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Gromov’s measure equivalence
and rigidity of higher rank lattices

By Alex Furman

Abstract

In this paper the notion of Measure Equivalence (ME) of countable groups
is studied. ME was introduced by Gromov as a measure-theoretic analog of
quasi-isometries. All lattices in the same locally compact group are Measure
Equivalent; this is one of the motivations for this notion. The main result of
this paper is ME rigidity of higher rank lattices: any countable group which is
ME to a lattice in a simple Lie group G of higher rank, is commensurable to
a lattice in G.

1. Introduction and statement of main results

This is the first in a sequence of two papers on rigidity aspects of measure-
preserving group actions, the second being [Fu]. In this paper we discuss the
following equivalence relation between (countable) groups, which was intro-
duced by Gromov:

Definition 1.1 ([Gr, 0.5.E]). Two countable groups Γ and Λ are said to be
Measure Equivalent (ME) if there exist commuting, measure-preserving, free
actions of Γ and Λ on some infinite Lebesgue measure space (Ω,m), such that
the action of each of the groups Γ and Λ admits a finite measure fundamental
domain. The space (Ω,m) with the actions of Γ and Λ will be called a ME
coupling of Γ with Λ.

The basic example of ME groups are lattices in the same locally compact
group:

Example 1.2. Let Γ and Λ be lattices in the same locally compact second
countable (lcsc) group G. Since G contains lattices it is necessarily unimodular,
so its Haar measure mG is invariant under the left Γ-action γ : g 7→ γ−1g,
and the right Λ-action λ : g 7→ g λ, which obviously commute. Hence (G,mG)
forms a ME coupling for Γ and Λ.
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The relation of ME between groups can be considered as a measure-
theoretic analog of quasi-isometry between groups, due to the following beau-
tiful observation of Gromov:

Theorem ([Gr, 0.2.C]). Two finitely generated groups Γ and Λ are quasi -
isometric if and only if they are topologically equivalent in the following sense:
there exist commuting, continuous actions of Γ and Λ on some locally compact
space X, such that the actions of each of the groups is properly discontinuous
and cocompact.

A typical example of such topological equivalence consists of a locally
compact group and any two of its uniform (i.e. cocompact) lattices which act
by translations from the left and from the right. Thus all uniform lattices in
the same lcsc group are topologically equivalent (i.e. quasi-isometric); however
typically nonuniform lattices are not quasi-isometric to the uniform ones.

Examples of lattices suggest that ME is a (strictly) weaker relation than
topological equivalence (i.e. quasi-isometry). For general groups this is not
known; quasi-isometric groups admit topological coupling (in the above sense),
but it is not clear whether one can always find such a coupling carrying an
invariant measure.

The notion of ME is also closely related to (Weak) Orbit Equivalence
of measure-preserving free actions of groups on probability spaces (c.f. [Fu]).
This connection was observed by R. Zimmer and was apparently known also
to M. Gromov. More precisely, one has

Theorem (see [Fu, 3.2 and 3.3]). Let Γ and Λ be two countable groups
which admit Weakly Orbit Equivalent, essentially free, measure-preserving
actions on Lebesgue probability spaces (X,µ) and (Y, ν). Then Γ and Λ are
measure equivalent. Moreover, there exists a ME coupling (Ω,m) of Γ with
Λ, such that the Γ-action on the quotient Ω/Λ and the Λ-action on Γ\Ω are
isomorphic to (X,Γ) and (Y,Λ) respectively.

Conversely, given an ME coupling (Ω,m) of Γ with Λ, the left Γ-action
on Ω/Λ and the right Λ-action on Γ\Ω give weakly orbit equivalent measure-
preserving actions on probability spaces.

