that whenever K ∈ C∞ is supported in V and K(x0, 0) 6= 0,
T maps L2 to Hs for no exponent s > 0.

6A supplementary hypothesis is imposed on γ in the formulation of (CΛ).
7Our theory may be generalized to mappings which do not necessarily satisfy γ(x, 0) ≡ x. The

appropriate generalization of diffeomorphism invariance then involves φ1 ◦γ(φ2(x), ψ(x, t)), where φ1

and φ2 are unrelated.
8In this remark we assume for simplicity that the differential of γ with respect to t has rank k

at t = 0, so that each Mx is a manifold.



      

514 CHRIST, NAGEL, STEIN, AND WAINGER

The next result is a variant involving only the scale of spaces Lr.

Theorem 8.12. Suppose that γ satisfies curvature condition (C) at x0.
Then there exists a neighborhood U of (x0, 0) such that for each p ∈ (1,∞)
there exists an exponent q > p such that for any K ∈ L∞ supported in U , the
operator T defined by (8.9) maps Lp(Rn) to Lq(Rn).

Conversely, suppose that there exist K ∈ C0 satisfying K(x0, 0) 6= 0 and
exponents 1 ≤ p < q ≤ ∞ such that T maps Lp(Rn) to Lq(Rn). Suppose
further either that K ≥ 0, or that the differential of the map t → γ(x0, t) has
rank k at t = 0. Then γ satisfies curvature condition (C) at x0.

Examples

Example 8.1. Suppose that γ(x, t) = x − h(t) for some h : Rk 7→ Rn

defined in a neighborhood of 0 and satisfying h(0) = 0. Then γ is curved to
finite order if and only if the set of all vectors {∂αh/∂tα(0)} spans Rn; this
does not depend on x0.

Indeed, the vector fields in the exponential representation for γ are

Xj ≡ −∂jh/∂tj
∣∣∣
t=0

,

for j = 1, 2, 3, . . . . These have constant coefficients, so that all their commu-
tators vanish identically; consequently (Cg) holds if and only if they span Rn.
For the analysis of this class of examples see [45].

Example 8.2. Let Z1, . . . Zk be any collection of C∞ vector fields, defined
in an open subset of Rn, whose iterated commutators span the tangent space
to the ambient space Rn at a point x0. Then γ(x, t) = exp(

∑
tjZj)(x) satisfies

(C) at x0. Our theory does not require that the Zj be linearly independent at
x0, nor that they span a subspace of constant dimension, nor that k be less
than n.

Example 8.3. There exist mappings curved to finite order of the form
γ(x, t) = x+v(x) · t where v : Rn 7→ Rn, even though each manifold t 7→ γ(x, t)
is flat. One such example is γ(x, t) = (x1 + t, x2 + x1t) in R2, with t ∈ R1.

Example 8.4.
γ(x, t) = (x1 + t, x2 + 2x1t+ t2)

appears on a superficial examination to have the features of both of the pre-
ceding two examples. Yet it is not curved to finite order at any point, and
indeed, may be brought into the form γ̃(x, t) ≡ (x1 + t, x2) by conjugation
with the diffeomorphism x 7→ (x1, x2 − x2

1).
It may be tempting to attempt to formulate a curvature condition by

examining all partial derivatives of γ with respect to (x, t) at (x0, 0). This
example demonstrates that only certain combinations of partial derivatives
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have any significance. For example, ∂2γ/∂x1∂t is nonzero in this example,
yet there is no curvature in our sense. For the first nontrivial example of a
polynomial expression in terms of these partial derivatives that does have an
invariant meaning, see (9.9).

Example 8.5. Let G be a Lie group and h : Rk 7→ G a smooth map
satisfying h(0) = 1, the identity element of G. Define γ(g, t) = g · h(t). Write
h(t) ∼ exp(

∑
β t

βZβ/β!) where each Zβ belongs to the Lie algebra g of G,
and exp denotes the exponential mapping from a neighborhood of 0 ∈ g to a
neighborhood of the identity element of e ∈ G. Each Zβ is thus identified with
a left invariant vector field on G. Then γ satisfies (Cg) at one point of G if and
only if it does so at every point; and this holds if and only if the Zβ generate
the entire Lie algebra g.

Indeed, the vector fields Xα in the exponential representation for γ are
precisely the Zα. These generate a certain subalgebra of locally left invariant
vector fields in a neighborhood of e, that is, a certain subalgebra of g. Thus (Cg)
holds at e if and only this subalgebra is all of g. The rank of this subalgebra
is constant, so that (Cg) holds at e if and only if it holds at every point of G.

Example 8.6. The real analytic mapping γ(x, t) = (x1 + t, x2 + x2t) is
curved to finite order at some points but not all. It is curved to finite order
at a point (x1, x2) if and only if x2 6= 0. The manifold {x2 = 0} is invariant
under γ.

Example 8.7. The mapping γ(x, t) = (x1+t, x2+exp(−t−2)) is not curved
to finite order at any point. The manifolds {x2 = constant} are invariant
under γ to infinite order at every point, but there exists no manifold of positive
codimension that is truly locally invariant under γ.

Similarly for γ(x, t) = (x1 + t, x2 + t exp(−x−2
1 )), the manifolds {x2 =

constant} are invariant to infinite order at each point where x1 = 0, but there
exist no locally invariant submanifolds.

Example 8.8. Phong and Stein [31] have discussed a notion of rotational
curvature for the hypersurface case k = n − 1, assuming the differential of γ
with respect to t to be injective. Given a point x0 ∈ Rn, it is always possible
to introduce coordinates x = (x′, xn) ∈ Rn−1 × R with origin at x0, and a
smooth function φ : Rn+(n−1) 7→ R satisfying ∇φ(0, 0) = 0, such that for any
points x, y ∈ Rn near the origin, y = γ(x, t) for some t ∈ Rk near 0 if and only
xn = yn+φ(x, y′). The rotational curvature condition of [31] is then equivalent
to the nonvanishing of the determinant of the matrix

det

(
∂2φ

∂xi∂yj

)
1≤i,j≤n−1

(0, 0) 6= 0.
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On the other hand, our condition (C) is equivalent to the requirement merely
that there exist indices i, j ≤ n−1 for which the Taylor expansion of ∂2φ/∂xi∂yj
with respect to (x′, y′) = (x1, . . . xn−1, 0, y1, . . . yn−1, 0) does not vanish to in-
finite order at the origin; see (9.18) and Proposition 9.15. Thus rotational
curvature in the sense of [31] is in a natural sense the strongest possible ver-
sion of (C), in the hypersurface case.

Example 8.9. A condition closely related to (C) in a special case has
been studied by Baouendi, Ebenfelt and Rothschild [2]. Let X ⊂ Cn be a real
analytic, generic CR manifold. In local coordinates in a neighborhood Ω ⊂ Cn
of a point z0 ∈ X, X = {z ∈ Ω : ρ(z, z̄) = 0}, where ρ : Ω × Ω 7→ C is
holomorphic, satisfies ρ(z, w̄) ≡ ρ(w, z̄), and its components satisfy ∂ρ1 ∧ ∂ρ2

∧ . . . ∧ ∂ρd 6= 0. Here ∂ρj(z, z̄) =
∑
i
∂h
∂zi
dzi where h(z) = ρj(z, z̄).

To each z ∈ X are associated the Segre sets Nj ⊂ Cn defined by N0(z)
= {z}, and Nj+1(z) = {w ∈ Ω : ρ(w, ζ) = 0 for some ζ ∈ Nj(z)}; in these
definitions z, w, ζ are assumed to lie sufficiently close to z0.

Define Λ ⊂ Ω × Ω to be {(z, w) : ρ(z, w̄) = 0}, and parametrize Λ
as {(γ(z, t), z)}, where t ∈ Cn−d = Ck, and so that γ(z, 0) = z for all
z ∈ X (though not necessarily for all z ∈ Ω; in this respect [2] differs from our
framework) for some analytic function γ. Then in our notation, Nj corresponds
to the image of Cjk under the map (t1, . . . tj) ∈ Cjk 7→ Γj(z, (t1, . . . tj)). One
of the geometric conditions considered in [2] is that some Nj should contain
an open subset of Cn. In our language this means that the Jacobian deter-
minant of Γ(z0, τ) with respect to τ does not vanish identically. Because of
the hypothesis of analyticity, this is equivalent to the nonvanishing of some
coefficient of its Taylor expansion about τ = 0, that is, to (CJ) at points of X.

9. Curvature: Some details

9.1. The exponential representation. In this subsection we establish the
existence and uniqueness of the vector fields Xα in the exponential represen-
tation (8.3).

We will often work with Rn-valued formal Taylor series exp(
∑
αt
αXα/α!)(x)

with respect to t ∈ Rk, in which the Xα are C∞ vector fields defined in an
open subset U ⊂ Rn. These are to be interpreted as follows. The mappings
FN (t) = exp(

∑
|α|≤N t

αXα/α!)(x) are well defined for all |t| < δ(N) > 0, for
all x belonging to any relatively compact subset of U . With respect to a
coordinate system in Rn, FN may then be expanded in a Taylor series TN (t) =∑
β c

N
β (x)tβ/β! with respect to t, whose coefficients cNβ are C∞ functions of

x. For any multi-index β, cNβ is independent of N for all sufficiently large N .
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Defining cβ(x) to be this stable limit, we obtain a formal series

(9.1) T∞ ∼
∑
β

cβ(x)tβ/β! .

The coefficients of this series are Rn-valued C∞ functions of x ∈ U .

Definition 9.1. Let {Xα} be a collection of C∞ vector fields defined in a
neighborhood U of x0 ∈ Rn. Then exp

(∑
α t

αXα/α!
)
(x) is defined to be the

formal Taylor series (9.1) in t.

We will also work with exponential mappings associated to vector fields
depending on a parameter t, such as exp(

∑
|α|<N t

αXα/α!)(x); such exponen-
tials are of course well defined C∞ functions of x, t for small t, not merely
formal power series.

Proof of existence. Define a mapping H : Rn+k 7→ Rn+k by

(9.2) H(x, t) = (γ(x, t), t).

Because γ(x, 0) ≡ x, the differential of H at any point (x, 0) is invertible,
whence H defines a diffeomorphism of a small neighborhood U1 of (x0, 0) in
Rn+k with a second such neighborhood U2. For small s ∈ Rk define

(9.3) ϕs(x, t) = H(γ−1
t (x), s+ t) = (γs+tγ

−1
t (x), s+ t).

Then ϕs1+s2 ≡ ϕs1 ◦ ϕs2 . As remarked in Section 1, this means that there
exist vector fields {Vj : 1 ≤ j ≤ k} in Rn+k, defined near (x0, 0), satisfying
ϕs(x, t) ≡ exp(

∑
j sjVj)(x, t). In particular,

(9.4) exp(
k∑
j=1

sjVj)(x, 0) = ϕs(x, 0) = H(x, s) = (γ(x, s), s).

Differentiating with respect to s gives

(9.5) Vj = H∗(∂/∂tj),

the push forward of ∂/∂tj by H. This could equally well have been taken as
an alternative definition of Vj .

Adopting coordinates (y, s) ∈ Rn+k in U2, we may express each Vj as
Zj + ∂sj where Zj is a vector field in U2 whose coefficients are functions of
(y, s), but which is everywhere in the span of ∂y1 , . . . ∂yn . Substituting (9.4)
into the identity

(γ(x, t), 0) = exp(−
∑
j

tj∂/∂sj)(γ(x, t), t)
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and applying the Baker-Campbell-Hausdorff formula yield a Taylor series iden-
tity in t of the form

(γ(x, t), 0) = exp(−
∑
j

tj∂/∂sj) exp(
∑
j

tj [Zj + ∂/∂sj ])(x, 0)(9.6)

∼ exp
( ∑
|β|>0

tβZβ/β!
)
(x, 0),

where each Zβ is a finite linear combination, with constant coefficients, of the
vector fields Zi and ∂/∂sj and of their commutators.

Each such commutator, excepting the ∂/∂sj themselves, is in the span of
the coordinate vector fields ∂/∂yi, with coefficients that are C∞ functions of
y, s. The coefficient of ∂/∂sj is tj − tj ≡ 0. Therefore each Zα takes the form

Zα(y, s) =
n∑
j=1

aj,α(y, s)∂/∂yj .

Define vector fields Xα on Rn by

(9.7) Xα(y) =
∑
j

aj,α(y, 0)∂/∂yj .

Then for any N , exp(
∑
|α|≤N t

αXα/α!)(x) is identically equal to the Rn coordi-
nate of the quantity exp(

∑
|α|≤N t

αZα/α!)(x, 0), by the uniqueness of solutions
to the initial value problem for ordinary differential equations. Thus (9.6) may
be rewritten as

γ(x, t) ∼ exp(
∑
|α|>0

tαXα/α!)(x).

Proof of uniqueness. The reasoning is by induction on N . Suppose that
for some vector fields Yα,

exp(
∑
|α|≤N

tαXα/α!)(x)

= exp
( ∑
|α|<N

tαXα/α!)(x) +
∑
|α|=N

tαYα/α!
)

(x) +O(|t|N+1)

for all x in some neighborhood of x0. Composing with exp(−∑|α|≤N tαXα/α!)
on both sides yields

x+O(|t|N+1)

= exp(−
∑
|α|≤N

tαXα/α!) exp
( ∑
|α|<N

tαXα/α! +
∑
|α|=N

tαYα/α!
)

(x).
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The Baker-Campbell-Hausdorff formula may be used to simplify the right-hand
side, yielding

x+O(|t|N+1) = exp
( ∑
|α|=N

tα(Yα −Xα)/α!
)

(x) +O(|t|N+1).

Fix any multi-index δ satisfying |δ| = N , apply ∂δ/∂tδ to both sides, and
evaluate at t = 0 to obtain 0 = δ! (Yα −Xα)(x) for all x near x0.

Remark 9.1. From this proof of uniqueness can also be derived an alter-
native construction of the vector fields Xα, by induction on |α|. For |α| = 1,
Xα = ∂γ(x, t)/∂tj where α = (0, . . . , 1, . . . 0) with a single 1 in the jth position.
Once the Xα have been constructed for all |α| ≤ N , consider

G(x, t) = exp(−
∑
|α|≤N

tαXα/α!)(γ(x, t)).

It can be shown that for each multi-index satisfying |β| = N+1, ∂βG/∂tβ(x, 0)
defines a vector field on Rn, which is taken to be Xβ .

Another approach to the computation of the Xα is as follows. Fix coordi-
nates, write γ(x, t) = (γ1, . . . γn), and denote by ej the jth coordinate function
in Rn. According to (??), the Taylor expansion of the component γj with
respect to t about x is given by the formal series

∞∑
k=0

1
k!

[∑
β

tβ Xβ/β!
]k

(ej)(x).

Expanding this formal double series in t, the coefficient of tα is

|α|∑
m=1

∑
β1+···+βm=α

1
m!β!

Xβ1 · · ·Xβm(ej)(x).

This says that

1
α!

∂αγj
∂tα

(x, 0) =
1
α!
Xα(ej) +

|α|∑
m=2

∑
β1+···+βm=α

1
m!β!

Xβ1 · · ·Xβm(ej)(x).

The final conclusion is a recursive formula.

Lemma 9.2. For every α,

(9.8) Xα(ej) =
∂αγj
∂tα

(x, 0)−
|α|∑
m=2

∑
β1+...+βm=α

α!
m!β!

Xβ1 · · ·Xβm(ej)(x).

Implicit in this computation are proofs of uniqueness and existence of
{Xα}. One consequence is thatXα(x) depends only on those Taylor coefficients
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∂β1+β2γ/∂xβ1∂tβ2(x, 0) of total order |β| ≤ |α|. One has of course

Xα(x) =
n∑
j=1

∂γj
∂tα

(x, 0)
∂

∂xj
for |α| = 1.

In the simplest case k = 1 so that t ∈ R, the second order vector field is

(9.9) X2(x) =
n∑
j=1

[
-

∂2γj
∂t2

(x, 0)− 2
n∑

m=1

∂γm
∂t

(x, 0)
∂2γj
∂xm∂t

(x, 0)
-

]
∂

∂xj
.

9.2. Diffeomorphism invariance. For any γ, there exists a unique, smooth
mapping γ−1 satisfying γ(γ−1(x, t), t) ≡ x ≡ γ−1(γ(x, t), t), by the implicit
function theorem.

Lemma 9.3. The inverse mapping γ−1 satisfies

(9.10) γ−1(x, t) ∼ exp(−
∑
α

tαXα/α!)(x)

for the same vector fields Xα occurring in the exponential representation for γ.

A consequence is that γ satisfies condition (Cg) at x0 if and only if γ−1

does so.

Proof. Consider the identity

exp(
∑
|α|≤N

tαXα/α!) exp(
∑
|α|≤N

−tαXα/α!)(x) ≡ x .

By letting N →∞ we conclude that

γ
(

exp(−
∑
α

tαXα/α!)(x), t
)
∼ x

as Taylor series in t. Since the equation γ(γ−1(x, t), t) uniquely determines the
Taylor expansion of γ−1 about t = 0, the expansion with respect to t of γ−1

equals the formal series exp(−∑α t
αXα/α!)(x).

To any diffeomorphism φ from an open subset of Rn to a second open
subset is associated the push-forward mapping φ∗, which transforms vector
fields defined on the domain of φ to vector fields on its range. It is defined by
φ∗(X)(φ(x)) = Dφ(X(x)), where Dφ(x) denotes the differential of φ at x.

Lemma 9.4. Let γ : Rn+k 7→ Rn be C∞ and satisfy γ(x, 0) ≡ x, and let
{Xα} be the vector fields in the exponential representation (8.3) for γ. Let φ
be a diffeomorphism of Rn with itself, and define γ̃(x, t) = φ(γ(φ−1x, t)). Then

(9.11) γ̃(x, t) ∼ exp
(∑

α

tα · φ∗Xα/α!
)
(x).
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Coupling this result with the uniqueness of the exponential representa-
tion, we conclude that the vector fields in that representation are themselves
invariant under diffeomorphism, in a natural sense.

Proof. For any vector field Y and any diffeomorphism,

φ(exp(Y )(x)) = exp(φ∗Y )
(
φ(x)

)
,

as follows from the definition of the exponential mapping by replacing Y by sY
and differentiating with respect to s. Applying this to Y =

∑
|α|≤N t

αXα/α!
for each N yields the stated conclusion.

Proof of diffeomorphism invariance. We demonstrate here invariance of
(CM ), and invariance of (CJ) and of (Cg) in the special case ψ(x, t) ≡ t. Some of
these facts will be used in the proof of equivalence of the curvature conditions.
Full diffeomorphism invariance of all three will then be a consequence of their
equivalence.

For (Cg), consider γ̃(x, t) = φ−1 ◦γ(φ(x), t). Let {Xα} be the vector fields
associated to γ. By (9.11), γ̃ satisfies (Cg) at x0 if and only if the Lie algebra
generated by {φ−1

∗ Xα} spans the tangent space to Rn at x0. The push forward
operation is a Lie algebra homomorphism, so this Lie algebra equals the image
under φ−1

∗ of the Lie algebra generated by {Xα}. Thus γ̃ satisfies (Cg) at x0 if
and only if γ does so at φ(x0).

Consider condition (CM ) first in the simpler case γ̃(x, t) = φ−1 ◦γ(φ(x), t).
If a submanifold M is invariant to infinite order under γ at x0, then φ−1(M)
is invariant to infinite order under γ̃(x, t) at φ−1(x0).

Next consider γ̃(x, t) = γ(x, ψ(x, t)). Since |ψ(x, t)| ∼ |t|, again condition
(CM ) is manifestly invariant. Combining these two cases by composition yields
invariance of (CM ) in the general case.