The concept of (weak) Orbit Equivalence has been thoroughly studied
in the framework of ergodic theory. In particular, Ornstein and Weiss [OW]
have proved (generalizing previous work of Dye; see also [CFW]) that all (not
necessarily free) ergodic measure-preserving actions of all countable amenable
groups are Orbit Equivalent. Hence all countable amenable groups are ME.
On the other hand, it is well known (c.f. [Zi3, 4.3.3]) that nonamenable groups
are not ME to amenable ones. Hence
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Corollary 1.3. The ME class of integers Z consists precisely of all
countable amenable groups.

This fact shows that ME is a rather weak relation, compared to quasi-
isometries. For example, the class of groups which are topologically equivalent
(i.e. quasi-isometric) to Z consists only of finite extensions of Z. By consid-
ering various amenable groups, one also observes that many quasi-isometric
invariants, such as growth functions, finite generation, cohomological dimen-
sion etc. are not preserved under a ME relation. The property of being a word
hyperbolic group is not preserved by ME either, because SL2(C) contains both
word hyperbolic and not-word hyperbolic lattices.

However, ME is convenient for transferring unitary representation in-
variants. Given a ME coupling (Ω,m) of Γ with Λ one can induce unitary
Λ-representations to unitary Γ-representations (see Section 8), which gives

Corollary 1.4. Kazhdan’s property T is a ME invariant.

We remark, that unlike amenability, it is still an open problem whether
property T is a quasi-isometric invariant.

Lattices in (semi-) simple Lie groups form an especially interesting class
of examples of discrete groups. The program of quasi-isometric classification
of lattices has been recently completed by a sequence of works by Eskin, Farb,
Kleiner, Leeb and Schwartz (see [Sc], [FS], [EF], [Es], [KL], and the surveys
[GP] and [Fa]). It is known now, that any group which is quasi-isometric
to a lattice in a semisimple Lie group is commensurable to a lattice in the
same Lie group, while lattices in the same simple Lie group split into several
quasi-isometric classes with the class of uniform lattices being one of them.

Consider a similar classification program in the ME context. Recall that
all lattices in the same group are automatically ME (Example 1.2). The corre-
spondence between ME and (weak) Orbit Equivalence of measure-preserving
actions, mentioned above, enables us to translate Zimmer’s work on Orbit
Equivalence (which is based on superrigidity for measurable cocycles theorem
[Zi1]), to the ME framework. This almost direct translation shows that a lat-
tice Γ in a higher rank simple Lie group is not ME to a lattice in any other
semisimple Lie group. A further result [Zi2] of Zimmer in this direction shows
that if a lattice Γ in a higher rank simple Lie group G is ME to a countable
group Λ, which is just known to admit a linear representation with an infinite
image, then Λ is commensurable to a lattice in AdG.

In the present paper we prove that any group Λ, which is ME to Γ, is
essentially linear, removing completely the linearity assumptions in the above
results. Hence for a higher rank simple Lie group G, the collection of all its
lattices (up to finite groups) forms a single ME class. Moreover, we show that
any ME coupling of Γ with Λ has a standard ME coupling as a factor. More
precisely
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Theorem (3.1). Let Γ be a lattice in a simple, connected Lie group G

with finite center and R−rk(G) ≥ 2. Let Λ be an arbitrary countable group,
which is Measure Equivalent to Γ. Then there exists a finite index subgroup
Λ′ ⊆ Λ and an exact sequence

1 −→ Λ0 −→ Λ′
ρ−→ Λ1 −→ 1

where Λ0 C Λ is finite and Λ1 ⊂ AdG is a lattice. Moreover, if (Ω,m) is a ME
coupling of Γ with Λ, then there exists a unique measurable map Φ : Ω→ AdG
such that

Φ(γ ω λ′) = Ad(γ) Φ(x) ρ(λ′), (γ ∈ Γ, λ′ ∈ Λ′).

The measure Φ∗m is a convex combination of an atomic measure and the
Haar measure on AdG; disintegration of m with respect to Φ∗m consists of
probability measures.