To prove that (CJ) holds for γ if and only if it holds for γ̃t(x) = φ−1γt(φx),
note that the n-fold iterate Γ̃ of γ̃ satisfies Γ̃(x, τ) = φ−1Γ(φx, τ). Thus J̃ξ(x, τ)
is the product of the determinant ofDφ−1 at φ(x) with Jξ(φx, τ). Consequently
∂βτ J̃ξ(x, 0) equals ∂βτ Jξ(φx, 0) times a nonvanishing function of x; if one is
nonzero, so is the other.

9.3. Curvature condition (CY ). A fourth curvature condition is phrased
in terms of a different collection of vector fields. For 1 ≤ j ≤ k define

(9.12) Yj(x, t) =
∂

∂sj
γt+sγ

−1
t (x)

∣∣∣
s=0

;

each of these is a vector field in Rn evaluated at x, depending smoothly on the
parameter t ∈ Rk. Define vector fields Yα,j(x) to be the Taylor coefficients

(9.13) Yj(x, t) ∼
∑
|α|≥0

tα

α!
Yα,j(x).
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Definition 9.5. γ satisfies curvature condition (CY ) at x0 if the vector
fields Yα,j : 1 ≤ j ≤ k, |α| ≥ 0, together with all their iterated commutators,
span the tangent space to Rn at x0.

Proposition 9.6. Curvature condition (CY ) is equivalent to (Cg).

Proof. For any set S of vector fields, denote by LS the Lie algebra gener-
ated by S, as a C∞(Rn) module. Fix any point x0. Fix j and let ej ∈ Rk be
the jth coordinate vector. Let s = σej where σ ∈ R.

By the Baker-Campbell-Hausdorff formula, in the sense of formal Taylor
series in t, s,

γt+sγ
−1
t (x) ∼ exp(

∑
α

(s+ t)αXα/α!) exp(−
∑
α

tαXα/α!)(x)

∼ exp(σW )(x) +O(|σ|2)

where
W ∼

∑
α

αjt
α−ej (Xα + Vα,j)/α!,

and each Vα,j belongs to L{Xβ : |β| < |α|}. Only multi-indices α whose jth

components are ≥ 1 appear in the Taylor expansion of W .
Thus Yδ,j equals a nonzero coefficient times Xδ+ej + Vδ+ej , for each δ, j.

Therefore for each N ,

L{Yδ,j : |δ| ≤ N, 1 ≤ j ≤ k} = L{Xα : |α| ≤ N + 1}.
In particular, the Lie algebra generated by all Yδ,j always coincides with that
generated by all Xα. Therefore (CY )⇔ (Cg).

9.4. Two lemmas. Invariance of a submanifold may be conveniently refor-
mulated in a special local coordinate system. Consider coordinates (x′, x′′) =
x ∈ Rp × Rn−p, for some 0 < p < n. Corresponding to this decomposition is
an expression

(9.14) γ(x, t) = γ
(
(x′, x′′), t

)
=
(
γ′(x, t), γ′′(x, t)

)
,

where γ′ maps Rn+k to Rp and γ′′ : Rn+k 7→ Rn−p. Consider the submanifold

M = {x : x′′ = 0}.

Lemma 9.7. Let γ take the form (9.14). Then M is invariant under γ
to infinite order at the origin 0 ∈ Rn if and only if

∂α+βγ′′

∂(x′)α∂tβ
(
(0, 0), 0

)
= 0 for every α, β.

The conclusion may be rephrased: M is invariant under γ to infinite order
at the origin if and only if

(9.15) γ(x, t) ∼
(
x′ +O(t), x′′ +O(x′′)O(t)

)
.
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Proof. The distance from γ(x, t) to M is comparable to |γ′′(x, t)|. Thus
the restriction to M × Rk of the function (x, t) 7→ distance (γ(x, t),M) is
comparable to the function (x′, t) 7→ |γ′′

(
(x′, 0), t

)
|.

The next result will be used in Section 21 to prove a theorem on differen-
tiation of integrals.

Lemma 9.8. Suppose that γ is real analytic near (x0, 0). Then a small
neighborhood U of x0 may be decomposed as E ∪ V where E is a closed set
of Lebesgue measure zero, while the open set V is foliated by real analytic
leaves with the two properties: (i) each leaf is invariant under γ, and (ii) the
restriction to each leaf of γ satisfies (Cg), relative to that leaf.

By (ii) we mean that the Lie algebra generated by {Xα} spans the tangent
space to each leaf.

Proof. If γ satisfies (Cg) at x0 ∈ Rn then let E be the empty set and
V = U . Otherwise fix a small neighborhood U of x0 and δ > 0 such that the
restriction of γ to U × {|t| < δ} is analytic.

Let {Xα} be the collection of vector fields associated to γ, and let g be
the Lie algebra it generates. Define r ≤ n to be the maximum, over all x ∈ U ,
of the dimension of the subspace of TxRn spanned by g. Define E to be the set
of all x ∈ U at which this subspace has dimension strictly less than r. Then
E is an analytic variety, hence is closed and has measure zero.

If r = n then there is a trivial foliation of V = U\E in which every leaf is
an open subset of Rd. Otherwise in a neighborhood of any x ∈ V , g spans a
subspace of dimension r. By the Frobenius theorem, V is foliated by integral
leaves of g. Because g is spanned by analytic vector fields, each leaf is analytic.

Each vector field Xα is everywhere tangent to each leaf. Hence for any N
and any leaf L,

exp(
∑
|α|≤N

tαXα/α!)(x) ∈ L

for every x ∈ L and every sufficiently small t. Therefore for any x ∈ L, the
distance from γ(x, t) to L is O(|t|N ) for every N . Because L and γ are analytic,
by letting N →∞ we deduce that L is invariant under γ.

Fix a leaf L and regard γ as a mapping from L × Rk to L. The vector
fields occurring in the exponential representation for this restricted mapping
are equal to the restrictions of theXα to L, by the uniqueness of the exponential
representation. The Lie algebra generated by these is the restriction to L of g,
which spans the tangent space to L at each of its points by construction.
Therefore the restriction to L of γ satisfies curvature condition (Cg).
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9.5. Double fibration formulation. Smoothly varying families of k dimen-
sional submanifolds of Rn are sometimes described in a nonparametrized form,
as follows. For j = 1, 2 denote by π̃j : Rn × Rn 7→ Rn the projection onto
the jth factor, which we sometimes denote by Rnj for clarity. Suppose given a
smooth submanifold Λ ⊂ Rn × Rn of codimension d = n − k, containing the
diagonal ∆ = {(x, y) : x = y}. Denote by πj : Λ 7→ Rn the restrictions to Λ of
the projections π̃j .

Suppose that Dπj : TΛ 7→ TRn has rank n at every point of a neighbor-
hood of (x0, x0). Throughout the discussion, all points are implicitly assumed
to be sufficiently close to x0 or to (x0, x0). For x, y ∈ Rn define

Mx = {y : (x, y) ∈ Λ} and M ′y = {x : (x, y) ∈ Λ}.

By the implicit function theorem, the assumption on the rank of Dπj implies
that Mx,M

′
y are smooth submanifolds of dimension k, depending smoothly on

x, y respectively.
There exist parametrizations t 7→ γ(x, t), such that

(9.16) Λ = {(x, γ(x, t))}

as (x, t) varies over a small neighborhood of (x0, 0) ∈ Rn+k. Conversely, given
any mapping γ satisfying our usual hypothesis that γ(x, 0) ≡ x and the ad-
ditional requirement that the differential of t 7→ γ(x, t) has rank k, the set Λ
defined by (9.16) has the above properties near (x0, x0). For any set E ⊂ Rn,

{γ(x, t) : x ∈ E, t ∈ Rk} = π2π
−1
1 (E).

The purpose of this subsection is to discuss an intrinsic reformulation9 (CΛ)
of (C) in terms of Λ itself, which involves no parametrization. This material
will not be used elsewhere in the paper.

Definition 9.9. V1 is the C∞(Λ) module consisting of all sections of the
tangent bundle TΛ that are in the nullspace of Dπ2. Likewise V2 is the C∞(Λ)
module consisting of all sections of the tangent bundle TΛ that are in the
nullspace of Dπ1.

Thus V1 is the set of all vector fields defined on Λ, tangent to Λ, and
expressible as linear combinations of {∂/∂xj}, with coefficients depending on
(x, y) ∈ Λ. V1 is closed under Lie brackets. At each point of Λ, the subspace
of TΛ spanned by V1 has dimension k, by the hypothesis on the rank of Dπ2.
The leaves of the foliation defined by V1 have dimension k, are contained in
Λ, and project to points under π2. Therefore they are simply the manifolds

9This version of the curvature condition has been introduced independently by Seeger [38], in a

more refined form.
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M ′p×{p} where p ∈ Rn is arbitrary. Corresponding remarks apply to V2, with
the roles of the indices 1, 2 reversed; its leaves are the manifolds {p} ×Mp.

Definition 9.10. (i) G(Λ) denotes the Lie subalgebra of TΛ generated by
V∞ ∪ V∈, as a C∞(Λ) module.

(ii) g(Λ) is the C∞(Rn) submodule of sections of TRn given byDπ1(G(Λ)|∆).

Definition 9.11. γ satisfies curvature condition (CΛ) at x0 if G(Λ) spans
the entire tangent space to Λ at (x0, x0).

Lemma 9.12. Λ satisfies (CΛ) at δ ∈ ∆ if and only if g(Λ) spans the
tangent space to Rn at π1(δ).

Proof. Let δ ∈ ∆. The dimension ρ of the span G(Λ)(δ) of G(Λ) at δ
equals the rank r of the restriction to G(Λ)(δ) of Dπ1, plus the dimension
ν of the nullspace of Dπ1 on G(Λ)(δ). By the definition of g(Λ), r equals
the dimension of its span at π1(δ). On the other hand ν = k, because the
span at δ of V2 is contained in G(Λ)(δ), and equals the nullspace of Dπ1

as a transformation from TδΛ to Rn; this last nullspace has dimension k by
hypothesis on Λ. Thus ρ = r + k, and consequently ρ = n + k if and only if
r = n.

Let γ : Rn+k 7→ Rn be a C∞ mapping satisfying γ(x, 0) ≡ x, whose differ-
ential with respect to t has rank k at x0. To γ is associated Λγ = {(x, γ(x, t)} ⊂
Rn+n , where (x, t) ranges over a small neighborhood of (x0, 0). The main re-
sult of this section is another equivalence of curvature conditions.

Proposition 9.13. Let γ : Rn+k 7→ Rn be a smooth mapping satisfying
γ(x, 0) ≡ x, whose differential with respect to t has rank k at (x0, 0). Then γ

satisfies (C) at x0 if and only if the associated manifold Λγ satisfies (CΛ) at
(x0, x0).

The proof of one half of this proposition is deferred to Lemma 10.5.

Lemma 9.14. (Cg)⇒ (CΛ).

Proof. Consider the diffeomorphic correspondence F from a neighborhood
of (x0, 0) ∈ Rn+k to a neighborhood of (x0, x0) ∈ Λ = Λγ defined by

R
n+k 3 (γ−1(x, t), t) F7→ (γ−1(x, t), x) ∈ Λ.

Thus F (z, s) = (z, γ(z, s)). Recall the vector fields Vj in Rn+k associated to
γ−1, rather than to γ, by the relation

(γ−1(x, t), t) = exp(
∑
j

tjVj)(x, 0),

as discussed in the proof of existence of the exponential representation.
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In Rn+k there is a foliation by k-dimensional leaves parametrized by
t 7→ (γ−1(x, t), t), with a unique leaf passing through each point (x, 0). The
C∞(Rn+k) module spanned by {Vj} consists of all vector fields tangent to the
leaves of this foliation. The correspondence F maps each leaf to a set of the
form {(γ−1(x, t), x)} where x is constant. Therefore span {DF (Vj)} ≡ V1, as
C∞(Λ) modules.

On the other hand, denoting by (z, s) coordinates in Rn+k, we see that
each vector field DF (∂/∂si) in Λ is tangent to the fibers of the projection π1,
since F (z, s) = (z, γ(z, s)). Thus span {DF (∂/∂si)} ≡ V2 at each point of Λ.

Combining these two equalities, we may identify G(Λ) via F−1 with the
Lie algebra in Rn+k generated as a C∞(Rn+k) module from all vector fields Vj
together with all ∂/∂si. Thus g(Λ) is identified with the C∞ module of vector
fields on Rn obtained by restriction of the Rn component of each element of
G(Λ) to s = 0.10 Each of the vector fields Xα constructed in the proof of
existence of the exponential representation in subsection 9.1 was a finite linear
combination of iterated commutators of the Vj and ∂/∂si, restricted to s = 0;
that is to say, Xα belongs to g(Λ). Consequently if (CΛ) fails to hold, then
(Cg) likewise fails.

For the purpose of performing explicit computations, it is sometimes con-
venient to describe Λ implicitly by an equation g = 0, where g maps Rn × Rn
to Rn−k and is a submersion at (x0, x0). As in Lemma 9.7, adopt coordinates
x = (x′, x′′) ∈ Rk × Rn−k in which x0 = 0 and {y : (0, y) ∈ Λ} = Rk × {0}.
Then g may be taken to have the form

(9.17) g(x, y) = y′′ − x′′ − h(x, y′ − x′)

where h(x, 0) ≡ 0, h(0, y′) ≡ 0, and ∇h(0, 0) = 0. A corresponding parametric
representation of Λ would be via γ(x, t) = (x′+ t, x′′+h(x, t)). Vector fields in
V1,V2 may then be regarded as restrictions to Λ of those vector fields defined
in some neighborhood of (x0, x0) in Rn × Rn that annihilate g, and that also
annihilate π2 or π1, respectively. Two such vector fields should be regarded as
being equivalent if their restrictions to Λ coincide.

We next analyze the meaning of (CΛ) in more explicit terms in the hyper-
surface case k = n − 1. This is simpler than the case of higher codimension,
because if there exists an invariant (to infinite order) submanifold at the origin,
it must be M0 (modulo an infinite order perturbation), whereas when k < n−1
any manifold of positive codimension containing M0 is a potential candidate.

10This equals the module generated by differentiating each Vj with respect to the coordinates s

an arbitrary number of times and by taking all possible Lie brackets, then restricting to s = 0.
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Proposition 9.15. In the hypersurface case k = n − 1, (CΛ) holds at
x0 if and only if Mx0 ×Mx0 ⊂ Rn+n is not tangent to Λ to infinite order at
(x0, x0).

Suppose that Λ ⊂ Rn+n satisfies our hypotheses and has codimension
one. Choose coordinates x = (x′, xn) in Rn with origin at x0 such that M0 =
{y : (0, y) ∈ Λ} coincides with the hyperplane {y : yn = 0}. Then with the
corresponding product coordinates in Rn×Rn, the tangent space to Λ at (0, 0)
is the subspace {(x, y) : xn = yn}. There exists a function g : Rn+n 7→ R of
the form

g(x, y) = xn − yn − φ(x, y′)

such that Λ = {(x, y) : g(x, y) = 0} near (0, 0). Because {0} ×M0 and the
diagonal are contained in Λ, we have φ(0, 0) = 0, and φ may be chosen to
satisfy ∇φ(0, 0) = 0. The convention {0}×M0 ⊂ Λ means that g(0; y′, 0) ≡ 0;
hence, equivalently, φ(0; y′, 0) ≡ 0.

We claim that in these coordinates, (CΛ) holds at 0 if and only if there
exist multi-indices α, β such that

(9.18)
∂α+βφ

∂(x′)α∂(y′)β
(0, 0) 6= 0.

This is equivalent to the conclusion of Proposition 9.15.

Proof. For i ≤ n− 1 define

Yi =
∂

∂yi
− ∂φ

∂yi

∂

∂yn
,(9.19)

Xi =
∂

∂xi
+ (1− ∂φ/∂xn)−1 ∂φ

∂xi

∂

∂xn
.

These vector fields are defined not merely on Λ, but on Rn+n. They annihilate
g, hence are tangent to its level sets, and in particular are tangent to Λ.
Moreover V1 = span {Xi} and V2 = span {Yi} as C∞ modules on Λ.

Define f(x, y) = xn. Because Xj(f)(0) = Yj(f)(0) for all j ≤ n− 1, (CΛ)
holds at 0 if and only if there exists V ∈ G(Λ) satisfying V (f)(0) 6= 0.

Fix a vector field Z in Rn+n satisfying Z(g) ≡ 0 and Z(f) ≡ 1; then
Z does not belong to the span of V1 + V2 at (0, 0), since every element of
that span annihilates f at the origin. Such a vector field exists, because the
gradient of the restriction to Λ of f is nonzero at the origin. It is unique
modulo multiplication by functions and addition of elements of the C∞ module
V1 + V2. The vector fields annihilating g are those in the module spanned by
V1 ∪ V2 ∪ {Z}.

In order to compute G(Λ), we express each of its elements as V1 + V2 +
ψZ = V + ψZ, where Vi ∈ Vi and ψ ∈ C∞. Consider the C∞(Λ) module
M consisting of all functions W (f) such that W ∈ G(Λ), and let M† be the
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C∞(Λ) module generated by all partial derivatives ∂α+βφ/∂(x′)α∂(y′)β. We
claim that M⊂M†.

Note that V ∈ V1 +V2 implies V (f) ∈M†, by (9.19). ThereforeM⊂M†
if and only if ψ ∈M† for all vector fields V + ψZ ∈ G(Λ).

To prove the claim, it therefore suffices to show that [V + ψZ,

V ′+ψ′Z](f) ∈M† whenever V, V ′ ∈ V1 +V2 and ψ,ψ′ ∈M†. That [V, V ′](f)
∈ M† follows directly from (9.19). And [ψZ, V ′](f) = ψ · [Z, V ′](f) + V ′(ψ);
the first term is a multiple of ψ and hence belongs to M†, while V ′(ψ) ∈ M†
for any ψ ∈M† by (9.19).

The claim is therefore proved. Hence if (CΛ) holds at the origin, then
(9.18) must hold for some α, β.

To prove the converse we do not claim that M† ⊂ M, but merely that
for every h ∈ M† there exists ψ ∈ M such that h − ψ is a finite C∞ linear
combination of all ∂δφ/∂(y′)δ. Every such linear combination vanishes at the
origin by our choice of coordinates, so the span of M at the origin (in the
vector space R1) would thus contain the span of the set of all partial derivatives
∂α+βφ/∂(x′)α∂(y′)β(0), which suffices to yield the converse.

Since Xi ∈ V1 ⊂ G(Λ), ∂φ/∂xi ∈ M for every i ≤ n − 1. Since
[V, ψZ](f) = V (ψ) modulo a multiple of ψ for any V , a simple induction shows
that for any (α, β) with α 6= 0, ∂α+βφ/∂(x′)α∂(y′)β ∈ M, modulo addition of
a C∞ multiple of the span of all ∂δφ/∂(y′)δ.

Remark 9.2. The diagonal ∆ ⊂ Λ is distinguished in this theory, because
our primary aim is the analysis of operators of order zero, whose distribution
kernels are carried by submanifolds, and whose restrictions to the submanifolds
Mx passing through x are singular at y = x. But a pivotal part of the analysis,
formalized in Theorem 8.11, concerns simpler variants more closely related to
Radon transforms, whose distribution kernels have no additional singularities
on the diagonal; for these, the diagonal should not be distinguished.

A related class of Radon type transforms can be associated to any
Λ ⊂ Rn1+n2 , where n1 need not equal n2. We assume that both differentials
Dπi : TΛ 7→ TRni are submersions, though this hypothesis might perhaps also
be relaxed. To any measure µ on Λ having a C∞ density, associate an operator
T by

〈Tf2, f1〉 =
∫

Λ
f∗2 (y)f∗1 (x) dµ(x, y),

where f∗i = fi ◦ πi. When Λ is parametrized as {(x, γ(x, t))}, this is the class
of all operators

Tf(x) =
∫
K(x, t)f(γ(x, t))dt,

where K ∈ C∞.
Proposition 9.13 supplies a generalization of (CΛ) to this situation. Indeed,

the Lie algebras Vi, and hence G(Λ), may be defined as before. We say that
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Λ satisfies (CΛ) at a point λ if G(Λ) spans the tangent space to Λ at λ. This
generalization of (CΛ) is invariant under the natural action of the product group
Diff (Rn1)×Diff (Rn2).