The main substance of the theorem is the construction of a virtually faith-
ful representation for the unknown group Λ, using just the fact that Λ is ME
to a higher rank lattice Γ.

Open questions.

1. What is the complete ME classification of lattices in (semi)simple Lie
groups? By Theorem 3.1 it remains to classify lattices in rank one simple
Lie groups. Since property T is a ME invariant, lattices in Sp(n, 1) and
F4 are not ME to lattices in SO(n, 1) or in SU(n, 1). Lattices in different
Sp(n, 1) are not ME to each other; this follows from the work of Cowling
and Zimmer [CZ] which uses von Neumann algebra invariants. So the
main question is whether ME distinguishes lattices in different groups
among SO(n, 1) and SU(n, 1).

2. Characterize or describe general properties of the class of (countable)
groups which are ME to a free group. Note that this class contains (all)
lattices in SL2(R), SL2(Qp) and in Aut(T ) – the group of automorphisms
of a regular tree.

3. Find other ME invariants, besides amenability and property T.

4. Is it true that any two quasi-isometric groups are ME? Note that if true,
this, combined with Corollary 1.4, would imply that Kazhdan’s property
T is a quasi-isometric invariant.

Acknowledgments. I am deeply grateful to Robert Zimmer, Benson Farb
and Alex Eskin for their support, constant encouragement and for many en-
lightening conversation on quasi-isometries, orbit equivalence and related top-
ics.
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2. Definitions, notations and some basic properties

Inspired by the fact that any two lattices in the same group are ME
(Example 1.2), we shall use a similar left and right notation for a general ME
coupling. More precisely, given a ME coupling (Σ, σ) of arbitrary countable
groups Γ and Λ we shall denote the actions by:

γ : x 7→ γ−1 x λ : x 7→ xλ (x ∈ Σ, γ ∈ Γ, λ ∈ Λ).

Thus, by saying that (Σ, σ) is a ME coupling of Γ with Λ we shall mean that
Γ acts on (Σ, σ) from the left and Λ acts from the right. Thus, formally, the
definition of ME becomes asymmetric.

Duals and compositions of ME couplings. Using the terminology of Mea-
sure Equivalence we should check that the relation is indeed an equivalence
relation. Showing this we shall establish some notation and terminology to be
used in the sequel.

Reflexivity. Any countable group Γ is ME to itself: consider the left and
the right Γ action on itself with the Haar (counting) measure mΓ.

Symmetry. Given a ME coupling (Σ, σ) of Γ with Λ, one can consider the
dual ME coupling (Σ̌, σ̌) of Λ with Γ, defined formally as follows: the measure
spaces (Σ, σ) and (Σ̌, σ̌) are isomorphic with x 7→ x̌ being the isomorphism;
the left Λ-action and the right Γ-actions on Σ̌ are defined by λ−1 x̌ = (xλ)̌ and
x̌ γ = (γ−1 x)̌.

Transitivity. Given a ME coupling (Σ, σ) of Γ with Λ, and a ME coupling
(Σ′, σ′) of Λ with ∆, define the composition ME coupling of Γ with ∆, denoted
by (Σ ×Λ Σ′, σ ×Λ σ′). The latter is constructed as follows: consider the
commuting measure-preserving actions of Γ, Λ and ∆ on the product space
(Σ× Σ′, σ × σ′):

(2.1)
γ : (x, y) 7→ (γ−1x, y), δ : (x, y) 7→ (x, y δ),

λ : (x, y) 7→ (xλ, λ−1y)

for x ∈ Σ, y ∈ Σ′ and γ ∈ Γ, λ ∈ Λ, δ ∈ ∆. The composition ME coupling is
the action of Γ and ∆ on the space of the Λ-orbits in Σ × Σ′, equipped with
the natural factor measure. This measure becomes apparent when the space
Σ×Λ Σ′ of Λ-orbits is identified with the spaces