Our methods lead to a generalization of Theorem 8.11: This curvature
condition is necessary and sufficient for (all) nonsingular Radon transforms
associated to Λ to be smoothing of some positive order, in the general situation
where n1, n2 are not necessarily equal.

10. Equivalence of curvature conditions

In this section we will demonstrate that (CJ)⇔ (Cg)⇔ (CM ). We will also
introduce a variant (CJ)′ and prove it to be equivalent to the other curvature
conditions. Most implications are more easily demonstrated by proving their
contrapositives.

10.1. Invariant submanifolds and deficient Lie algebras.

Lemma 10.1. (Cg)⇒ (CM ).

Proof. Suppose that (CM ) does not hold at x0. Then there exists a smooth
manifold M of some dimension 0 ≤ d < n containing x0 that is invariant under
γ to infinite order at x0. The condition (CM ) is diffeomorphism invariant, by
Proposition 8.10, so we may switch to coordinates y = (y′, y′′) ∈ Rd × Rn−d,
with origin at y0 = 0, so that M = {y : y′′ = 0} near 0. Write

γ(x′, x′′, t) = (γ′(x, t), γ′′(x, t))

where γ′′(x, t) ∈ Rn−d.
By Lemma 9.7 and (9.15), invariance of M to infinite order means that

the Taylor expansion of γ′′(x′, x′′, t) with respect to (x′, x′′, t) at (0, 0, 0) takes
the form

(10.1) γ′′(x, t) ∼ x′′ +O(x′′) ·O(t).

With respect to the coordinate system (y′, y′′; s) in Rn+k, any vector field
W in Rn+k may be decomposed uniquely as W = W ′+W ′′ plus an element of
the span of {∂/∂si}, where W ′ belongs at every point to the span of {∂/∂yi
: i ≤ d} and W ′′ to the span of {∂/∂yi : i > d}. There is a similar decomposi-
tion of any W defined in Rn.

Let V be the set of all vector fields W defined near 0 ∈ Rn+k that are
everywhere in the span of {∂/∂yj}, such that the Taylor expansion of W ′′ with
respect to (y, s) at the origin is O(y′′). Then V is closed under Lie brackets,
and moreover, [∂si ,W ] ∈ V for every W ∈ V and every index i.
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In the proof of Theorem 8.5 certain vector fields Zj were defined in (9.5)
by H∗(∂/∂tj) = Vj = Zj + ∂/∂sj , where H(x, t) = (γ(x, t), t). The hypothesis
(10.1) means that Z ′′j (x, t) ∼ O(x′′).

The vector fields Zβ defined in the proof of Theorem 8.5 were in the vector
space spanned by iterated commutators of the Zj and of ∂/∂si, and by the Zj
themselves. Each Zj belongs to V; hence so do all Zβ. The vector fields Xα

defined in (9.7) by restricting Zα to s = 0 therefore take the form

Xα = X ′α +X ′′α where X ′′α(x) ∼ O(x′′).

Once again, the set of all vector fields in Rn whose second components take
this form is closed under Lie brackets. In particular, all iterated commutators
of the Xα have this form, hence are tangent to M to infinite order at x = 0.
Since M has positive codimension, they fail to span TRn at 0.

Corollary 10.2. If a smooth manifold M 3 y is invariant under γ to
infinite order at y, then M is also invariant under γ−1 to infinite order at y.

Proof. Let the coordinate system be as in the preceding proof, so that
M = {(x′, x′′) : x′′ = 0}, and each vector field Xα = X ′α+X ′′α in the exponential
representation satisfies

X ′′α(x′, x′′) = O(x′′) +O(|x′|M ) for every M.

For any small x′, t and large N let

Φ(s) = exp(−s
∑
|α|≤N

tαXα/α!)(x′, 0).

The second component of Φ satisfies an ordinary differential equation

dΦ′′/ds = O(Φ′′(s)) +O(Φ′(s))M for every M.

Moreover dΦ/ds = O(t), so that Φ(s) = O(st). Consequently the second
component of Φ(1) is O(|x′|M + |t|M ) for every M and N . Letting N →∞ we
conclude that the second component of γ−1

t (x′, 0) is O(|t|N + |x′|M ) for every
M , as was to be proved.

Lemma 10.3. Suppose that γ is an analytic function of x, t in a neighbor-
hood of the origin in Rn ×Rk and that curvature condition (CJ) does not hold
at x = 0. Then there exists an analytic submanifold M ⊂ Rn containing 0, of
positive codimension, such that γ(x, t) ∈M for all (x, t) ∈M ×Rk sufficiently
close to 0.

Proof. Let ci be the maximum, as τ varies over a small neighborhood
of 0, of the rank of the matrix DΓi(0, τ) of first partial derivatives with respect
to τ ∈ Rki of Γi. If c1 = 0 then Γ1(0, τ) = γt(0) = 0 for all sufficiently small t,
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and M = {0} has the desired invariance property. Therefore we may suppose
that c1 > 0.

The hypothesis that curvature condition (CJ) fails to hold at x = 0 means
that every term in the Taylor expansion with respect to τ of each Jacobian
determinant Jξ(0, τ) vanishes. Since γ is analytic, each Jξ(0, τ) vanishes iden-
tically. Therefore the rank of DΓn(0, τ) is strictly less than n for every τ , that
is, cn < n. Since ci ≤ ci+1 for all i, there exists a smallest integer 1 ≤ m < n

such that cm = cm+1.
Let ` = cm. Fix τ0 so that DΓm(0, τ0) has rank `, and consequently the

rank is identically equal to ` at all τ near τ0. Therefore,11 τ 7→ Γm(0, τ) traces
out an `-dimensional real analytic submanifold N of Rn, as τ varies over a
small neighborhood of τ0 in Rkm.

Consider the mapping (s, τ) 7→ γs(Γm(0, τ)) for s near 0. Since cm = cm+1,
its matrix of first partial derivatives with respect to τ, s has rank identically
equal to `, for (s, τ) near (0, τ0). Therefore the image still traces out only an
`-dimensional submanifold as (s, τ) varies over a small neighborhood of (0, τ0).
Hence γs(y) ∈ N for all s near 0 and y near Γm(0, τ0). Clearly then N is also
invariant under γ−1 in the same sense.

This manifold N need not contain the origin. To rectify the situation
define Γ−m by m iterations of γ−1. Consider

G(σ, τ) = Γ−m(Γm(0, τ), σ).

From the invariance of N under γ−1 it follows that the matrix of first par-
tial derivatives of G with respect to σ, τ has rank identically equal to ` in a
neighborhood of (0, τ0). Hence by analytic continuation its rank never exceeds
` for any σ, τ . On the other hand, the rank of ∂G/∂τ is ` for any σ ∈ Rkm
and for any τ sufficiently near τ0, since y 7→ Γ−m(y, σ) is a diffeomorphism of
a neighborhood of 0 with a neighborhood of Γ−m(y, σ), and the rank of the
differential of the map τ 7→ Γm(0, τ) is already `.

Therefore by the inverse function theorem as above, the image under G of
a small neighborhood of (τ0, τ0) in Rkn+kn traces out a submanifold M of Rn,
of dimension ` < n, and 0 = G(τ0, τ0) belongs to M . By the same reasoning
as applied to the map (σ, τ) 7→ G(σ, τ) in the preceding paragraph, the rank
of the differential of (s, σ, τ) 7→ γs(G(σ, τ)) is everywhere ≤ `. Consequently
M is locally invariant under γ, by the same reasoning as applied to N two
paragraphs above.

11If F : M 7→ N is a smooth mapping whose differential has constant rank r in a neighborhood

of 0 ∈ M , and if M has dimension m, construct a mapping G = (F, g) : M 7→ N × Rm−r whose

differential is injective at 0. G(M) is therefore a submanifold Z of N × Rm−r of dimension m. The

implicit function theorem and constant rank hypothesis imply that the intersection of Z with N×{0}
is a submanifold of dimension r. This reasoning is also valid in the real analytic category since an

implicit function theorem holds in that setting as well.
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Lemma 10.4. (CM )⇒ (Cg).

Proof. Suppose that γ fails to satisfy (Cg) at x0. Let {Xα} be the vector
fields in the exponential representation for γ, let g be the Lie algebra that
they generate, and let r be the dimension of the subspace of the tangent space
spanned by g at x0. By hypothesis, r < n. If r = 0 then the manifold {x0} is
invariant under γ to infinite order, for

exp(
∑
|α|<N

tαXα/α!)(x0) ≡ x0

for every N , because each vector field
∑
|α|<N t

αXα/α! vanishes at x0.
If 0 < r < n fix a maximal subset {Vj : 1 ≤ j ≤ r} of g that is linearly

independent at x0. For v ∈ Rr write v·
⇀
V=

∑
j vjVj . The differential of the

map v 7→ exp(v·
⇀
V )(x0) has full rank r at v = 0; hence its image near v = 0 is

a submanifold M of Rn of dimension r. We claim that M is invariant under γ
to infinite order at x0.

To prove that M is invariant to some arbitrarily high order N write y =
(t, v) ∈ Rk+r and consider the map φ defined by

φ(y) = γt
(

exp(v·
⇀
V )(x0)

)
= exp(

∑
0<|α|<N

tαXα/α!) exp(v·
⇀
V )(x0) +O(|y|N ).

We claim that for some Rr-valued polynomial P depending on N ,

(10.2) φ(y) = exp(P (y)·
⇀
V )(x0) +O(|y|N ).

In this identity and similar ones below, the addition sign denotes the usual
group operation in Rn, in some fixed coordinate system.

By the Baker-Campbell-Hausdorff formula,

φ(y) = exp
(
v·

⇀
V +

∑
1≤|β|<N

yβW 1
β

)
(x0) +O(|y|N )

for certain vector fields W 1
β belonging to g. Since every element of g belongs

to the span of {Vj} at x0, there exists for each β a decomposition

W 1
β =

∑
j

cβ,jVj + W̃ 1
β

where each cβ,j is a real constant, W̃ 1
β ∈ g, and W̃ 1

β (x0) = 0. Let E1 = E1(y)
be the vector field in Rn, depending on the parameter y, defined by

E1(y) =
∑

1≤|β|<N
yβW̃ 1

β .

Then
φ(y) = exp(P1(y)·

⇀
V +E1(y))(x0) +O(|y|N )

for some vector valued polynomial P1 satisfying P1(0) = 0.
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Since E1(y)(x0) = 0 for every y,

exp(−E1(y))(x0) ≡ x0.

Substituting this into the preceding identity and invoking the Baker-Campbell-
Hausdorff formula give

φ(y) = exp(P1(y)·
⇀
V +E1(y)) exp(−E1(y))(x0) +O(|y|N )

= exp(P1(y)·
⇀
V +

∑
2≤|β|<N

yβW 2
β )(x0) +O(|y|N )

where each W 2
β ∈ g. Only multi-indices satisfying |β| ≥ 2 arise, because P1(y)

and E1(y) both vanish when y = 0. As above, this may be rewritten as

φ(y) = exp(P2(y)·
⇀
V +E2(y))(x0) +O(|y|N ),

where again E2(y)(x0) ≡ 0 and E2(y) ∈ g for every y, and now E2(y) = O(|y|2)
near y = 0. Again exp(−E2(y))(x0) ≡ x0. Substituting this and applying the
Baker-Campbell-Hausdorff formula once more leads to a remainder term E3(y)
which is O(|y|3) for small y, since E2 is O(|y|2) and P2(y) is O(|y|).

Repeating this argument N times yields

φ(y) = exp(PN (y)·
⇀
V +EN (y))(x0) +O(|y|N ),

where EN (y) = O(|y|N ) and PN is a polynomial. Deleting the term EN from
the right-hand side now merely results in an additional error term O(|y|N ); so
(10.2) is proved.

Any x ∈ M close to x0 may be expressed as exp(v·
⇀
V )(x0), and |v| ∼

|x− x0|. Consequently

γt(x) = φ(t, v) +O(|t|N ).

Since exp(PN (y)·
⇀
V )(x0) ∈ M , the distance from γt(x) to M is O(|t| + |v|)N ,

as was to be proved.

The following lemma is needed to complete the proof of Proposition 9.13.

Lemma 10.5. (CΛ)⇒ (CM ).

Proof. Suppose that (CM ) fails to hold at x0, so that there exists a sub-
manifold M of positive codimension invariant under γ to infinite order at x0.
Choose coordinates (x′, x′′) as in Lemma 9.7, (9.14) and (9.15), in which x = 0
and M = {x′′ = 0}.

When we let H(x, t) = (γ(x, t), t) and employ the notation of (9.14),
γ′′(x, t) ∼ O(x′′) and consequently every Z ′′j (x, t) ∼ O(x′′). Therefore the x′′

component of any partial derivative of any Zj with respect to t, evaluated at
t = 0, is likewise ∼ O(x′′). Just as in the proof that (Cg) implies (CM ), this
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means that the span of the Lie algebra generated by all these partial derivatives
is contained in the tangent space to M at 0. We have seen in the course of
the proof of Lemma 9.14 that g(Λ) is the C∞ module generated by all such
partial derivatives and by forming iterated Lie brackets. Therefore g(Λ) does
not span, so (CΛ) fails to hold.

10.2. Vanishing Jacobians. In order to prove that (CJ) implies (Cg) we
require two subsidiary lemmas. Fix any coordinate system in a neighborhood
of x0. Then given any n vector fields V1, . . . Vn we may form the determinant
det(V1, . . . Vn)(x) by writing Vi(x) as

∑
aij(x)∂/∂xj and taking the determi-

nant of the n× n matrix
(
aij(x)

)
. Denote by ∇ · V the divergence of V .

By a polynomial in {Xα} we will mean any vector field expressible as a
finite linear combination, with constant coefficients, of iterated commutators
of the Xα. By a Taylor series in {Xα} we will mean any formal series V (x, τ) =∑
|σ|>0 τ

σUσ(x), where each Uσ is a polynomial in {Xα} and τ = (τij) ∈ Rkn.

Lemma 10.6. There exist Taylor series Wij in {Xα} such that

∂Γ(x, τ)
∂τij

∼Wij(Γ(x, τ))

as Taylor series in τ .

Proof. By the Baker-Campbell-Hausdorff formula,

Γ(x, τ) ∼ exp
(∑

σ

τσUσ/σ!
)
(x)

for certain polynomials Uσ in {Xα}. So

Γ(x, τ + ∆τ) ∼ exp
(∑ τσ

σ!
Uσ + ∆τ ·W

)
(x) +O(∆τ)2

as Taylor series in (τ,∆τ), for a certain kn-tuple W of Taylor series in {Xα}.
Suppose that ∆τ has i, jth entry equal to s and all other entries zero. Then by
another application of the Baker-Campbell-Hausdorff formula we may rewrite

Γ(x, τ + ∆τ) ∼ exp(sWij) exp(
∑

τσUσ/σ!)(x) +O(s)2

∼ exp(sWij)(Γ(x, τ)) +O(s)2

where Wij is a Taylor series in {Uσ}, and hence is a Taylor series in {Xα}.
Differentiating with respect to s and evaluating at s = 0 conclude the proof.

Lemma 10.7. As a Taylor series in τ , each Jξ(x, τ) has the form∑
|β|>0

τβVβ(x)
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where each function Vβ is a finite linear combination of terms

ϕ(x) · det(Z1(x), . . . Zn(x)),

each ϕ belongs to C∞, and the vector fields Zj are iterated commutators of
the Xα.

Proof. By its definition and by the preceding lemma,

Jξ(x, τ) = det
(
U1(Γ(x, τ), τ), . . . Un(Γ(x, τ), τ)

)
where each Uk is one of the Wij , depending on ξ. Our aim is to express each
partial derivative of Jξ with respect to τ as a finite linear combination of C∞

functions of x times determinants of similar n-tuples, each component of which
is another Taylor series in {Xα}, evaluated at (Γ(x, τ), τ). Setting τ = 0 then
yields the result desired.

Set
F (x, τ) = det

(
U1(x, τ), . . . Un(x, τ)

)
so that Jξ(x, τ) = F (Γ(x, τ), τ). When ∂Jξ(x, τ)/∂τij is calculated by the chain
rule, the derivative falls either on Γ(x, τ), or on the second occurrence of τ in
F (Γ(x, τ), τ). In the latter event what results is equal, by the multilinearity of
the determinant, to

det

(
∂U1

∂τij
(Γ(x, τ), τ), U2(Γ(x, τ), τ), . . . Un(Γ(x, τ), τ)

)
plus n − 1 more terms of the same form, in each of which some other Uk is
differentiated instead of U1.

In the former event we may invoke the preceding lemma to express the
result as (WijF )(Γ(x, τ), τ). It is shown in [29, Lemma 2.6], that for any vector
fields B,A1, . . . An,

B( det(A1, . . . An))

= (∇ ·B) · det(A1, . . . An) +
∑
j≤n

det(A1, . . . Aj−1, [B,Aj ], Aj+1, . . . An).

Thus ∂Jξ/∂τij equals (∇ ·Wij)Jξ plus 2n terms of the general form

det
(
A1(Γ(x, τ), τ), . . . An(Γ(x, τ), τ)

)
where each Ai(x, τ) is a Taylor series in {Xα}. Each such term is of the
same form as Jξ itself. Therefore combining the two cases that resulted from
application of the chain rule we find, by induction on |β|, that every partial
derivative ∂βJξ/∂τβ is of the desired form.

Lemma 10.8. (CJ)⇒ (Cg).
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Proof. Suppose that (Cg) does not hold at x; that is, the Xα and all their
commutators fail to span the tangent space to Rn at x. Then each Jξ(x, τ)
vanishes to infinite order at τ = 0 by the preceding lemma, so that (CJ) also
fails to hold at x.

It is comparatively easy to show that (Cg) implies a weaker form (CJ)′ of
(CJ), which suffices for our analytic applications. Recall that Γr denotes the
r-fold iterate of γ. Now (CJ) is the special case r=n of the following definition.

Definition 10.9. γ satisfies (CJ)′ at x0 if there exist an integer r and an
n-tuple ξ ∈ {1, 2, . . . rk} such that the Jacobian determinant of the n by n

matrix of first partial derivatives of Γr(x0, τ) with respect to (τξ1 , . . . τξn) does
not vanish to infinite order at τ = 0.

Note that (CJ)′ ⇒ (Cg), by the proof of Lemma 10.8.

Lemma 10.10. (Cg)⇒ (CJ)′.

Proof. This time we do not prove the contrapositive; suppose that γ sat-
isfies (Cg) at x0 ∈ Rn. Let S be the set of all k-tuples of nonnegative integers.
For α = (α1, . . . αk) ∈ S, set |α| =

∑
αi. Let Sm be the set of all α ∈ S

satisfying |α| ≤ m.
Denote by

XI = [Xα1 , [Xα2 , · · · [Xαq−1 , Xαq ] · · ·]
an arbitrary iterated commutator of {Xα}, where each αi ∈ S, and I =
(α1, . . . αq) ∈ Sq for arbitrary q ≥ 1. Define |I| =

∑q
1 |αi|. Thus each Xα

is an XI , but not vice versa.
Fix an integer m such that the set of all XI satisfying |I| ≤ m spans TRn

at x0. Let N = N a1,...
m be the free graded nilpotent Lie algebra introduced in

Section 2, with one generator Yα for each α ∈ Sm. Let {YI : I ∈ I} be the basis
for N discussed in Section 2, where I denotes the set of all basic multi-indices
I satisfying |I| ≤ m. Throughout this proof I will always denote an element of
I. Denote by N the connected, simply connected Lie group whose Lie algebra
is N . Identify the YI with left invariant vector fields on N , via the exponential
map

∑
uIYI 7→ exp(

∑
uIYI)(0). Let d be the dimension of N .

To each YI associate a vector field XI in a fixed neighborhood of
x0 ∈ Rn, by replacing each Yαj in the commutator representation for YI by
the corresponding vector field Xαj . Then {XI : I ∈ I} spans TRn at x0, by
hypothesis and the choice of m.

Define

γ̃(x, t) = exp(
∑

0<|α|≤m
tαYα/α!)(x) for (x, t) ∈ N × Rk.

Denote by Γ̃ρ(x, τ) its ρ-fold iterate, τ ∈ Rρk.
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At the origin γ̃ satisfies (CJ). For with the coordinates on N defined by the
exponential map and the basis {YI} for N , γ̃ is a polynomial in (x, t). Hence
by Lemma 10.3, if (CJ) were to fail to hold then there would exist a manifold
M 3 0 of positive codimension invariant under γ̃. Each of the vector fields
Yα, α ∈ Sm, would be tangent to M at every point of M , as follows from an
induction on |α| and the proof of uniqueness of the exponential representation.
Hence so would be all their commutators. Therefore {Yα} would fail to generate
N , a contradiction.

Since (CJ) holds, we may fix r and ξ ∈ {1, 2, . . . rk}d such that the Jacobian
determinant Jξ(τ) of the d by d matrix of first partial derivatives of Γ̃r(0, τ)
with respect to τξ1 , . . . τξd does not vanish to infinite order as a function of
τ ∈ Rrk at τ = 0. By the Baker-Campbell-Hausdorff formula, Γ̃r(0, τ) takes
the form exp(

∑
I PI(τ)YI)(0), where each PI is a homogeneous polynomial of

degree |I| ≤ m.
Denote by Γr the corresponding r-fold iterate of γ, in a neighborhood of x0

in Rn. By the iteration process in the proof of Lemma 10.4, since {XI : I ∈ I}
spans TRn at x0, the Taylor expansion of Γr(0, τ) at τ = 0 may be expressed
as

exp(
∑
I∈I

(PI +RI)(τ)XI)(x0),

as a formal Taylor series, where the PI are the same polynomials as above, and
each formal series RI vanishes at least to order m + 1 at τ = 0. This repre-
sentation is of course not unique, unless {XI : I ∈ I} is linearly independent
at x0.

Returning to N , we consider the formal Taylor series defined by

Γ̂r(τ) ∼ exp(
∑
I∈I

(PI +RI)(τ)YI)(0).

We claim that the Jacobian determinant Ĵξ for Γ̂r, which is a formal Taylor
series in τ rather than a function, does not vanish to infinite order at τ = 0.
Indeed, Jξ is a homogeneous polynomial in τ of some degree Q, and each RI
vanishes at least to order m+1 whereas each PI is homogeneous of some degree
≤ m. Therefore Ĵξ − Jξ vanishes at least to order Q+ 1 at τ = 0, from which
the claim follows.

Consider the map F : N 7→ Rn defined by

F : exp(
∑
I

uIYI)(0) 7→ exp(
∑
I

uIXI)(x0).

By their definitions,

(10.3) Γr(x0, τ) ∼ F ◦ Γ̂r(0, τ)

as formal Taylor series. Note that F is a well defined C∞ map, taking 0
to x0, which is a submersion at 0 because {XI : I ∈ I} spans TRn at x0.
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Therefore by the implicit function theorem there exists a diffeomorphism Ψ
of a neighborhood of 0 ∈ N with a neighborhood of 0 ∈ Rd, mapping 0 to
0, so that F ≡ π ◦ Ψ where π : Rd 7→ Rn is the projection π(x′, x′′) = x′ for
(x′, x′′) ∈ Rn × Rd−n = Rd. By (10.3),

(10.4) Γr(x0, τ) ∼ π ◦ Γ̌r

where Γ̌r(0, τ) = Ψ(Γ̂r(0, τ)).
Consider the corresponding Jacobian determinant J̌ξ(τ) of Γ̌r with respect

to τξ1 , . . . τξd ; this is another Taylor series in τ . Formally it equals Ĵξ times a
nonvanishing function of τ , so it does not vanish to infinite order at τ = 0. By
elementary matrix operations, the d by d matrix determinant J̌ξ(τ) may be
expanded as a finite linear combination of determinants of its n by n minors
of the form

J (γ)(τ) = ∂[π ◦ Γ̌r]/∂[τξγ1
, . . . τξγn ],

where each J (γ) and each coefficient in this linear combination is itself a for-
mal Taylor series in τ , and {ξγ1 , . . . ξγn} runs over all subsets of {ξ1, . . . ξd} of
cardinality n.

Since J̌ξ does not vanish to infinite order at τ = 0, there must exist γ
such that J (γ) likewise does not vanish to infinite order. But by (10.4), J (γ)(τ)
is the Taylor series of the Jacobian determinant of Γr(x0, τ) with respect to
{τξi : i = γ1, . . . γn}. Hence the original γ in Rn satisfies (CJ)′ at x0.

Both halves of the following result have now been established.

Corollary 10.11. (CJ)′ ⇔ (Cg).

Remark 10.1. We have shown that (Cg) implies a more precise form of
(CJ)′, in which appears the iterate Γr of γ of a specific order r = d, equal to
the dimension of a certain free nilpotent Lie algebra determined by the Lie
algebra in Rn generated by {Xα}.

10.3. Construction of invariant submanifolds. In order to complete the
proof of equivalence of (CJ ) with the other curvature conditions, we need the
following implication.

Lemma 10.12. (CM )⇒ (CJ).

This lemma and its lengthy proof are not needed for our analytic appli-
cations, so this section may safely be skipped over by the reader primarily
interested in the analysis of operators. To prove it we will show how subman-
ifolds invariant under γ to infinite order may be constructed, given that (CJ)
fails to hold.

In the next two lemmas we reduce the general C∞ case to that of poly-
nomial mappings γ, so that Lemma 10.3 on the analytic case may be applied.
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Some care is required in doing so, for the hypothesis that (CJ) fails to hold at
x0 is not stable under truncation of the Taylor expansion for γ(x, t) at (x0, 0),
even though the vanishing of any particular Taylor coefficient of any Jacobian
determinant Jξ is stable under truncations of sufficiently high order.

Let there be given an integer n ≥ 1 and weights 0 < w1 ≤ . . . wn < ∞.
For any m ≤ n define mappings δr : Rm × Rk 7→ Rm × Rk by

δr(x1, . . . xm; t) = (rw1x1, . . . r
wmxm; rt).

The same notation δr will be used to denote the related mappings

δr(x1, . . . xm) = (rw1x1, . . . r
wmxm).

We say that a function P : Rm+k 7→ R is homogeneous of weight v if

P (δr(x, t)) ≡ rvP (x, t) for all r ∈ R+ and all (x, t) ∈ Rm+k.

Any such homogeneous function that is C∞ is necessarily a polynomial. The
analogous definition applies to functions with domain Rm. More generally,
some weights will be allowed to equal +∞. If wj < ∞ for all j ≤ q ≤ n,
then the dilations δr are still defined as above on Rm×Rk and on Rm for each
m ≤ q, and homogeneity of weight v is still defined for functions with domains
Rm+k or Rm, for all m ≤ q.

The strategy of our construction of invariant submanifolds is to simulta-
neously construct an associated system of coordinates and weights12 in which
γ is expressed as an irreducible leading order part, plus a less important higher
order perturbation. The weights serve as measures of the extent to which γ

looks flat, that is, not curved, in a given coordinate system. Larger weights
correspond to less apparent curvature, and to a higher degree of invariance for
a subspace x′′ = 0, in some coordinate system split as x = (x′, x′′).

As an illustration consider the example

γ(x, t) = (x1 + t, x2 + 2x1t+ t2),

to which weights (w1, w2) = (1, 2) would naturally be assigned, because
γ(rx1, r

2x2, rt) = δrγ(x, t) where δr(x) = (rw1x1, r
w2x2). This family of curves

may be transformed by a change of coordinates to γ̂(x, t) = (x1 + t, x2), for
which the weights are (1,∞) and the line x2 = 0 is an invariant submanifold.
Now γ̂ is homogeneous with respect to any weights (1, w2), and in such a case
we choose the largest possible w2.

A second example is

γ(x, t) = (x1 + t, x2 + 2x1t+ t2 + t3).

12This construction was originally devised as the basis for a lifting procedure which dealt directly

with a mapping γ, rather than with the vector fields Xα in its exponential representation.
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This mapping is not homogeneous with respect to any system of weights, but
the system of weights (1, 2) is naturally associated to γ, for the dilation group
defined by these weights satisfies

γ(δr(x, t)) = δrγ(x, t) +
(
0, O(r3)

)
,

and the exponent 3 in the remainder term is greater than the weight w2 = 2.
Thus γ is homogeneous modulo a higher order remainder term. This mapping
γ may be transformed by conjugation with an appropriate diffeomorphism into
(x1 + t, x2 + t3), which is homogeneous with respect to the weights (1, 3). After
conjugation no weight has decreased, and one weight has increased.

In the next lemma t will as usual be in Rk, but x ∈ Rp+1 for some p ≥ 1,
and we write x = (x′;xp+1) ∈ Rp×R. The map γ is assumed to send Rp+1×Rk
to Rp+1.

Lemma 10.13. Suppose that in Rp+1 = Rp×R1, γ takes the special form

γt(x) = (γ′t(x
′);xp+1 + Pp+1(x′, t))

where for each j,

γ′t(x
′) = (x1 + P1(x′, t), . . . xp + Pp(x′, t)) ∈ Rp ,

Pj(x′, 0) ≡ 0 for all j ,

Pj depends only on x1, . . . xj−1, t ,

1 ≤ w1, . . . wp+1 ∈ Z ,

Pj is a homogeneous polynomial of weight wj ,

and where

γ′ satisfies (CJ) at 0 ∈ Rp ,(10.5)

γ does not satisfy (CJ) at 0 ∈ Rp+1.

Then there exists a homogeneous polynomial h : Rp 7→ R of weight wp+1, such
that

(10.6) Pp+1(x′, t) ≡
(
h ◦ γ′t − h

)
(x′).

Moreover, if a diffeomorphism Φ of Rp+1 is defined to be Φ(x) =
(x′;xp+1 − h(x′)), then the conjugated family of mappings γ̃t(x) = Φγt(Φ−1x)
takes the form

γ̃t(x) ≡ (γ′t(x
′); xp+1).

In the second to last hypothesis (10.5), γ′ is regarded as a mapping from
Rp+k to Rp, and is assumed to satisfy (CJ) as such a mapping.

Proof. Let Γ′j(x′, τ) and Γj(x, τ) denote the jth iterates of γ′ and γ, re-
spectively, and let π : Rp+1 7→ Rp be the projection onto the first p coordinates.
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Since π ◦ γt ≡ γ′t ◦ π, πΓj(x, τ) ≡ Γ′j(πx, τ). Now apply the construction of
Lemma 10.3 to the real analytic mapping γ, and let m, ` be the integers defined
there.

We assert that ` = p. Indeed, some iterate Γ′j(0, τ) has a surjective
differential at some τ0, since γ′ satisfies (CJ). The rank of the differential of
Γj(0, τ) must be at least as large as that of πΓj(0, τ) = Γ′j(0, τ), so is at least
p at τ0. On the other hand it never exceeds p since (CJ) is assumed not to hold
for γ at x = 0. Thus in the reasoning of Lemma 10.3 we have cp = cp+1 = p,
and the differential of Γ′p(0, τ) is surjective at τ0.

Now in a small neighborhood of (τ0, τ0), the differential of

(σ, τ) 7→ Γ′−k(Γ′k(0, τ), σ)

has rank p. In other words, the map π|M from the manifold M constructed in
Lemma 10.3 to Rp has a surjective differential in a neighborhood of the origin.
Therefore M may be expressed locally as the graph of a smooth function:

M = {(x′, h(x′)) : |x′| < ε}.
Define δrx = (rw1x1, . . . r

wp+1xp+1). Then γrt(δrx) ≡ δrγt(x) by the ho-
mogeneity hypothesis. The same identity holds for γ−1, by uniqueness of the
inverse. By iteration the same follows for Γ−p ◦Γp. Therefore the manifold M
is invariant under δ in a neighborhood of the origin, so h must satisfy

h(rw1x1, . . . r
wpxp) ≡ rwp+1h(x1, . . . xp).

Then h must be a polynomial.
Now we may define M globally as the graph of h over all of Rp. By

analytic continuation, γt(M) ⊂M for all t ∈ Rk. In terms of the equation for
M , this says that for all x′, t,

γt(x′;h(x′)) =
(
γ′t(x

′);h(γ′t(x
′))
)
.

But the left-hand side also equals(
γ′t(x

′);h(x′) + Pp+1(x′, t)
)
,

so h satisfies the cocycle identity (10.6). The second conclusion of the lemma
now follows directly from the definition of Φ.

In the next lemma we work in Rn with a fixed coordinate system and an
associated ordered n-tuple (w1, . . . wn) of weights, for which each wj is either
a positive integer, or equals +∞. Each component of t is always assigned
weight 1. With respect to such a system of weights we make the following
definition.

Definition 10.14. The weight of a monomial tβ
∏
x
αj
j with respect to the

system of weights (w1, . . . wn) is defined to be

(10.7) |β|+
∑

αjwj .



     

542 CHRIST, NAGEL, STEIN, AND WAINGER

The weight of a C∞ real-valued function F of (x, t) equals the minimum of the
weights of all monomials xαtβ such that ∂α+βF/∂xα∂tβ(0, 0) 6= 0, provided
there exists at least one such (α, β). It equals +∞ if the Taylor series of F
with respect to (x, t) about (0, 0) vanishes identically.

Observe that the sum (10.7) may equal either a nonnegative integer, or +∞.
If some weight wj equals +∞, then F may have weight +∞, even if its Taylor
expansion does not vanish identically.

Lemma 10.15. Let an integer q < n and weights (w1, . . . wn) be given.
Suppose that wj < ∞ for all j ≤ q, and wj = +∞ for all j > q. Assume that
γ takes the form

(10.8) γt(x) = x +
(
Q1(x, t), . . . Qn(x, t)

)
where Qj(x, 0) ≡ 0 for every j, and where for each j ≤ q, Qj takes the form

(10.9) Qj(x, t) = Pj(x, t) +Rj(x, t)

with the following properties:

(10.10)

Pj(x, 0) ≡ Rj(x, 0) ≡ 0 ,

Pj(x, t) depends only on t, x1, . . . xj−1 ,

Pj is a homogeneous polynomial of weight wj ,

γ′t(x
′) = (x1 + P1(x, t), . . . xq + Pq(x, t)) satisfies (CJ) at 0 ∈ Rq ,
Rj is of weight strictly greater than wj ,

Qj is of weight greater than or equal to wq for every 1 ≤ j ≤ n.

Suppose further that

(10.11) γ fails to satisfy (CJ) at 0 ∈ Rn.

Then either

(A) All the Qj have infinite weight, or

(B) There exists a diffeomorphism Φ of a neighborhood of 0 ∈ Rn, fixing 0,
such that γ̃t(x) = ΦγtΦ−1(x) again takes the general form (10.8),(10.9)
but either

(B1) with q increased by 1, or

(B2) with q unchanged, none of the weights of the Qj decreased, and the
weight of one of those Qi, i > q, formerly having minimal weight
increased by at least one.
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In the special case q = 0 we mean the following. The only hypothesis13 is
that γ ∈ C∞ satisfies γ(x, 0) ≡ x. We write γt(x) = x+ (Q1(x, t), . . . Qn(x, t)),
and assign infinite weight to each component of x and weight 1 to each com-
ponent of t.

Proof. Consider first the case q = 0. If ∂βQj/∂tβ(0, 0) = 0 for every j

and every multi-index β, then alternative (A) holds and the proof is complete.
If not, select β and j for which this partial derivative is nonzero, such that |β|
is minimal. Let Φ be the diffeomorphism of Rn which interchanges the jth and
first coordinates. Define new weights w1 = |β|, and wj = +∞ for all j > 1,
and define a new index q = 1. Then the conjugated mapping γ̃ takes the form
(10.8), where Q1(0, t) has weight w1 < ∞. Thus alternative (B1) holds, and
the proof is again complete.

Suppose now that 1 ≤ q < n. Write x′ = (x1, . . . xq). If all the Qj have
infinite weight then alternative (A) holds. Otherwise choose some i0 > q for
which Qi0 has minimal weight, v, among all Qi for i > q. Permute the last
n− q coordinates so that i0 = q + 1. Let S(x, t) be the sum of all monomials
of weight v in Qq+1; since xq+1, . . . xn all have infinite weight, S can depend
only on x′, t and will henceforth be denoted by S(x′, t). In Rq+1 define

γ̃t(x′, xq+1) = (γ′t(x
′), xq+1 + S(x′, t)).

There are two cases to analyze, depending on whether or not γ̃ satisfies
(CJ) at 0 ∈ Rq+1. If it does, define Pq+1 = S, Rq+1 = Qq+1−S, and wq+1 = v.
Then alternative (B1) holds.

If it does not, invoke Lemma 10.13 to obtain a diffeomorphism Φ̃ of
Rq+1 which conjugates γ̃ to the form (γ′t(x

′), xq+1), and which takes the form
Φ̃(x′, xq+1) = (x′, xq+1 + h(x′)) where h is homogeneous of weight v. Define a
diffeomorphism of Rn by

Φ(x) = (Φ̃(x1, . . . xq+1), xq+2, . . . xn).

Then γ̃t(x) = Φγt(Φ−1x) satisfies alternative (B2), for

γ̃t(x) =
(
x1 + P1 +R1, . . . xq + Pq +Rq, xq+1 + Q̃q+1(x, t), . . . , xn + Q̃n(x, t)

)
where Q̃q+1(x, t) = Qq+1(x, t) − S(x′, t), and Q̃j has weight ≥ v for each
j ≥ q + 2. Since Qq+1 − S has weight strictly greater than v, alternative (B2)
holds.

The next lemma is the C∞ analogue of Lemma 10.3.

Lemma 10.16. Suppose that γ fails to satisfy the curvature condition
(CJ) at 0 ∈ Rn. Then there exist a nonnegative integer p < n and a coordinate

13The hypothesis (10.11) will not be used in the case q = 0.
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system x = (x′, x′′) near the origin in Rn = Rp × Rn−p in which γ takes the
form

(10.12) γt(x) = (x1 + S1(x, t), . . . , xn + Sn(x, t))

where for each j > p,

(10.13) Sj(x′, 0, t) = O(|x′|+ |t|)N for every N.

Thus the manifold M = Rp × {0} ⊂ Rn is invariant under γ, to infinite
order at 0.

Proof. Both curvature conditions (CM ) and (CJ) have been proved to be
invariant under conjugation of γ with diffeomorphisms of Rn, so we are free to
change coordinates in the proof.

Certainly the hypotheses of Lemma 10.15 are satisfied with q = 0. Apply
that lemma. If alternative (A) holds then we are finished. Otherwise make
the change of coordinates indicated for alternative (B). If alternative (A) then
holds in these new coordinates, we are again finished. If not, repeat the process,
stopping if and only if alternative (A) ever arises.

Suppose now that the process were never to stop. Observe that the index
q in the lemma can never become equal to n, for if it did, (10.10) would say
that the leading order part γ̃ = (x1 + P1, . . . , xn + Pn) of γ did satisfy (CJ)
at 0. This in turn would imply that γ must satisfy (CJ) at 0, because the
Jacobians associated to γ, γ̃ are related: For each ξ, J̃ξ(0, τ) is a homogeneous
polynomial of some degree in τ , and Jξ(0, τ) equals J̃ξ(0, τ) modulo terms of
strictly higher degree. Consequently if ∂ατ J̃ξ(0, τ) 6= 0 when τ = 0, then the
same holds for J , with the same ξ, α.

Upon each application of Lemma 10.15, the index q either increases, or
remains unchanged. Therefore q eventually stabilizes at some value strictly
less than n. Thereafter alternative (B2) arises every time that Lemma 10.15
is applied.