Σ×Λ Σ′ ∼= Σ×X ′ ∼= Y × Σ′

where Y ⊂ Σ and X ′ ⊂ Σ′ are some fundamental domains for Σ/Λ and Λ\Σ′,
respectively. From these identifications one readily sees that Γ and ∆ admit
finite measure fundamental domains, namely X×X ′ for Γ\(Σ×X ′) and Y ×Y ′
for (Y × Σ′)/∆, where X ⊂ Σ and Y ′ ⊂ Σ′ are (left) Γ- and (right) ∆-
fundamental domains.
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Example 2.1. To clarify the above terminology consider our illustrative
Example 1.2: let G be a lcsc group with the Haar measure mG, Γ and Λ lattices
in G, and take the ME coupling (G,mG) of Γ with Λ. The dual ME coupling
(Ǧ, m̌G) of Λ with Γ can be identified also with the natural ME coupling
(G,mG). This time one considers the left Λ-action and the right Γ-action, the
identification of (Ǧ, m̌G) with (G,mG) being given by x̌ = x−1.

Let Γ1, Γ2 and Γ3 be three lattices in the same lcsc group G. Considering
the composition G ×Γ2 G of the natural ME couplings of Γ1 with Γ2 and Γ2

with Γ3, one can check that this ME coupling of Γ1 with Γ3 admits a Γ1×Γ3-
equivariant map onto the natural ME coupling by G. Indeed consider the
map G × G → G given by (x, y) 7→ xy (the latter is multiplication in G)
which factors through the space of Γ2-orbits G×Γ2 G. The corresponding map
G×Γ2 G→ G is the required map, with G/Γ2 (or Γ2\G) being the fiber.

Cocycles α : Γ× Σ/Λ→ Λ and β : Γ\Σ× Λ→ Γ. Let (Σ, σ) be a ME cou-
pling of two countable groups Γ and Λ and let (X,µ) and (Y, ν) be some
fundamental domains for Σ/Λ and Γ\Σ, respectively (here µ = σ|X and
ν = σ|Y ). Define a measurable function α : Γ × Σ → Λ by the following
rule: given x ∈ X and γ ∈ Γ, let α(γ, x) be the unique element λ ∈ Λ,
satisfying γ x ∈ X λ. In a similar way, given a fundamental domain Y for
Γ\Σ, we define β : Y × Λ → Γ by the following: given y ∈ Y and λ ∈ Λ, set
β(y, λ) = γ ∈ Γ if y λ ∈ γ Y .

With these definitions the natural actions of Γ on Σ/Λ ∼= X and Λ on
Γ\Σ ∼= Y can be described by the formulas

γ · x = γ xα(γ, x)−1 ∈ X (x ∈ X, γ ∈ Γ)

y · λ = β(y, λ)−1 y λ ∈ Y (y ∈ Y, λ ∈ Λ)

where the actions in the right-hand sides are the original Γ and Λ actions on
Σ, while the actions on the left-hand sides (denoted by the dot) represent the
natural actions on the spaces of orbits Σ/Λ and Γ\Σ.

From the definitions it follows directly that α and β are (left and right)
cocycles; i.e.

α(γ1 γ2, x) = α(γ1, γ2 · x)α(γ2, x)

β(y, λ1 λ2) = β(y, λ1)β(y · λ1, λ2).

Moreover, choosing another fundamental domain, say X ′ for Σ/Λ, would result
in a cocycle α′ which is measurably cohomologous to α. More precisely, if
θ : X → X ′ is the isomorphism, then

α′(γ, θ(x)) = ξ(γ · x)−1 α(γ, x) ξ(x)

where ξ : X → Λ is chosen so that θ(x) = x ξ(x) ∈ X ′. Similar statements
hold for β.
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Having this in mind, we can talk about the “canonical” cocycles α : Γ×
Σ/Λ → Λ and β : Γ\Σ × Λ → Γ meaning the corresponding cohomological
class of measurable cocycles.