In this event each iteration yields a diffeomorphism Φi, and we wish to
compose them all to obtain the desired change of coordinates. This is possible
because if the permutations of coordinates made above for notational conve-
nience are omitted, then each Φi agrees with the identity map at 0, up to an
order which tends to infinity with the number of iterations N of this process.
Therefore any particular term in the Taylor expansion about 0 of the com-
position of the first N maps Φi becomes independent of N , once N becomes
sufficiently large. Therefore the infinite composition is well defined as a formal
Taylor series about x = 0. By a theorem of E. Borel, there exists a C∞ function
Φ∞ : Rn 7→ Rn whose Taylor expansion about the origin concides with this
formal series. Then conjugation with Φ∞ brings γ into the form desired.
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Remark 10.2. Implicit in the proofs of Lemmas 10.13 and 10.15 is a con-
struction which applies to any mapping γ, whether or not it satisfies (C). When
(C) is satisfied it produces a system of coordinates in which γ(x, t) appears in
a sense to be maximally flat near x = 0; the higher the order to which all
Jξ(0, τ) vanish at τ = 0, the larger are the weights wj , roughly speaking. This
coordinate system can be used in the same spirit as in the proof of Theo-
rem 8.11 to derive restrictions on pairs of exponents p, q for which an operator
Tf(x) =

∫
f(γ(x, t))K(x, t)dt, with K ∈ C0 and K(x, 0) 6= 0, can map Lp to

Lq. See Section 20.

Part 3. Analytic theory

11. Statements and reduction to the free case

Let γ be a C∞ mapping (x, t) 7→ γ(x, t) = γt(x) defined in a neighborhood
of the point (x0, 0) ∈ Rn × Rk, with range in Rn. Note that γ is assumed to
satisfy the equivalent curvature conditions discussed in Section 8.

Let K be a Calderón-Zygmund kernel in Rk. By this we mean that K ∈
C1(Rk\{0}) is homogeneous of degree −k, and satisfies

∫
|t|=1 K(t)dσ(t) = 0.

We also choose a nonnegative C∞ cut-off function ψ, supported near x0, and
a small positive constant a. Then we form the singular Radon transform T ,
defined initially for compactly supported C1 functions by

(11.1) T (f)(x) = ψ(x) pv
∫
|t|≤a

f(γt(x))K(t)dt

where pv
∫
|t|≤a

g(t)dt = lim
ε→0

∫
ε≤|t|≤a

g(t)dt .

The cutoff function ψ and the small constant a serve to localize matters
to a small neighborhood of x0, so that everything is well defined. Throughout
the argument we implicitly assume a to be chosen to be sufficiently small for
various purposes. In particular, we assume always that the map x 7→ γt(x) is a
diffeomorphism from a neighborhood of the support of ψ to an open subset of
Rn, uniformly for every |t| ≤ a′, for some constant a′ > a. Then the operator

f 7→ ψ(x)
∫
a≤|t|≤a′

f(γt(x))K(t)dt

is bounded on Lp for every p ∈ [1,∞], by the very elementary Lemma 14.1,
below. This holds provided merely that K ∈ L1, without any curvature hy-
pothesis on γ.

Our first main theorem is then:

Theorem 11.1. Suppose that γ satisfies (C) and that K is as above. Then
the operator T defined by (11.1) extends to a bounded operator from Lp(Rn) to
itself, for every 1 < p <∞.
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A more general formulation of this theorem is given in Section 21 below.
There is a corresponding maximal theorem. For every continuous f with

compact support we define M(f) by

(11.2) M(f)(x) = sup
0<r<a

r−k |ψ(x)
∫
|t|≤r

f(γt(x)) dt|.

Theorem 11.2. Suppose that γ satisfies (C) in a neighborhood of the
support of ψ. Then M extends to a bounded operator from Lp(Rn) to itself, for
every 1 < p ≤ ∞.

We shall show first that these results can be obtained from the corre-
sponding statements in the lifted situation where the vector fields are free in
the sense of Section 5.

Recall that by the exponential Taylor formula (Proposition 8.1),
γt ∼ exp

(∑
tαXα/α!

)
. More precisely, since γ satisfies (C), there exists

m > 0 such that

(11.3) γ(x, t) = exp
( ∑

0<|α|≤m
tαXα/α!

)
(x) + R(x, t),

where R(x, t) = O(|t|m+1), and where the Xα and their commutators of degree
≤ m span the tangent space at x0. Throughout the discussion, Xα is assigned
the degree |α|.

Let X1, X2, . . . Xp be an enumeration of {Xα : |α| ≤ m}, and denote by
ai the degree |α| already assigned to Xi. Let X̃i denote corresponding lifted
vector fields, satisfying the conclusions of Proposition 6.1. In the extended
space {(x, z)} = Rn × Rd−n we have

X̃α = Xα +
d−n∑
k=1

bkα (x, z)
∂

∂zk
.

Denote by π : Rn × Rd−n 7→ Rn the projection by π(x, z) = x. In conjunction
with (11.3), when t is small we define γ̃ by

(11.4) γ̃ (x, z, t) = exp
( ∑

0<|α|≤m
tα X̃α/α!

)
(x, z) +

(
R(x, t), 0

)
.

Then γ̃(x, z, 0) ≡ (x, z), and

(11.5) π(γ̃(x, z, t)) = γ(x, t) .

Because R(x, t) = O(|t|m+1), and because the exponential representation
is unique, the vector fields in the representation

γ̃(x, z, t) ∼ exp(
∑
α

tαX̂α/α!)(x, z)
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must satisfy X̂α ≡ X̃α for every |α| ≤ m. Since the vector fields X̃α with
|α| ≤ m together with their iterated commutators span the tangent space,
γ̃ therefore also satisfies curvature condition (Cg).

Next let η be a cut-off function in the space Rd−n which is C∞, has
compact support, and is = 1 when |z| ≤ 1. Lift each function f , defined on
Rn, to a function f̃ defined on Rn × Rd−n by f̃(x, z) = η(z)f(x). Note that

‖ f̃ ‖Lp(Rn×Rd−n) = C ‖ f ‖Lp(Rn) .

In keeping with (11.1) we define T̃ by

(11.1′) T̃ (F )(x, z) = η̃(z)ψ(x) pv
∫
|t|≤a

F (γ̃t(x, z))K(t)dt

where η̃ is another cut-off function, which equals 1 for z near 0. Then because
of (11.5) we have

T̃ (f̃)(x, z) ≡ T (f)(x),

for z near the origin, if a is small enough. The Lp boundedness of T̃ , once
established, then implies the corresponding result for T . The same argument
applies to the maximal operator M . We see therefore that it suffices to prove
Theorems 11.1 and 11.2 in the “free” case, and for that reason we shall simplify
notation henceforth by writing Xα instead of X̃α. Moreover, if we consider the
Xα, |α| ≤ m, together with all their commutators of degree ≤ m, we obtain a
collection {XI} that is a basis for the tangent space at x0; here the multi-index
I ranges over those |I| ≤ m that are basic, as defined at the end of Section 2.
We also write γ̃ = γ, and d = n.

12. The multiple mapping Γ̃

In accordance with our previous reduction, we assume that for x near x0

(12.1) γt(x) = γ(x, t) = exp
( ∑

0<|α|≤m
tαXα/α!

)
(x) + R(x, t),

with R(x, t) = O(|t|m+1) as t → 0, where the vector fields Xα and their com-
mutators of degree ≤ m span Rn, and are free up to degree m. In particular,
γ satisfies (C).

We next form a variant of the compositions Γj of several of the γ’s defined
earlier in (8.5). This variant involves both γ and γ−1. Choose a fixed integer
N ≥ n. Define Γ̃(x, τ) = Γ̃τ (x) by

(12.2) Γ̃(x, τ) = γ−1
t2N
· γ

t2N−1 . . . γ
−1
t2 · γt1 (x) .

Here τ = (t1, t2, . . . t2N ) ∈ R2Nk with each tj ∈ Rk, and x is near x0, while τ
is small.
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We also bring in the local dilation δxr centered at x, described in Section 5.
Define Γ̃(j) by

(12.3) Γ̃(j)(x, τ) = δx2j (Γ̃(x, 2−jτ)) .

Note that the superscript j does not have the same meaning as in the notation
Γj employed in (8.5).

Proposition 12.1. For (x, τ) near (x0, 0), the mappings τ 7→ Γ̃(j)(x, τ)
from a neighborhood of the origin in R2Nk to a neighborhood of x in Rn satisfy
the hypotheses of Proposition 7.2, uniformly in j and x for all sufficiently
large j.

The possibility of scaling and the resulting uniformity constitute the prin-
cipal advantage conferred by the lifting procedure.

Proof. Consider first the special case arising from the group N whose Lie
algebra is N a1,...ap

m (see §§2 and 4). This Lie algebra has generators Y1, . . . , Yp,
where each index i corresponds to a unique multi-index α satisfying 0 < |α|
≤ m, and where the degree ai equals |α| for the corresponding multi-index α.
In this case we take

γ(t) = exp
( ∑

0<|α|≤m
tαYα/α!

)
where exp is the exponential mapping from N to N (as in §4), and we set
γt(x) = γ(x, t) = x · γ(t), where the product · is the group multiplication.
See also example 8.5. We restrict our attention to x0 = 0, the group identity
element.

Using the group multiplication formula (4.1), we see that Γ̃(x0, τ) =
γ−1
t2N

. . . γt1 (x0) is given exactly by

(12.4) exp
( ∑
I basic

QI(τ)YI
)
,

and each QI(τ) is a polynomial in τ which is homogeneous of degree |I|. Since
δxr (y) = δr(y) when x = 0 in the group case, the homogeneity of the QI ’s is
equivalent in that case with the identity

δxr (Γ̃(x, r−1τ)) = Γ̃(x, τ) .

Next, since the vector fields {Yα} discussed in Section 4 and their com-
mutators span the Lie algebra N a1,...ap

m , curvature condition (Cg) is satisfied on
N . Thus Theorem 8.8 on the equivalence of curvature conditions guarantees
the existence of β and ξ such that

(12.5) ∂βτ Jξ(0, τ)
∣∣∣∣
τ=0
6= 0,
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where τ is restricted to be of the form τ = (t1, 0, t2, 0, . . . tn, 0) in the definition
of Jξ. Since QI(τ) is homogeneous of degree14 |I| in τ , it is easy to see that the
determinant4(τ) = Jξ(0, τ) is homogeneous of degree

∑
I basic(|I|−1) = Q−n,

where Q is the homogeneous dimension of N , and n is its Euclidean dimension.
Thus the multi-index in (12.5) must satisfy |β| = Q− n.

We now pass to the case of the vector fields arising in (12.1), which are
free up to degree m. Because of (12.1) we also know that

γ−1
t (x) = exp

( ∑
0<|α|≤m

−tαXα/α!
)

(x) + R′(x, t)

withR′(x, t) = O(|t|m+1). Hence in this case, by the Baker-Campbell-Hausdorff
formula (see Corollary 3.2),

Γ̃(x, τ) = exp
( ∑
I basic

(QI(τ) + O(|τ |m+1))XI

)
(x) + O(|τ |m+1)

= exp
( ∑
I basic

(QI(τ) + O(|τ |m+1))XI

)
(x) ,

where the QI are the same polynomials as in (12.4). The first equality, as we
have seen in identity (5.7), follows because all commutator identities among the
XI having total degrees ≤ m are identical with the corresponding commutator
identities for the YI . Moreover the XI give a basis for the tangent space at
x; the second identity follows from the first and the fact that the exponential
map is a local diffeomorphism.

Applying the local dilations δxr to the above gives
(12.6)

Γ̃(j)(x, τ) = δx2j (Γ̃(x, 2−jτ)) = exp
( ∑
I basic

[
QI(τ) + 2j|I|O(|2−jτ |)m+1

]
XI

)
(x),

since each QI(τ) is homogeneous of degree |I|. Note that (12.6) means that in
local coordinates given by the exponential map involving the XI and centered
at x,

Γ̃(j)(x, τ) = (QI(τ) + 2j|I|O(|2−jτ |m+1))I .

Therefore since every multi-index satisfies |I| ≤ m, the mappings τ 7→ Γ̃(j)(x, τ)
are uniformly of class Cr, as j →∞, for each r, as long as (x, τ) is sufficiently
close to (x0, 0). Moreover, the Jacobian determinant of these mappings equals

4(τ) + O(2−j |τ |Q−n+1),

where4(τ) is homogeneous of degree Q−n, and equals the determinant arising
in the case of the Lie algebra N a1,...ap

m .

14That is, QI(rτ) ≡ r|I|QI(τ) for r > 0; each QI is homogeneous with respect to the Euclidean

dilation structure.
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Denote by J
(j)
ξ (x, τ) the Jacobian determinant with respect to certain

components of τ , formed from Γ̃(j)(x, τ). We have now shown that in the free
situation, γ satisfies (CJ) uniformly at all points and all scales:

Lemma 12.2. For the same β and ξ as for N a1,...ap
m , for small τ or for

large j, and for x sufficiently near x0,

(12.7) |∂βτ J
(j)
ξ (x, τ)| ≥ C > 0

uniformly in x, τ, j.

This completes the proof of Proposition 12.1.

13. The space L1
δ

Recall the space L1
δ(R

n) that arose in Section 7. It consists of all functions
h ∈ L1(Rn) that satisfy

(13.1)
∫
Rn
|h(x− y) − h(x)|dx ≤ A|y|δ for all y ∈ Rn.

The norm on L1
δ is defined by ‖ h ‖L1

δ
= ‖ h ‖L1 +A where A is the smallest

constant for which (13.1) holds.
Recall also the map Θ treated in Section 5. We have Θx(y) = Θ(x, y) = u,

which is defined for y near x by the canonical coordinates u = {uI} given by
y = exp(

∑
I basicuIXI)(x). A related quantity is the quasi-distance defined by

d(x, y) = ρ(Θ(x, y)) with ρ(u) =
∑
I basic |uI |1/|I|. The sum

∑
I basic|I| equals

Q, the homogeneous dimension of the Lie group N .
Fix constants C1, C2 < ∞. Consider any nonnegative measure µ defined

in Rn, with the following two properties. First, there exist x ∈ Rn and integers
j, ν ≥ 0, such that the support of µ is contained in the set of all (y, z) satisfying

(13.2) d(y, z) ≤ C12−j−ν , d(x, z) ≤ C12−j , and d(x, y) ≤ C12−j .

Second, there exist bounded nonnegative functions m1, m2 so that for each
f ∈ C0(Rn), ∫ ∫

f(y) dµ(y, z) =
∫
f(y)m1(y)dy

and ∫ ∫
f(z) dµ(y, z) =

∫
f(z)m2(z)dz,

with

(13.3) m1(y),m2(z) ≤ C2.
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Proposition 13.1. Suppose h ∈ L1
δ and that the measure µ is as de-

scribed above. For each x ∈ Rn let

(13.4) I(h) = 2jQ
∫
|h (δx2j (y)) − h (δx2j (z))| dµ(y, z).

Then provided that C1 is sufficiently small , there exist δ′, A ∈ R+ such that

(13.5) I(h) ≤ A2−νδ
′ ‖ h ‖L1

δ
, for all j, ν ≥ 0

uniformly in x, where δ′ depends only on δ,m, n and A depends only on these
quantities and on the constants C1, C2 in (13.2) and (13.3).

The functions h to which this result will later be applied depend also on
the point x, but satisfy (13.2) and (13.3) with uniform bounds, hence satisfy
(13.5) with a fixed δ′, A.

Proof. We observe first that

(13.6) I(h) ≤ A ‖ h ‖L1 .

In fact,

I(h) ≤ 2jQ
∫
|h (δx2j (y))| dµ(y, z) + 2jQ

∫
|h (δx2j (z))| dµ(y, z).

The first term equals 2jQ
∫ ∣∣h (δx2j (y)

)∣∣m1(y)dy and so is majorized by
C2jQ

∫ ∣∣h (δx2j (y)
)∣∣ dy.

Now we make the change of variables y′ = δx2j (y), recalling that on the
support of µ, and hence for all y in the support of m1, we have d(x, y) ≤ C12−j ,
which shows that the mapping y 7→ y′ = δx2j (y) is well defined there. To com-
pute its Jacobian, we observe that in the coordinates u = Θx(y) centered
at x, the mapping y 7→ δx2j (y) becomes u 7→ δ2j (u). The Jacobian determi-
nant of the latter is exactly 2jQ. Thus, dy ≈ 2jQdy′, and hence the integral
2jQ

∫
|h(δx2j (y))|dy is majorized by C

∫
|h(y′)|dy′ = C ‖ h ‖L1 . The same

analysis applies to 2jQ
∫
|h(δx2j (z)|dµ(y, z) and so (13.6) is proved.

We next show that

(13.7) I(h) ≤ A
[
‖ h ‖L1 + ‖ 5n+1 h ‖L1

]
· 2−ν/m .

Observe that if h and all of its partial derivatives of order n+ 1 belong to L1,
then h is a Lipschitz function, satisfying

|h(y)− h(z)| ≤ Ah|y − z|, where Ah = A · (‖ h ‖L1 + ‖ 5n+1h ‖L1).

Now make the change of variable u = Θx(y) = Θ(x, y). Then∣∣∣h(δx2j (y))− h(δx2j (z))
∣∣∣ ≤ Ah|δx2j (y)− δx2j (z)| ≤ CAh|δ2jΘ(x, y)− δ2jΘ(x, z)|
≤ A′hρ(δ2jΘ(x, y)− δ2jΘ(x, z))

= A′h2jρ(Θ(x, y)−Θ(x, z)),
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by the identity ρ(δ2ju) = 2jρ(u), and by the inequality |u| ≤ Cρ(u), which
holds as long as u is bounded.

We now invoke the basic estimate (5.12), which in the present notation
states that

(13.8) ρ(Θ(x, y)−Θ(x, z)) ≤ C
(
d(y, z) + d(y, z)1/md(x, y)1−1/m

)
.

Since d(y, z) ≤ C12−j−ν and d(x, y) ≤ C12−j , combining this with the right-
hand side of the preceding displayed inequality yields

|h(δx2j (y))− h(δx2j (z))| ≤ CAh · 2j
[
2−j−ν + 2−(j+ν)/m · 2−j(1−1/m)

]
≤ CAh2−ν/m.

Therefore

(13.9) |h(δx2j (y)) − h(δx2j (z))| ≤ CAh2−ν/m.

Now
∫∫
dµ(y, z) =

∫
m1(y)dy ≤ C2−jQ, since m1 is supported on the set

where d(x, y) ≤ C12−j , and m1 is bounded. Inserting these in the definition
(13.4) of I(h) yields (13.7).

Let h ∈ L1
δ . Given any σ ≥ 1, h may be decomposed as h0

σ + h1
σ where

(13.10)


‖ h0

σ ‖L1 ≤ A ‖ h ‖L1
δ
·σ−δ

‖ h1
σ ‖L1 + ‖ 5n+1h1

σ ‖L1 ≤ A ‖ h ‖L1
δ
·σn+1−δ.

The construction is standard: fix Φ ∈ C∞0 satisfying
∫
Rn

Φ(x)dx = 1, and set
Φσ = σn Φ(σx). The functions h1

σ = h ∗ Φσ and h0
σ = h − h ∗ Φσ then have

the properties desired.
Now I(h) ≤ I(h0

σ) + I(h1
σ). For I(h0

σ) we use the estimate (13.6), and for
I(h1

σ) we apply (13.7). The result is

I(h) ≤ A ‖ h ‖L1
δ

[
σ−δ + 2−ν/m σn+1−δ

]
.

Setting σ = 2ν/m(n+1) yields (13.5) with δ′ = δ/m(n+ 1), concluding the
proof.

Remark 13.1. The exponent δ′ = δ/m(n+ 1) is not optimal, but suffices
for our purpose.

We now formulate as a separate proposition a step in the proof of (13.5).
Its proof is the same as that of (13.7).

Proposition 13.2. Suppose h is a Lipschitz function on Rn. Then

(13.11) I(h) ≤ C2−ν/m ,

where C depends on the Lipschitz norm of h.
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The following simple observation regarding our mappings γ will be needed.

Lemma 13.3.

(13.12) d(y, γt(y)) = O(|t|) and d(y, γ−1
t (y)) = O(|t|),

uniformly in t, y, for y sufficiently close to x0 and t sufficiently near 0.

Proof. For all t,

γt(y) = exp
( ∑
|α|≤m

tαXα/α!
)

(y) + O
(
|t|m+1

)
= exp

( ∑
I basic

uI XI

)
(y),

where

uI =


tα

α!
+ O(|t|m+1) when I = α

O(|t|m+1) otherwise.

Such an expression is possible because the map from u to γt(y) is a diffeomor-
phism. Note that |I| = |α| in the first case, and |I| ≤ m, when I is basic.
Thus

d(y, γt(y)) =
∑
I basic

|uI |1/|I| ≤ C|t|.

The estimate for d(y, γ−1
t (y)) is a consequence after we replace y by γ−1

t (y).

Example 13.1. Proposition 13.1 will be applied to measures µ defined by
(13.13)∫

f(y, z) dµ(y, z) = 2k(j+ν)
∫
B(x,c2−j)

{∫
|t|≤c2−j−ν

f(y, γ−1
t (y)) dt

}
dy

where B(x, r) = {y : d(x, y) ≤ r}, and c is a small constant. By Lemma 13.3, it
is clear that µ is supported where d(y, z) ≤ c′2−j−ν , and the other hypotheses
of Proposition 13.1 are easily verified.

14. The almost orthogonal decomposition

We shall decompose the operator T arising in Theorem 11.1 as a sum
T =

∑∞
j=0 Tj , where the summands Tj are almost orthogonal in the appropriate

sense. To do this we begin with some preliminary observations. Recall the
cut-off function ψ and the small constant a appearing in the statement of
Theorem 11.1.

Lemma 14.1. The sublinear operator

f → ψ(x)
∫
|t|≤a′

|f(γt(x))| dt

is bounded from Lp(Rn) to itself, for all p ∈ [1,∞].
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Proof. In fact the operators f 7→ ψ · f ◦ γt are bounded for all such p,
uniformly for all |t| ≤ a′, simply because x 7→ γt(x) is a diffeomorphism from
a neighborhood of the support of ψ into Rn for all such t, and is invertible,
uniformly in t. Lemma 14.1 then follows by applying Minkowski’s integral
inequality.

Let 1 =
∞∑
−∞

η(2jt) be a standard partition of unity on Rk\{0}, where

η ∈ C∞ is radial and is supported where a/2 ≤ |t| ≤ 2a. Set ηj(t) = η(2jt).
Then if |t| ≤ a,

K(t) =
∞∑
j=0

K(t)ηj(t) =
∞∑
j=0

Kj(t) .

Note that Kj(t) = K0(2jt)2jk, because K(t) is homogeneous of degree −k; also
Let

(14.1) Tj(f)(x) = ψ(x)
∫
f(γt(x))Kj(t) dt = ψ(x)

∫
f(γ2−jt(x))K0(t) dt .

Then for any compactly supported f ∈ C1

(14.2) T (f) =
∞∑
j=0

Tj(f)

where the sum on the right converges uniformly. Convergence can be seen by
noting that

Tj(f)(x) = ψ(x)
∫

[f(γ2−jt(x)) − f(x)] K0(t) dt = O(2−j), for every f ∈ C1 .

Proposition 14.2. (a) ‖ Tj ‖Lp→Lp ≤ A < ∞, for all 1 ≤ p ≤ ∞ with
A independent of j.

(b) The adjoint T ∗j of Tj takes the form T ′j +Rj , where

T ′jf(x) =
∫
f(γ−1

t (x))Kj(t)ψ(γ−1
t (x)) dt,

and
‖ Rj ‖Lp→Lp ≤ A2−j , for all 1 ≤ p ≤ ∞.

Proof. Part (a) is proved in the same way as Lemma 14.1, recalling that∫
|Kj(t)|dt =

∫
|K0(t)|dt <∞. And

T ∗j (f)(x) =
∫
f(γ−1

t (x)) ψ̄ (γ−1
t (x))J(x, t)K̄j(t) dt,

where J(x, t) is the Jacobian determinant of the transformation x → γ−1
t (x).

Since J(x, t) = 1 + O(t) and ψ̄(γ−1
t (x)) = ψ̄(x) + O(t), assertion (b) follows

because
∫
|t| |Kj(t)| dt = A′2−j .
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With these preliminaries out of the way we come to a pivotal point of the
L2 theory of the singular Radon transformation T . It is the proof of the almost
orthogonal inequalities

(14.3) ‖ T ∗j Ti ‖ + ‖ TjT ∗i ‖≤ A2−ε|i−j| for some ε > 0.

Throughout the discussion from here through Section 19, the notation ‖ · ‖
with no subscript will denote the L2 operator norm. As is well-known (see [43,
Ch. VII, Th. 1]), (14.3) suffices to prove the L2 part of Theorem 11.1.

In proving (14.3), a key observation (see [5]) is that to prove e.g. ‖ T ∗j Ti ‖
≤ A2−ε|i−j|, it suffices to show that there exists some fixed N such that

(14.4) ‖ (TjT ∗j )N Ti ‖≤ A′2−ε
′|i−j|,

for some ε′ > 0; then T ∗j Ti satisfies (14.3) with ε = ε′/2N . We indicate this
reduction when N is of the form 2`. Then

‖ T ∗j Ti ‖2 = ‖ T ∗i TjT ∗j Ti ‖≤ A ‖ TjT ∗j Ti ‖

by the uniform boundedness of T ∗i guaranteed by Proposition 14.2. This proves
the case N = 1. For N = 2 the same reasoning gives

‖ TjT ∗j Ti ‖2 = ‖ T ∗i TjT ∗j TjT ∗j Ti ‖≤ A ‖ (Tj T
∗
j )2Ti ‖;

we then can proceed to general N of the form 2` by induction.
We shall use the reduction to (14.4) when i ≥ j. The second inequality

‖ TjT ∗i ‖≤ A2−ε|i−j| in (14.3) can be reduced when i ≥ j to

‖ (T ∗j Tj )NT ∗i ‖≤ A′2−ε
′|i−j|,

which will be handled in the same way as (14.4). Similar reductions can be
made when i ≤ j. So we now turn to the task of establishing (14.4).

15. Kernel of (TjT ∗j )N ; the L2 theorem

The first step in proving (14.4) is to obtain the following kernel represen-
tation of the operator (TjT ∗j )N .

Proposition 15.1. Suppose N ≥ n. Then there exists ε ∈ (0, 1) such
that for every j ≥ 0,

(15.1) (TjT ∗j )N (f)(x) =
∫
f(δx2−j (y))K(x, y) dy,

where for each x sufficiently near x0, the function y 7→ K(x, y) is supported in
a fixed bounded set and is in L1

ε uniformly in x, j.
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Although K actually depends on j, we have suppressed j in the notation
to avoid further encumbering some of the formulas below.

Proof. Looking back at Section 14, we see that

Tj(f)(x) = ψ(x)
∫
f(γ2−jt(x))K0(t) dt

and

T ∗j (f)(x) =
∫
f(γ−1

2−jt(x)) ψ̄(γ−1
2−jt(x)) J(x, 2−jt)K̄0(t) dt.

Therefore

(15.2) (TjT ∗j )f(x) =
∫
f(γ−1

2−jt2
· γ

2−jt1
(x))ψ(x, t1, t2) dt1 dt2

where

ψ(x, t1, t2) = ψ(x)ψ̄ (γ−1
2−jt2

· γ
2−jt1

(x))J
(
γ2−jt1(x), 2−jt2

)
K0(t1) K̄0(t2).

Continuing this way we obtain

(15.3) (TjT ∗j )N (f)(x) =
∫
f(Γ̃(x, 2−jτ))ψj(x; τ) dτ,

where τ = (t1, t2, . . . , t2N ) ∈ R2Nk, Γ̃(x, τ) = γ−1
t2N
· γ

t2N−1 . . . γ
−1
t2 · γt1 (x),

and the functions ψj(x, τ) have compact support, and are in C∞ with respect
to x and τ , uniformly in j. Note also that the support of ψj as a function of
τ can be restricted to a small neighborhood of the origin, uniformly in j, by
making the constant a small enough, since each K0(t) is supported in the set
|t| ≤ 2a.

(15.3) may be rewritten as

(15.4) (Tj T
∗
j )N (f)(x) =

∫
f(δx2−j (Γ̃

(j)(x, τ)))ψ(x; τ) dτ,

where Γ̃(j)(x, τ) = δx2j (Γ̃(x, 2−jτ)) is as defined in (12.3); we have also sup-
pressed the dependence on j of ψj in the notation. Thus

(Tj T
∗
j )N (f)(x) =

∫
(f ◦ δx2−j )(y) dµ(y)

where dµ = Γ̃(j)(x, τ)∗(ψ(x, τ) dτ).
By Proposition 12.1, each mapping τ 7→ Γ̃(j)(x, τ) satisfies the hypotheses

of Proposition 7.2. Therefore dµ(y) = K(x, y) dy, where K(x, ·) ∈ L1
ε for

some ε > 0, for each x, j. The uniformities asserted in those two propositions
establish the uniformity claimed in the present proposition, whose proof is then
complete.
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Denote by ‖S‖Lp→Lq the norm of any operator S, as a mapping from Lp

to Lq.

Lemma 15.2. There exist δ′ > 0 and C <∞ such that

(15.5) ‖ (Tj T
∗
j )NTi ‖L∞→L∞≤ C2−δ

′(i−j), for all i ≥ j ≥ 0.

Proof. By (15.1), for any f ∈ L∞,
(15.6)

(Tj T
∗
j )NTi(f)(x) =

∫
f(γtδx2−j (y

′))K(x, y′)ψ(δx2−j (y
′))Ki(t) dy′dt .

In this formula we make the change of variables y = δx2−j (y
′). Since K(x, y′)

is supported in a fixed bounded region independent of j, y is restricted to
B(x,C2−j) for a certain constant C. Recalling the mapping Θx defined in
Section 5, we can express y as y = Θ−1

x δ2−jΘx(y′). Thus the Jacobian deter-
minant of the mapping y 7→ y′ is the product of three determinants; since that
corresponding to δ2−j is exactly 2−jQ, we see that dy′ = 2jQJ(x, y′)dy where
J ∈ C∞ may depend on j, but all its derivatives are bounded uniformly in j.
Consequently the right-hand side of (15.6) may be rewritten as

(15.7) 2jQ
∫
f(γt(y))Kj(x, δx2j (y))Ki(t) dy dt

where Kj(x, y′) = K(x, y′)ψ(δx2−j (y
′))J(x, y′), and y′ 7→ Kj(x, y′) belongs to

L1
δ , uniformly in j and in x.

Substituting z = γt(y) in (15.7) and noting that det(∂y/∂z) = 1 +O(t),

(TjTj)∗Ti(f)(x) = 2jQ
∫
K(x, y)f(y) + E(f)

where

(15.8) K(x, y) =
∫
Kj(x, δx2j γ−1

t (y))Ki(t)dt

and the error operator E satisfies

|E(f)(x)| ≤ C2jQ
∫ ∣∣∣Kj(x, δx2j γ−1

t (y)) f(y) Ki(t)
∣∣∣ |t| dt dy .

Now
∫
|t| |Ki(t)|dt ≤ C2−i, because Ki is supported where |t| ≤ a2−i, and

|Ki(t)| ≤ C|t|−k. Therefore uniformly in x,

(15.9) |Ef(x)| ≤ C2−i‖f‖∞.
The kernel in (15.8) can be rewritten as

(15.10) K(x, y) =
∫ [
Kj(x, δx2jγ−1

t (y)) −Kj(x, δx2j (y))
]
Ki(t)dt,

since
∫
Ki(t)dt = 0. Therefore it is dominated by

C2ki
∫
|t|<c2−i

∣∣∣Kj(x, δx2jγ−1
t (y)) −Kj(x, δx2j (y))

∣∣∣ dt .
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We claim that as a result

(15.11) 2jQ
∫
|K(x, y)|dy ≤ C2−(i−j)δ′ .

To see this, we need only to recall that the functions y 7→ Kj(x, y) are uniformly
in L1

δ , and to utilize Proposition 13.1 with h(y) = Kj(x, y), ν = i − j; the
measure dµ is as detailed in Example 13.1. If a is chosen to be sufficiently
small then the constant C1 in (13.2) will be as small as required. Thus (15.11),
together with (15.9), establishes (15.5).

We next combine (15.5) with the easy estimate

‖ (TjT ∗j )N Ti ‖L1→L1 ≤ C,

which follows directly from Proposition 14.2. A consequence, either by a
straightforward argument or by the Riesz convexity theorem, is that

‖ (TjT ∗j )NTi ‖L2→L2 ≤ C2−(δ′/2)(i−j) .

This is (14.4) with ε′ = δ′/2, and with it we conclude the proof of Theorem 11.1
in the case p = 2.

16. The Lp argument; preliminaries

We turn to the Lp inequalities for the operator T stated in Theorem 11.1.
An earlier method [45] used for the case of operators invariant under the Eu-
clidean group structure of Rn proceeded by embedding T in an analytic family
of operators T (s), with T (0) = T . The operators T (s) were more singular
than T (0) when Re(s) > 0, but were nonetheless bounded on L2; while for
Re(s) < 0, Lp bounds could be obtained for all 1 < p < ∞, because the op-
erators T (s) were of a more standard type, treatable by Calderón-Zygmund
theory. An interpolation theorem led to the desired result for T (0) = T .

We proceed instead15 as follows, using [5],[34]. First we construct {Sj}, a
family of averaging operators with smooth densities adapted to the geometry
underlying our situation, so that Sj tends to the identity operator I as j →∞.

Define Rj = Sj+1 − Sj , and note that formally I = Sj +
∞∑
ν=0

Rj+ν .

Together with the decomposition T =
∑
j≥0 Tj , this yields Tj = TjSj +∑

ν≥0 TjRj+ν and so

(16.1) T =
∞∑
ν=0

Uν +
∞∑
j=0

TjSj ,

15A close analogue of the analytic family of operators mentioned above could be constructed by

setting T (s) =
∑

ν≥0
2νsUν +

∑
j≥0

TjSj .
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where

(16.2) Uν =
∞∑
j=0

Tj Rj+ν .

These series converge in the strong operator topology on the space of bounded
linear operators from C1

0 to L2, as follows from uniform boundedness of the
Sj , the almost orthogonality inequality (14.3), and the estimate ‖f − Sjf‖2 =
O(2−j) for every f ∈ C1

0 , which will be an easy consequence of the definition
of Sj . Our aim is to show that

‖ Uν ‖L2→L2≤ A2−νε, for some ε > 0.(16.3)

‖ Uν ‖Lp→Lp≤ Ap,ε′2νε
′
, for every small ε′ > 0 and 1 < p ≤ 2.(16.4)

‖
∑
j

TjSj ‖Lp→Lp≤ Ap, for 1 < p ≤ 2.(16.5)

Interpolation between (16.3) and (16.4) then gives the better estimate

‖ Uν ‖Lp→Lp ≤ Ap2−νεp , for some εp > 0, for every 1 < p ≤ 2.

This, in view of (16.1) and (16.5), implies the desired conclusion for T , when
1 < p ≤ 2; a duality argument then leads to the same result for 2 < p <∞.

We begin by defining the averaging operators Sj . Fix a C∞0 nonnegative
function Φ, which is even, is identically equal to 1 near the origin, is supported
where |u| < a, and satisfies

∫
Rn

Φ(u) du = 1. Let Φj(u) = 2jQ Φ(δ2j (u)). Fix
a cutoff function X ∈ C∞0 (Rn) which is ≡ 1 near x0, and has appropriately
small support. Let X0(x) = X (x)J(x, x)1/2, where

J(x, y) =
∣∣∣ det

(
∂Θx(y)/∂y

)∣∣∣,
and define Sj by

Sj(f)(x) = X0(x)
∫

Φj(Θ(x, y))X0(y) f(y) dy.

Denote by Sj(x, y) = X0(x) Φj(Θ(x, y))X0(y) the associated distribution ker-
nel function, and by S∗j the adjoint operator.

Proposition 16.1. There exists C <∞ such that for every j, Sj(x, y) ≡ 0
whenever d(x, y) ≥ C2−j . Moreover

(a)
∫
Sj(x, y) dy = X 2(x) + O(2−j) as j →∞.

(b) Sj(f)(x)→ X 2f(x), uniformly as j →∞ for any continuous f .

(c) ‖ Sj ‖Lp→Lp ≤ A <∞, for all j and all p ∈ [1,∞].

(d) S∗j = Sj .
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(e) For all x, y1, y2,

|Sj(x, y1) − Sj(x, y2)| ≤ A2j(Q+1/m) d(y1, y2)1/m.

The next result is a direct consequence.

Corollary 16.2. Let Rj = Sj+1 −Sj , and let Rj(x, y) be its distribution
kernel. Then conclusions (c), (d), and (e) hold with Rj substituted for Sj .
Moreover

∫
Rj(x, y)dy = O(2−j), and

∫
|Rj(x, y)|dy ≤ A < ∞, uniformly

in x, j.

Proof of Proposition 16.1. To prove conclusion (a), note that with
u = Θ(x, y) = Θx(y), we have dy = J(x, y)−1du. Thus∫

Sj(x, y)dy = X0(x)
∫

Φj(u)
[
X0(y)J(x, y)−1 −X0(x)J(x, x)−1

]
du

+X 2
0 (x)J(x, x)−1

∫
Φj(u)du.

The second term on the right equals X 2(x), because X0(x) = X (x)(J(x, x))1/2,
and

∫
Φj(u)du = 1. The first term is O(2−j), since

|X0(y)J(x, y)−1 −X0(x)J(x, x)−1| ≤ A|x− y| ≤ A′|u| ≤ A′′ρ(u)

and
∫

Φj(u)ρ(u)du = c2−j , because ρ(δ2−j (u)) = 2−jρ(u). Thus (a) is proved.
Since Sj(x, y) ≥ 0, (a) implies that the Sj are uniformly bounded as

operators on L∞. Conclusion (b) follows from this, because the support of
y 7→ Sj(x, y) shrinks to x as j → ∞. Indeed, Sj(x, y) is supported where
ρ(Θ(x, y)) ≤ C2−j , that is, where d(x, y) ≤ C2−j .

Since (c) holds for p =∞ and Sj(x, y) ≡ Sj(y, x), it holds also for p = 1,
and thus also for all p ∈ [1,∞]. The symmetry of Sj(x, y) also gives (d).

Since |Sj(x, y)| ≤ C2jQ, the inequality in (e) holds whenever d(y1, y2) ≥
c2−j , for any fixed small constant c. Assuming henceforth that d(y1, y2) ≤
c2−j , it holds also whenever d(x, y1) ≥ C ′2−j , provided C ′ is chosen to be a
sufficiently large constant, by the quasi-triangle inequality. Thus we may also
assume d(x, y1) ≤ C ′2−j . Under these conditions

|Sj(x, y1)− Sj(x, y2) ≤ A|Φj(Θ(x, y1)) − Φj(Θ(x, y2))|(16.6)

+A′ |Φj(Θ(x, y1)) | · |y1 − y2|.
Since Φj(u) = 2jQ Φ(δ2ju),16

16The range of Θ is Rn, equipped with a distinguished coordinate system (uI); addition and

subtraction of elements of this target space are defined with respect to the Euclidean group structure

associated to this coordinate system, not with respect to the nilpotent group N . The dilations δr are

automorphisms of both the abelian group Rn and N .
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|Φj(Θ(x, y1)) − Φj(Θ(x, y2))| ≤ 2jQ| δ2jΘ(x, y1) − δ2jΘ(x, y2)|
≤ A2jQ ρ

(
δ2j (Θ(x, y1)−Θ(x, y2))

)
= A2j(Q+1) ρ

(
Θ(x, y1)−Θ(x, y2)

)
.