Ergodicity of ME couplings. A ME coupling (Σ, σ) of Γ and Λ is said to be
ergodic if the left Γ-action on Σ/Λ and the right Λ-action on Γ\Σ are ergodic.

Lemma 2.2. Let (Σ, σ) be a ME coupling of two countable groups Γ and Λ.

1. The Γ-action on Σ/Λ is ergodic if and only if the Λ-action on Γ\Σ is
ergodic.

2. The Γ × Λ-invariant measure σ on Σ can be disintegrated in the form
σ =

∫
σt dη(t), where η is some probability measure, such that for

η-almost every t the measure σt is Γ × Λ-invariant and (Σ, σt) forms
an ergodic ME coupling of Γ with Λ.

3. The composition coupling (Σ×Λ Σ̌, σ ×Λ σ̌) of Γ with Γ is ergodic if and
only if the Λ-action on Γ\Σ is weakly mixing, in which case any compo-
sition ME coupling (Σ ×Λ Σ′, σ ×Λ σ

′) of Γ with ∆ is ergodic, provided
that the ME coupling (Σ′, σ′) of Λ with ∆ is ergodic.

Proof. Let (X,µ) and (Y, ν) be some fundamental domains in (Σ, σ) with
respect to Λ and Γ actions.

1. Note that Γ is ergodic on (X,µ) if and only if Γ×Λ is ergodic on (Σ, σ),
which happens if and only if Λ is ergodic on (Y, ν).

2. Consider the Γ on (X,µ). Using ergodic decomposition, write µ =∫
µt dη(t), where η is some probability measure and η-a.e. µt are Γ-invariant

and ergodic probability measures on X. Let σt be the lifting of µt from X ∼=
Σ/Λ to Σ. We have σ =

∫
σt dη(t) with σt being Γ×Λ-invariant. Let νt = σt|Y ,

then
ν(Y ) =

∫
νt(Y ) dη(t) <∞.

Hence for η-a.e. t the measure νt is finite. Therefore, for η-a.e. t, (Σ, σt) is a
ME coupling of Γ with Λ, which is ergodic by 1.

3. Let (Σ′, σ′) be some ME coupling of Λ with ∆, and let (Z, η) be a
fundamental domain for the right ∆-action. Observe that the composition ME
coupling (Σ×Λ Σ′, σ×Λσ

′) of Γ with ∆ is ergodic if and only if the action (2.1)
of Γ× Λ×∆ on (Σ× Σ′, σ × σ′) is ergodic. The latter happens if and only if
the Λ-action on (Y × Z, ν × η), given by

λ : (y, z) 7→ (y · λ, λ−1 · z) ,
is ergodic. This is just the product (or diagonal) action of Λ on (Y, ν)× (Z, η).
The assertion follows from the standard facts on weakly mixing group actions
(c.f. [BR]).
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3. The main result and an outline of its proof

We shall state our main result in a slightly different form, using the group
of all automorphisms Aut(AdG) of AdG. The relationship between G, its
center Z(G), and the groups Inn(G) = AdG and Aut(AdG) is described by
the exact sequence

1 −→ Z(G) −→ G
Ad−→ AdG −→ Aut(AdG) o−→ Out(AdG) −→ 1

where Ad(g) : h 7→ g−1 h g. Note that in our case both Out(AdG) and Z(G)
are finite groups.

Theorem 3.1 (Measure Equivalence rigidity for higher rank lattices). Let
G be a simple connected Lie group with a finite center and R−rk(G) ≥ 2. Let
Γ ⊂ G be a lattice and let Λ be an arbitrary countable group, which is Measure
Equivalent to Γ. Then there exists a homomorphism ρ : Λ→ Aut(AdG) with
a finite kernel Λ0 = Ker(ρ) and the image Im(ρ) = Λ1 ⊂ Aut(AdG) being a
lattice in Aut(AdG). Moreover, if (Σ, σ) is the ME coupling between Γ and Λ,
then there exists a unique measurable map Φ : Σ→ Aut(AdG) satisfying

Φ(γ−1 xλ) = Ad(γ)−1 Φ(x) ρ(λ)

for γ ∈ Γ, λ ∈ Λ and σ-a.e. x ∈ Σ. The projection Φ∗σ of the measure σ to
Aut(AdG) is a convex combination of an atomic measure and Haar measures
on AdG-cosets in Aut(AdG), where the fibers of the disintegration of σ with
respect to Φ∗σ are probability measures.