Invoking (13.8) yields

ρ(Θ(x, y1) −Θ(x, y2)) ≤ C
[
(d(y1, y2)) + d(y1, y2)1/m d(x, y1)1−1/m

]
≤ C ′d(y1, y2)1/m2−j(1−1/m),

since d(y1, y2) ≤ c2−j and d(x, y1) ≤ C2−j . Therefore the first term on the
right side of (16.6) is majorized by

C2j(Q+1) 2−j(1−1/m) d(y, y2)1/m = C2j(Q+1/m) d(y1, y2)1/m.

The second term in (16.6) also contributes O
(
2j(Q+1/m) d(y1, y2)1/m

)
, because

|Φj | ≤ C2jQ, and |y1 − y2| ≤ Cd(y1, y2) ≤ Cd(y, y2)1/m 2−j(1−1/m).

Hence assertion (e) is established, and the proposition is proved.

We now adjust the cutoff function X in the definition of Sj , and the con-
stant a in the definition (11.1) of T , so that on the support of ψ, X (γt(x)) ≡ 1,
for all |t| ≤ a. Then because of Proposition 16.1 (b),

Tj(f) = lim
i→∞

TjSi(f) = TjSj(f) +
∞∑
ν=0

Tj Rj+ν(f)

for all f ∈ C1
0 , and so the decomposition (16.1) is established.

17. Further L2 estimates

We begin with a reprise of the L2 theory of Sections 14 and 15, involving
some easy modifications. We consider Uν =

∑
j≥0 TjRj+ν and prove (16.3),

i.e.

(17.1) ‖ Uν ‖L2→L2 ≤ A2−εν for some ε > 0.

By the almost orthogonality argument already used, it suffices to see that

‖ (TjRj+ν)∗(TiRi+ν) ‖L2→L2 + ‖ (TjRj+ν)(TiRi+ν)∗ ‖L2→L2(17.2)

≤ A2−νε2−ε|i−j| .

Each term on the left can be majorized using the geometric mean of two of the
following three estimates, if we recall that Tj and Rj have uniformly bounded
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norms, and that R∗j = Rj .

‖ T ∗j Ti ‖ ≤ A2−ε
′|i−j| for some ε′ > 0 ,(17.3)

‖ RjRi ‖ ≤ A2−|i−j|/m ,(17.4)

‖ TjRj+ν ‖ ≤ A2−ε
′ν for some ε′ > 0 .(17.5)

The first was already proved in Section 14. To prove the second, note
that by taking adjoints if necessary, we may assume that i ≥ j. We write
RjRi(f)(x) =

∫
K(x, y)f(y)dy, where K(x, y) =

∫
Rj(x, z)Ri(z, y)dz. Thus

K(x, y) =
∫

[Rj(x, z) −Rj(x, y)] Ri(z, y)dz + O(2−i|Rj(x, y)|)

by Corollary 16.2. This splits K(x, y) as K ′(x, y)+E(x, y). The operator with
kernel E(x, y) has a norm which is clearly O(2−i) = O(2−|i−j|), since i ≥ j.
To estimate

K ′(x, y) =
∫

[Rj(x, z)−Rj(x, y)]Ri(z, y)dz,

observe that K ′(x, y) is supported where d(x, y) ≤ c2−j . Moreover, by conclu-
sion (e) of Corollary 16.2,

|Rj(x, z) −Rj(x, y) | ≤ C2j(Q+1/m) d(z, y)1/m .

However∫
d(z, y)1/m |Ri(z, y)|dz ≤ C2−i/m

∫
|Ri(z, y)|dz ≤ C2−i/m,

since
∫
|Ri(z, y)|dz ≤ C, and Ri(z, y) is supported where d(z, y) ≤ C2−i. It

follows that∫
|K ′(x, y)|dx ≤ C2jQ2−(i−j)/m |B(x,C2−j)| ≤ C ′2−|i−j|/m.

The same bound holds for
∫
|K ′(x, y)|dy, and (17.4) follows directly.

We now come to (17.5). As in the proof of (17.3) in Section 14, it suffices
to show

(17.6) ‖ (T ∗j Tj )NRj+ν ‖≤ A2−εν , for some ε > 0.

As in (15.1), the kernel K(x, y) associated to (T ∗j Tj)
NRj+ν is

(17.7) K(x, y) =
∫
K(x, z′)Rj+ν (δx2−j (z′), y) dz′

where z′ 7→ K(x, z′) is uniformly in L1
δ , for x near x0 and has uniformly compact

support in z′. Here we are dealing with (T ∗j Tj)
N instead of (TjT ∗j )N , but this

distinction amounts merely to interchanging the roles of γ and γ−1 in (15.1).
When we make the change of variables z′ = δx2j (z), (17.7) becomes

K(x, y) = 2jQ
∫
K(x, δx2j (z)) J(x, δx2j (z))Rj+ν (z, y) dz
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where

J(x, z′) = 2−jQ
∣∣∣ det

(
∂z′/∂z

)∣∣∣ = 2−jQ
∣∣∣ det

(
∂δx2−j (z

′)
/
∂z′
)∣∣∣−1

= 1 +O(2−j)

in any CN norm as a function of z′, uniformly in x, j provided that |z′| = O(1)
and j ≥ 0. Therefore, fixing x and letting h(z) = K(x, z)J(x, z), we see that
K(x, y) splits as

K ′(x, y) + E(x, y) = 2jQ
∫ [

h(δx2j (z)) − h(δx2j (y))
]
Rj+ν (z, y)dz

+O(2−j−ν2jQ|h(δx2j (y)|),
where the bound for E(x, y) holds because

∫
Rj+ν(z, y) dz = O(2−j−ν).

Since 2jQ
∫
|h(δx2j (y))|dy = O(1), the operator whose kernel is E(x, y)

has L∞ operator norm bounded by C2−j−ν ≤ C2−ν . For the main term,∫
|K ′(x, y)|dy is estimated by means of Proposition 13.1. Since h(z) =
K(x, z)J(x, z) has small compact support as a function of z (provided the
constant a is chosen to be sufficiently small) and belongs to L1

δ , uniformly in
the parameters j, x, we can estimate

∫
|K ′(x, y)|dy by a constant multiple of

I(h), as defined in (13.4). Here dµ(y, z) = 2j+ν χ(y, z) dy dz, where χ is the
characteristic function of the set where d(y, z) ≤ C12−(j+ν), d(x, y) ≤ C12−j ,
and d(x, z) ≤ C12−j .

The conclusion is that
∫
|K(x, y)|dy ≤ C2−νδ

′
, and therefore the

L∞ operator norm of (T ∗j Tj)
NRj+ν is O(2−νδ

′
). Since this operator is a com-

position of operators bounded on L1, uniformly in j, ν, we deduce (17.5) with
ε′ = δ′/2 by interpolation. Therefore (17.1) is proved.

We next turn to the L2 estimate for
∑
j≥0 TjSj . Using almost orthogonal-

ity again, it suffices to show that

‖ (TjSj)∗TiSi ‖ + ‖ (TjSj)(TiSi)∗ ‖≤ A2−ε|i−j| for some ε > 0.

The bound for the first term is a consequence of the estimates of T ∗j Ti already
proved in Sections 14 and 15.

To treat the second, we may suppose i ≥ j, and revisit the proof of
(17.4). The S’s satisfy the same size and difference inequalities as the R’s,
but not their cancellation property. The key observation is that the composed
operators Si T

∗
i nonetheless do effectively share this cancellation property. To

begin, we may replace T ∗i by T ′i , as defined in Proposition 14.2, making an error
whose operator norm is O(2−i), by the use of part (b) of Proposition 14.2. Now
the distribution kernel S′i(x, y) associated to SiT ′i is given by

S′i(x, y) = ψ̄(y)
∫
Si(x, γ−1

t (y)) K̄i (t) dt.

Hence
∫
S′i (x, y) dx = O(2−i), since∫

Ki(t) dt = 0,
∫
|Ki(t)| dt ≤ C <∞, and

∫
Si(x, y) dx = X 2(y) +O(2−i).
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Invoking Lemma 13.3, we see moreover that S′i(x, y) is supported where
d(x, y) ≤ C ′2−i, since Si(x, y) is supported where d(x, y) ≤ C2−i. The rest of
the proof of the inequality ‖ SjSiT ∗i ‖≤ A2−ε|i−j| then follows that of (17.4)
closely.

18. The Lp estimates; conclusion

We consider the operator Uν =
∑
j≥0 TjRj+ν . We shall see below that

there exists a kernel function Uν(x, y), satisfying∫
Uν(f)(x)ḡ(x)dx =

∫
Uν(x, y)f(y) ḡ(x) dy dx

whenever f and g are (say) continuous with disjoint compact supports. For
this kernel we shall prove the main estimate needed to apply the Calderón-
Zygmund theory.

Proposition 18.1. There exists c̄ < ∞ such that for every small ε > 0
there exists Aε <∞ satisfying

(18.1)∫
d(x,y1)≥c̄d(y1,y2)

|Uν (x, y1) − Uν(x, y2)| dx ≤ Aε2εν for all distinct y1, y2.

We shall need to examine the distribution kernels of the operators TjRj+ν .
Define Kj,ν(x, y) by

TjRj+ν(f)(x) =
∫
Kj,ν(x, y)f(y)dy.

Lemma 18.2. The kernels Kj,ν have the following properties.

(i) Kj,ν(x, y) is supported where d(x, y) ≤ C2−j .

(ii)
∫
|Kj,ν(x, y)|dx ≤ C <∞, uniformly in y, j and ν.

(iii)
∫
|Kj,ν(x, y1)−Kj,ν(x, y2)| dx ≤ Cd(y1, y2)ε2(j+ν)ε, for every ε ∈ [0,m−1].

Proof. By the definitions of Rj+ν and Tj ,

(18.2) Kj,ν(x, y) = ψ(x)
∫
Rj+ν(γt(x), y)Kj(t)dt.

Since d(γt(x), x) ≤ A|t| by Lemma 13.3, and Rj+ν(x, y) is supported where
d(x, y) ≤ C2−j−ν , conclusion (i) follows. Next,∫

|Kj,ν(x, y)|dx ≤ C

∫ ∫
|Rj+ν(γt(x), y)Kj(t)| dt dx

≤ C ′
∫
|Rj+ν(x, y)|dx ·

∫
|Kj(t)| dt

and conclusion (ii) follows from Corollary 16.2 since
∫
|Kj(t)|dt ≡ C <∞.
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Finally,

|Rj+ν(x, y1) −Rj+ν(x, y2) | ≤ c2(j+ν) (Q+1/m) d(y1, y2)1/m

by conclusion (e) of Proposition 16.1. We may assume that d(y1, y2) ≤ 2−j−ν ,
for otherwise (iii) follows directly from (ii). Then∫

|Rj+ν(x, y1) −Rj+ν(x, y2)| dx ≤ C2(j+ν)/m d(y1, y2)1/m

because the integration is limited to a ball of radius ≤ C2−j−ν . This result,
combined with (18.2), gives conclusion (iii) with ε = 1/m. Since by (ii) it
holds for ε = 0, the full conclusion with 0 ≤ ε ≤ 1/m is an immediate conse-
quence.

We turn to the proof of the proposition. The almost orthogonality prop-
erty (17.2)

∑
j TjRj+ν implies (see [43, p. 318]) that

∑
j TjRj+ν(f), converges

in the L2 norm, for every f ∈ L2. Thus for any f, g ∈ L2,

(Uνf, g) =
∞∑
j=0

(Tj Rj+νf, g) =
∑
j

∫
f(y)Kj,ν(x, y) ḡ(x) dx dy .

If f and g have disjoint compact supports, then only finitely many terms
Kj,ν(x, y) are nonzero on the support of f(y)ḡ(x), by (i) of Lemma 18.1. Thus∑
jKj,ν(x, y) is the kernel of Uν in the sense claimed at the beginning of

Section 18.

We have therefore Uν(x, y) =
∞∑
j=0

Kj,ν(x, y), and hence

|Uν(x, y1) − Uν(x, y2)| ≤
∑
j

|Kj,ν(x, y1) −Kj,ν(x, y2)|.

Now fix any index j ≥ 0, and consider∫
d(x,y1)≥c̄d(y1,y2)

|Kj,ν(x, y1) −Kj,ν(x, y2)|dx .

For this integral to be nonzero, there must be an x in the support of Kj,ν(x, y1)
or Kj,ν(x, y2), with d(x, y1) ≥ c̄d(y1, y2). Then in view of conclusion (i) of the
lemma, either d(x, y1) ≤ C2−j or d(x, y2) ≤ C2−j . In the latter case,

d(y1, y2) ≤ c̄−1d(x, y1) ≤ Cc̄−1
(
d(x, y2) + d(y1, y2)

)
,

so d(y1, y2) ≤ c′2−j provided that c̄ > C−1; the same conclusion follows more
directly in the former case.

Invoking conclusion (iii) of the lemma gives for any 0 < ε ≤ 1/m,∫
d(x,y1)≥c̄d(y1,y2)

|Uν(x, y1) − Uν(x, y2)| dx ≤ Cε
∑
j

d(y1, y2)ε 2(j+ν)ε,
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where according to the conclusion of the preceding paragraph, the sum need
be taken only over all j satisfying d(y1, y2) ≤ c′2−j . Summing the geometric
series establishes (18.1).

The L2 boundedness of the operators Uν , guaranteed by (17.1), together
with the inequality (18.1) regarding their kernels that we have just proved,
allow us to appeal to the theory of singular integral operators to obtain Lp esti-
mates for Uν . Indeed, the underlying space Rn has been endowed with a quasi-
distance d(x, y) and associated balls B(x, r) = {y : d(x, y) < r}. The measures
of these balls satisfy the doubling property (5.10): |B(x, 2r)| ≤ C|B(x, r)|.
Consequently by, for example, the case q = 2 of Theorem 3 in Chapter 1 of
[43], Uν extends to a bounded operator on Lp, for every 1 < p ≤ 2, with
‖ Uν ‖Lp→Lp≤ Ap,ε2νε, for the same arbitrarily small exponent ε as in (18.1).
This is assertion (16.4).

In the same way (16.5) follows: the L2 estimate was proved in Section 17,
and the Lp estimate for this operator is deduced as before since its kernel
also satisfies the condition (18.1), with ν = 0. Hence taking into account the
remarks after (16.4), we see that T has been shown to extend to a bounded
operator on Lp, for every 1 < p ≤ 2. To pass to exponents p ∈ (2,∞), we
recall that by Proposition 14.2, T ∗j = T ′j + Rj , where ‖ Rj ‖Lp→Lp ≤ C2−j .
The operators T ′j are essentially like the Tj , except that γt is replaced by γ−1

t .
The same analysis as for {Tj} therefore implies that

∑
j≥0T

′
j is bounded on

Lp, for every 1 < p ≤ 2. Therefore T ∗ =
∑
j≥0 T

∗
j is also bounded on Lp for

the same range of exponents, and the boundedness of T for 2 ≤ p < ∞ then
follows by duality. The proof of Theorem 11.1 is complete.

19. The maximal function

To prove the maximal inequality, Theorem 11.2, fix a nonnegative auxil-
iary function ζ ∈ C∞0 (Rk), strictly positive where |t| < a/2, supported where
|t| < a, and satisfying

∫
ζ = 1. Define Aj by

Aj(f)(x) = ψ(x) 2jk
∫
f(γt(x)) ζ(2jt) dt

for j = 0, 1, 2, . . .. Define A∗(f)(x) = supj |Aj(f)(x)|.
It suffices to prove that f 7→ A∗(f) is bounded on Lp(Rn), for all 1 < p ≤ 2.

This boundedness being obvious for p =∞, the assertion for 1 < p ≤ 2 would
at once carry over to 1 < p ≤ ∞, by a standard interpolation argument. This in
turn would imply the corresponding result for the maximal operator M defined
in (11.2), by the obvious majorization M(f) ≤ CA∗(f) + C

∫
|t|≤a′ f(γt(x)) dt,

which is valid for all nonnegative f .
With Sj as in Section 16, let

(19.1) 4j = Aj − Sj ,
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and define the square function G by

(19.2) G(f)(x) =
( ∞∑
j=0

|4j(f)(x)|2
)1/2

.

It will be enough to prove that

(19.3) ‖ G(f) ‖Lp ≤ Ap ‖ f ‖Lp , for all 1 < p ≤ 2,

because
sup
j
|Aj(f)| ≤ G(f) + sup

j
|Sj(f)|,

and f 7→ supj |Sj(f)| is majorized by a constant multiple of the standard
maximal function associated to the quasi-distance d and to the associated
balls. This standard maximal function is bounded on Lp for all p ∈ (1,∞]; see
e.g. [43, Th. 1 in Ch. 1].

To deduce (19.3), we bring in the Rademacher functions {rj(ω)}, and
write

(19.4) T (ω) =
∞∑
j=0

rj(ω)4j .

Here ω represents a point in the underlying probability space that labels the
arbitrary choices of plus or minus sign in the definition rj(ω) = ±1. As is well
known (see e.g. [39, Ch. IV, §5]), the inequality (19.3) can be obtained from
the inequality

(19.5) ‖ T (ω) ‖Lp→Lp ≤ Ap <∞ for all 1 < p ≤ 2

provided Ap is independent of ω.
The proof of (19.5) is very similar to that for the operator T in Theo-

rem 11.1. We give a brief outline, indicating only the changes needed. First,
define U (ω)

ν by

U (ω)
ν =

∞∑
j=0

rj(ω)4jRj+ν .

We claim that

‖ U (ω)
ν ‖L2→L2 ≤ A2−εν , for some ε > 0 ,

with bounds independent of ω. By the almost orthogonality arguments used
above, this can be established by showing in analogy with (17.3)–(17.5) that
uniformly in i, j,

(19.6) ‖ 4∗j 4i ‖ + ‖4j4∗i ‖ ≤ A2−ε|i−j| ,

(19.7) ‖ 4jRj+ν ‖≤ A2−εν .
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(19.7) is the consequence of two inequalities: ‖ AjRj+ν ‖≤ A2−εν , and
‖ SjRj+ν ‖≤ A2−εν . The first of these two is an easy variant of (17.5),
in the proof of which the cancellation property

∫
Kj(t) dt = 0 of Tj did not

enter, and so Tj could just as well have been replaced by Aj . The inequality
‖ SjRj+ν ‖≤ A2−εν is a variant of (17.4), with i replaced by j + ν; again the
cancellation property of the first factor Rj played no role in the proof of (17.4),
so that the reasoning applies equally well with Rj replaced by Sj .

We will discuss only the bound for the first term on the left in (19.6), and
only in the case i ≥ j; the case i < j and the bound for the second term may
be obtained in the same manner. The desired majorization is a consequence
of two inequalities: ‖ A∗j4i ‖≤ A2−ε|i−j| and ‖ Sj4i ‖≤ A2−ε|i−j|. The first
is reducible to ‖ (AjA

∗
j )
N4i ‖≤ A2−ε

′|i−j|. Assuming i ≥ j, one estimates
the kernel of the operator (AjA∗j )

N4i to obtain a bound of A2−ε
′|i−j| for the

L∞ operator norm, by the same line of reasoning as used above in the proof
of (17.6). This leads to the consideration of the kernel∫

[h(δx2j (z)) − h(δx2j (y))] dλ(y)
i (z)

for each x, where the measure λ(y)
i is defined by∫

f(z)dλ(y)
i (z) = ψ(x)

∫
f(γt(y)) ζ(2it) dt−

∫
f(z)Si(z, y) dz.

We write i = j + ν, and define the nonnegative measure µ by∫
f(y, z) dµ(y, z) =

∫
B(x,c2−j)

{∫
f(y, z) d|λ(y)

i (z)|
}
dy.

Proposition 13.1 can now be applied to prove that the L∞ operator norm of
(A∗jAj)

N4i is O(2−δ
′|i−j|). There is a corresponding result for Sj4i. It uses

the same measure µ, but in this case Proposition 13.2 suffices.
Given these L2 estimates, the arguments establishing the Lp inequalities,

in particular ‖ U (w)
ν ‖Lp→Lp ≤ A2εν , are almost unchanged from those carried

out in Section 18. This is because the kernels of the operators 4jRj+ν sat-
isfy the same estimates as those for the operators TjRj+ν , given by Lemma
18.1. It follows that

∑
j≥0 rj(ω)4jRj+ν satisfies the estimate (18.1) given for∑

j TjRj+ν . In a similar way, the treatments of
∑
j4jSj and

∑
j TjSj are

completely parallel. This concludes our sketch of the proof of Theorem 11.2.

20. The smoothing property

The purpose of this section is to prove Theorems 8.11 and 8.12. Assume
that γ : Rn+k 7→ Rn satisfies (C) at x0 ∈ Rn. Throughout this section we work
directly in Rn, rather than in the freed situation of Proposition 6.1.
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Consider an operator T (f)(x) =
∫
f(γ(x, t))ψ(x, t)dt, where ψ is a C1

function supported in a sufficiently small neighborhood of (x0, 0). Associated
to T are the iterates U` = (TT ∗)2` .

Lemma 20.1. Suppose that γ satisfies (C) at x0. If ` is chosen to be
sufficiently large, then

U`(f)(x) =
∫
K(x, y) f(y) dy

where K(x, y) is compactly supported, and y 7→ K(x, y) is in L1
δ , for some δ > 0,

uniformly in x. The same holds with the roles of x and y reversed.

The proof of this lemma is a simpler reprise17 of the proof of Propo-
sition 15.1. The principal ingredients are the curvature condition (CJ) and
Proposition 7.2. The details are left to the reader.

To exploit the lemma we utilize the spaces Lpα occurring in [39, Ch. 6]; see
also [4]. Here Lpα = {f : J−α(f) ∈ Lp}, where Jα(f̂) = (1 + 4π2|ξ|2)−α/2f̂(ξ).
Note Hs = L2

s, and Lp0 = Lp. A known inclusion result18 asserts L1
δ ⊂ L

p
δ1

, for
some p > 1 and δ1 > 0. Since K(x, y) has compact support and belongs to L1

δ as
a function of x, uniformly in y, it follows that U` maps Lp to Lpδ1 boundedly, i.e.
J−δ1U` is bounded from Lp to itself. By duality, since U∗` = U`, it follows that
U`J−δ1 is bounded from Lp

′
to itself, where 1/p+ 1/p′ = 1. Thus the analytic

family s → Js−δ1/2U`J−s−δ1/2 is bounded on Lp, when Re(s) = −δ1/2, and
on Lp

′
when Re(s) = δ1/2. Thus by interpolation, J−δ1/2U`J−δ1/2 is bounded

on L2.
However (J−δ1/2U`−1) (J−δ1/2U`−1)∗ = J−δ1/2U`J−δ1/2, so that J−δ1/2U`−1

is bounded on L2, and by duality so is U`−1J−δ1/2. Another interpolation
argument then shows that J−δ1/4U`−1J−δ1/4 is bounded on L2. Continuing
this way we conclude that J−δ`U0J−δ` is bounded on L2 with δ` = δ/2`+1.
This means that J−δ`TT

∗J−δ` is bounded on L2, and hence J−δ`T is bounded.
This shows that T maps L2 to L2

δ`
, i.e. maps L2 to Hs, with s = δ`. One half

of Theorem 8.11 is therefore proved.
We turn to the converse half. When γ is not assumed to satisfy (C), our

hypotheses permit very degenerate mappings such as γ(x, t) ≡ x. In that
case the operator Tf(x) =

∫
f(γ(x, t))K(x, t)dt is identically zero, hence is

smoothing, whenever
∫
K(x, t)dt ≡ 0. To exclude such pathology we say that

γ is at worst mildly degenerate at x0 if there exists a neighborhood V of
(x0, 0) such that γ(x, t) 6= x whenever (x, t) ∈ V and t 6= 0. This holds if the
differential of the map t 7→ γ(x0, t) has maximal rank k at t = 0.

17In the proof of Proposition 15.1, properties of the “free” context were used to show that all

estimates were suitably uniform in the index j. Here this uniformity is no longer an issue.
18This elementary result may be proved using Littlewood-Paley technique.
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We will prove a more general version of the converse half of the theorem:
If γ is at worst mildly degenerate and fails to satisfy curvature condition (C) at
x0, then for any kernel K ∈ C∞ supported in a sufficiently small neighborhood
of (x0, 0) satisfying K(x0, 0) 6= 0, T cannot map L2 to Hs for any s > 0. The
proof will show that when K ≥ 0, the same conclusion holds without the
auxiliary hypothesis of at worst mild degeneracy. It relies on an elementary
lemma, whose proof is omitted.

Lemma 20.2. For any p ≥ 1, s > 0 and σ ∈ (0, 1) there exists c > 0 such
that for every r ∈ (0, 1] and every real -valued f ∈ C∞0 (Rp) satisfying f(x) ≡ 0
for all |x| ≥ r and f(x) ≥ 1 for all |x| ≤ σr,

‖f‖Hs(Rp) ≥ cr−srp/2.

Proof of converse half of Theorem 8.11. Suppose that (C) does not hold at
x0. Then according to Lemma 9.7, for some 0 ≤ d < n there exist coordinates
(x′, x′′) ∈ Rd×Rn−d with origin at x0 such that γ(x′, x′′, t) = (γ′(x, t), γ′′(x, t))
takes the form

(20.1) γ(x, t) ∼ (x′ +O(t), x′′ +O(x′′)O(t)).

Set p = n− d ≥ 1.
Let N be a large parameter, to be chosen at the conclusion of the proof.

Fix a nonnegative function ϕ ∈ C∞0 (Rn) satisfying ϕ(x) = 1 whenever |x| ≤
1/2, and ϕ(x) ≡ 0 when |x| ≥ 1. For small δ > 0 set fδ(x) = ϕ(δ−1x′, δ−Nx′′).
Then ‖fδ‖L2 ≤ Cδ(d+Np)/2.

If ε > 0 is chosen to be sufficiently small, then for all sufficiently small
δ > 0, whenever |x′| ≤ εδ, |x′′| ≤ εδN and |t| ≤ εδ, we have |γ′(x, t)| ≤ δ/4
and |γ′′(x, t)| ≤ δN/4, by (20.1). Moreover, if V is chosen to be sufficiently
small but independent of N, δ, then whenever 2δN ≤ |x′′| ≤ 3δN , we have
|γ′′(x, t)| ≥ δN .

Assume without loss of generality that K(x0, 0) > 0. The hypothesis that
γ is at worst mildly degenerate at x0 ensures that if V, δ are sufficiently small
and x is sufficiently close to x0 then K(x, t) > 0 whenever γ(x, t) belongs to
the support of fδ. Therefore by the preceding paragraph, there exist ε, ε′ > 0
such that Tfδ(x) ≥ ε′δk whenever |x′| ≤ εδ and |x′′| ≤ εδN . On the other
hand, Tf(x) ≡ 0 if x ∈ V and 2δN ≤ |x′′| ≤ 3δN .

Fix any |x′| ≤ εδ and consider the function gx′(x′′) = Tfδ(x′, x′′). Apply-
ing Lemma 20.2 to the function δ−kgx′ , with r = 2δN , yields

‖gx′‖Hs(Rp) ≥ cδk−NsδNp/2.
But

‖Tfδ‖2Hs(Rn) ≥
∫
|x′|≤εδ

‖gx′‖2Hs(Rp) dx
′ ≥ cδ2(k−Ns)δd+Np.

Therefore the ratio ‖Tfδ‖Hs/‖fδ‖L2 is bounded below by cδk−Ns.
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Let s > 0 be given, choose N > k/s and let δ tend to zero. Now the ratio
tends to infinity. Thus T does not map L2 to Hs boundedly.

The same reasoning applies ifK is assumed to be nonnegative andK(x0, 0)
> 0, without the hypothesis that γ be at worst mildly degenerate.

An analogous result can be formulated in the Lp context.

Definition 20.3. An operator S is Lp improving if for some p ∈ (1,∞),
there exists an exponent q > p such that S is bounded from Lp to Lq.

Note that if K is bounded and supported in a sufficiently small neigh-
borhood of {t = 0}, our operators T are bounded from Lp to itself for all
p ∈ [1,∞], by Lemma 14.1. Consequently if such an improvement holds for
one p, then by interpolation it holds for all p ∈ (1,∞), with q = q(p). Theo-
rem 8.12 thus asserts essentially that if K ∈ C0 and K(x0, 0) 6= 0, then T is
Lp improving if and only if γ satisfies (C) at x0.

Proof of Theorem 8.12. |K| may be majorized by a function in C1
0 . As-

suming (C), we see that Theorem 8.11 asserts that the operator defined by
replacing K by such a majorant maps L2 to the Sobolev space Hs for some
s > 0; Hs in turn embeds in Lq for some q > 2. The converse half follows
from the pointwise lower bound derived for Tfδ in the proof of Theorem 8.11
together with a small computation, which is left to the reader.

Remark 20.1. To describe the optimal degree of smoothing for operators
of this type is no simple matter. A number of results are known under various
additional hypotheses; see [7], [9], [14], [30], [31], [32], [35], [37], [38].

21. Complements and remarks

In this section we discuss some further results related to Theorems 11.1
and 11.2.

(1) Our first remark concerns the almost everywhere convergence implied
by the maximal theorem. Let γ(x, t) = γt(x) satisfy the curvature condition
(C) described in Section 8, at x = x0. Consider any exponent p > 1, and let
ck equal the volume of the unit ball in Rk. Then in any neighborhood of x0 in
which (C) holds,

(21.1) lim
r→0

c−1
k r−k

∫
|t|≤r

f(γt(x)) dt = f(x) a.e.,

for x near x0, for every f ∈ Lp(Rn). Now (21.1) follows from Theorem 11.2 in
the standard fashion.
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The conclusion (21.1) also holds without the curvature hypothesis on γt, if
we require instead that (x, t) 7→ γt(x) be real analytic in (x, t). In fact, when γt
is real analytic, then the set of all points in a small connected neighborhood of
x0 at which (C) holds is the complement of an analytic variety, hence either is
an open set of full measure, or is empty. In the first case, the conclusion (21.1)
follows for almost every x, because the assertion is purely local. In the second
case, when the curvature condition fails identically, Lemma 9.8 asserts that
outside a lower-dimensional variety, a neighborhood of x0 can be fibered by
(proper) submanifolds which are invariant under γt. An application of Fubini’s
theorem reduces the conclusion to the assertion (21.1) for each of those sub-
manifolds. The result is then a consequence of the validity of (21.1) under
hypothesis (C), applied in a lower dimensional situation.

Bourgain [3] has shown that for arbitrary real analytic families of straight
lines γ(x, t) = x+ tv(x) in the plane, the maximal function M is bounded on
Lp for p > 1.

(2) The singular integrals in Theorem 11.1 may be generalized as follows.
Suppose K(x, ·) is for each x ∈ Rn a distribution on Rk which agrees with a
function K(x, t), when 0 6= t ∈ Rk. Assume that K(x, t) is supported where x
is near x0 and |t| ≤ a, and is C1 in the open set t 6= 0. Suppose moreover that
K(x, t) satisfies the differential inequalities

(21.2) sup
x
|∂αx ∂βt K(x, t)| ≤ A|t|−k−|β|

when 0 ≤ |α| ≤ 1 and 0 ≤ |β| ≤ 1. Finally, we require that for each x, the
Fourier transform of the distribution K(x, ·) is an L∞ function; we denote it
by K̂(x, ξ). More particularly, we require that

(21.3) sup
x,ξ
|∂αx K̂ (x, ξ)| ≤ A <∞, for 0 ≤ |α| ≤ 1.

Now for each f ∈ C∞0 (Rn) we define T (f) by

(21.4) T (f)(x) = (K(x, ·), F )

where F is the test function given by F (t) = f(γt(x)).

Corollary 21.1. Assume that γt satisfies the curvature conditions in
Section 8. The operator T defined by (21.4) extends to a bounded operator on
Lp(Rn), for all 1 < p <∞.

The proof proceeds as follows. First (21.2) and (21.3) imply the cancella-
tion condition

(21.5) sup
x
|(∂αx K(x, ·), ϕR)| ≤ A, 0 ≤ |α| ≤ 1
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for all normalized bump-functions ϕ, with ϕR(t) = ϕ(t/R), with A a constant
independent of R. For this see [43, Prop. 3, §4.5, Ch. 6]. Next, using (21.5)
and proceeding as in [43, Ch. 3, §5.33], we can decompose K(x, ·) as

(21.6) K(x, ·) = c(x)δ0 +
∞∑
j=0

Kj(x, t)

where δ0 is the delta function at the origin, in the t-variable, and c is a C1

function of compact support. Here the Kj(x, t) are supported in 2−j · a/2 ≤
|t| ≤ 2−j · 2a, and satisfy (21.3) uniformly in j. Moreover they also satisfy the
cancellation conditions

(21.7)
∫
Kj(x, t)dt = 0, for all j and x.

With the decomposition (21.6) we can define Tj by Tj(f)(x) =∫
Kj(x, t)f(γt(x))dt, and we have T (f)(x) = c(x)f(x) +

∞∑
j=0

Tj(f)(x), for ev-

ery f ∈ C1
0 . The cancellation conditions (21.7) suffice for the proof of the Lp

boundedness of
∑
j Tj to proceed as before.

Part 4. Appendix

22. Proof of the lifting theorem

To prove Proposition 6.1, we need to find a manifold M of dimension d

(with a distinguished point O ∈M), and a mapping π of a neighborhood of O
to a neighborhood of the origin in Rn, so that π has maximal rank (= n); in
addition we need to construct vector fields X̃i, 1 ≤ i ≤ p, defined on M near
O, so that π∗(X̃i) = Xi, and X̃i are free relative to the exponents a1, . . . , ap
up to order m.

In fact, by the maximal rank property there would be a coordinate system
{(x, z)} for M centered at O, with x ∈ Rn, z ∈ Rn−d so that π(x, z) = x. Then
π∗(X̃i) = Xi for all i implies that the X̃i take the form (6.3).

Recall the Lie algebra N = N a1,...ap
m and its corresponding Lie group N ;

also the basis {YI} of N , where each YI is an appropriate commutator of the
elements Y1, Y2, . . . , Yp. The YI ’s are (left-invariant) vector fields on N .

Consider now the space N ×Rn, and the vector fields Uj defined near the
origin of this space by

(22.1) Uj = Yj ⊕ Xj ,

(i.e. where Yj acts on the N -variable, and Xj acts on the Rn variable).
We can also form the commutators UI = YI⊕XI for I basic, and note that

the UI ’s are linearly independent (because the YI are linearly independent).
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We next define the submanifold M of N × Rn by a (local) diffeomorphism Φ
with N

Φ : N →M

given by

(22.2) Φ : exp
( ∑
I basic

yI YI

)
→ exp

( ∑
I basic

exp yIUI

)
(O),

which is defined whenever (yI) is small.
Let π̃ denote the coordinate projection of N × Rn. We then define the

(local) mapping π of M to Rn by restricting π̃ to M .
It follows from (22.2) that UI(O) are tangent vectors to M at the origin.

Since π∗(UI(O)) = π̃∗(UI(O)) = XI(O), and the XI span, we see that π has
rank = n near the origin.

Having defined M and π, we need next to define the vector fields X̃i. Let
Vi = Φ∗(Yi), VI = Φ∗(YI). If the Vi’s equaled the Ui’s, the latter would be
tangent to M and we could take these to be the X̃i. However in general this
identity does not hold. As a substitute we prove

(22.3) Vi − Ui vanishes of order > m− ai.
To make this statement precise, we temporarily introduce a new coordi-

nate system near the origin in N ×Rn, adapted to the vector fields {UI}. We
choose n vector fields, Z1, Z2, · · ·Zn, so that {UI , I basic, and Zj , 1 ≤ j ≤ n}
spans N × Rn near the origin. With this choice fixed, we assign to the point

exp
( ∑
I basic

yIUI +
∑
j
vj Zj

)
(O) the coordinate [y, v] where y = (yI), v = (vj).

Note that in this coordinate system, the submanifold M is given by v = 0,
while (yI) can be taken as a coordinate system for M near O.

Now since Φ is a local diffeomorphism, the commutation relations satisfied
by the YI (i.e. those of the Lie algebra N ) are the same as those satisfied by
the VI = Φ∗(YI). Moreover, in view of Φ, in the coordinates y, the vector field
Vi is expressed by

(22.4)
d

dt
f

(
exp tYi · exp

( ∑
I basic

yI YI

)) ∣∣∣∣∣
t=0

,

while the expression of the Ui in terms of the coordinates [y, v] is given by

(22.5)
d

dt
f

exp tUi · exp
( ∑
I basic

yI UI +
n∑
j=1

vj Zj

)
(O)

 ∣∣∣∣∣
t=0

so we need to compare

exp t Yi · exp
∑
I

yI YI and exp t Ui · exp
(∑

I

yIUI +
∑
j

vjZj

)
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via the Baker-Campbell-Hausdorff formula. To make the comparison we define
an order on monomials of y = (yI) (consistent with that of the vector fields
YI), by assigning yj to have order aj , and making the order multiplicative in

the usual way. Then it is clear that in multiplying out exp tYi · exp
(∑

I
yIYI

)
,

the coefficient of any YI0 is a polynomial function of t whose coefficients are
polynomials in y, in which the coefficient of the linear term t1 has order |I0|−ai.
On M we have v = 0, and so using the reasoning which follows (5.6), we can
see that as long as we consider commutators of Ui with various UI whose total
order is ≤ m, the effect is the same as with Yi and YI ; thus only commutators
which involve Ui and the UI of total order > m lead to a different answer. In
calculating (22.5) we need only consider the coefficient of t1, and from this we
get (22.3).

Next let us denote by Tµ(M) the tangent space of M at µ ∈M ; we adopt
a similar terminology for Tµ(N ×Rn), and we note that Tµ(M) ⊂ Tµ(N ×Rn).
We can then find a subspace S of TO(N × Rn) so that

(22.6) TO(M) + S = TO(N × Rn), and S ⊂ kernel (π̃)∗.

Indeed, TO(M) is spanned by the UI(O) = YI(0) +XI(0) and the kernel of π̃∗
is N , which is spanned by YI(0). Since the XI(0) span Rn, such an S can be
determined. With this S fixed we also have

(22.7) Tµ(M) + S = Tµ(N × Rn) = TO(N × Rn)

for µ near the origin. The decomposition (22.7) allows us to define a smoothly
varying family of projections, Pµ of Tµ(N ×Rn), onto its subspace Tµ(M), by
setting Pµ to be the identity on Tµ(M), and Pµ to vanish on S. We are then
in a position to define the X̃i by

(22.8) X̃i(µ) = Pµ (Ui(µ)).

Now first,

π∗(X̃i) = π̃∗(X̃i) = π̃∗(Ui) − π̃∗((1− Pµ)Ui(µ)) = π̃∗(Ui) = Xi.

Therefore, π∗(X̃i) = Xi. Also applying Pµ to (22.3) we see that since Pµ(Vi)(µ)
≡ Vi(µ) for µ ∈M , and because Pµ depends smoothly on µ, Vi − X̃i vanishes
of order > m − ai. From this it is clear by induction on r that the span
{X̃I(O), |I| ≤ r} = the span {VI(O), |I| ≤ r}, for r ≤ m. Since the Lie algebra
generated by the VI ’s is isomorphic to that of the YI ’s (i.e.N ), we see as a result
that the X̃i are free relative to a1, . . . ap up to order m, and the proposition is
proved.
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