In the statement of the theorem in the introduction we take

Λ′ = Ker(o ◦ ρ : Λ→ Out(AdG)).

Outline of the proof. The proof of the main theorem contains four steps,
described briefly below.

Step 1. Analysis of self ME couplings of Γ. We consider a general ME
coupling (Ω,m) of Γ with itself and show that it has a uniquely defined Γ×Γ-
equivariant measurable mapping Φ : Ω → Aut(AdG). The main tool in the
construction of Φ is Zimmer’s superrigidity for cocycles. Uniqueness of Φ is
proved by an argument on smoothness of algebraic actions. Ratner’s theorem
is used to identify the image Φ∗m of the measure m.

Step 2. Construction of the representation. Given a ME coupling (Σ, σ) of
Γ with an unknown group Λ we construct a representation ρ : Λ→ Aut(AdG).
The idea of the construction is to consider the composition ME coupling Ω =
(Σ×Λ Λ×Λ Σ̌) of Γ with Γ, and to use the factoring map Φ : Ω→ Aut(AdG).
The main point of the proof is to show that for a.e. fixed (x, y̌) ∈ Σ× Σ̌ certain
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expression in terms of Φ([x, λ, y̌]) gives a representation ρx,y : Λ→ Aut(AdG).
It turns out, that the representations ρx,y = ρx do not depend on y, and that
different values of x give rise to equivalent representations.

Step 3. Finiteness of the kernel. The construction of the representations
ρx enables to show that the common kernel Λ0 = Ker(ρx : Λ→ Aut(AdG)) is
finite.

Step 4. The image is a lattice. Once obtained, the linear representation
ρ enables us to apply Zimmer’s result [Zi2], stating that in this case ρ(Λ)
forms a lattice in Aut(AdG). This argument relies on another application of
superrigidity for cocycles (with real and p-adic targets).

Remark 3.2. A reader familiar with the proofs of quasi-isometric rigidity
results may recognize some lines of similarity in the scheme of the proof:

• For any finitely generated group Γ, there exists an associated group
QI(Γ) of its self-quasi-isometries, which is extremely useful in the study of
quasi-isometric properties of Γ. In particular, given any quasi-isometry
q : Λ → Γ of an unknown group Λ to a known Γ, one automatically
obtains a representation

ρq : Λ τ−→ QI(Λ)
q∗−→ QI(Γ) ρq(λ) = q∗ ◦ τ(λ) ◦ q−1

∗ ,

where τ is the representation by translations, and q∗ : QI(Λ) ∼= QI(Γ)
is the isomorphism corresponding to q. Hence studying quasi-isometric
rigidity amounts to the identification of the group QI(Γ), analysis of the
image ρq(Λ) ⊆ QI(Γ), and a proof of the finiteness of the kernel Ker(ρq).

• In a somewhat analogous framework of ME we do not see a reasonable
general definition of a ME analog of the group QI(Γ), and therefore do
not have an abstract construction of a representation as above. Never-
theless, Step 1 of our proof can be interpreted as an identification of a
(nonexisting) ME analog of the group QI(Γ) with Aut(AdG). Step 2 of
the proof traces the construction of ρq with most of the effort devoted to
the proof that the construction indeed gives a representation.

4. Self ME couplings of higher rank lattices

Theorem 4.1. Let G be as in Theorem 3.1. Let Γ1, Γ2 ⊂ G be lattices
and let (Ω,m) be a ME coupling of Γ1 with Γ2. Then there exists a unique
measurable map ΦΩ : Ω→ Aut(AdG), satisfying

(4.1) ΦΩ(γ1 ω γ2) = Ad(γ1) ΦΩ(ω) Ad(γ2)

for m-a.e. ω ∈ Ω and all γ1 ∈ Γ1 and γ2 ∈ Γ2. The projection ΦΩ∗m of m is
a convex combination of an atomic and Haar measures on the cosets of AdG
in Aut(AdG).
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Proof of Theorem 4.1. Let (Ω,m) be a ME coupling of Γ1 with Γ2. Let
X ⊂ Ω be a fundamental domain for Ω/Γ2, and

α : Γ1 ×X → Γ2

be the associated measurable cocycle. Recall, that by its definition

γ1 x ∈ Xα(γ1, x)

for a.e. x ∈ X and all γ1 ∈ Γ1. Consider the cocycle

A : Γ1 ×X α−→ Γ2
Ad−→ Ad Γ2 ⊂ AdG

as an AdG-valued cocycle.

Lemma 4.2. The cocycle A : Γ1 ×X → AdG is Zariski dense, i.e., A is
not measurably cohomologous to a cocycle taking values in a proper algebraic
subgroup L ⊂ AdG.

Proof. This is an adaptation of the argument due to Zimmer (c.f. [Zi3,
p. 99]). Suppose that A(γ, x) = φ(γ · x)−1C(γ, x)φ(x) for some measurable
cocycle C : Γ1 ×X → L, where L ⊂ AdG is a proper algebraic subgroup and
φ : X → AdG is a measurable map. Extend φ to the Γ2-equivariant map
Ω → AdG by φ(xγ2) = φ(x) Ad(γ2) for x ∈ X ⊂ Ω and γ2 ∈ Γ2 (recall that
X ⊂ Ω is a Γ2 fundamental domain). By the definition of α, for any γ1 ∈ Γ1

and a.e. x ∈ X:
γ1x = (γ1 · x)α(γ1, x),

so that using the extended definition of φ:

φ(γ1 x) = φ((γ1 · x)α(γ1, x)) = φ(γ1 · x)A(γ1, x)

= φ(γ1 · x)φ(γ1 · x)−1C(γ1, x)φ(x)

= C(γ1, x)φ(x).

Thus, if p : AdG→ L\AdG is the projection, then the function

f : Ω
φ−→ AdG

p−→ L\AdG

is Γ1-invariant: f(γ1ω) = f(ω). Note also that f is Γ2-equivariant: f(ω γ2) =
f(ω) Ad(γ2). Hence f defines a Γ2-equivariant map from Γ1\Ω ∼= Y to L\AdG,
which takes the finite measure ν to an Ad Γ2-invariant finite measure ν̃ on
L\AdG. Setting

ν̄ =
∫

Ad Γ2\AdG
ν̃ g dg

we obtain an AdG-invariant finite measure ν̄ on L\AdG, which contradicts
Borel’s density theorem.
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Let us assume, for a moment, that Γ1 acts ergodically on (X,µ). Then ap-
plying the superrigidity for cocycles theorem ([Zi3, 5.2.5]) to the Zariski dense
cocycle A : Γ1×X → AdG, we can conclude that there exists a homomorphism
π : Γ1 → AdG and a measurable map φ : X → AdG so that

(4.2) A(γ, x) = φ(γ · x)−1 π(γ)φ(x), (x ∈ X, γ ∈ Γ1).

Since A is Zariski dense, so is the image π(Γ1), and by Margulis’s superrigidity
[Ma] the homomorphism π extends to an automorphism of AdG.

If π is an inner automorphism, i.e. π(h) = g−1 h g, then replacing φ(x) by
g φ(x), we can assume that π(γ) = Ad(γ) in (4.2). In general, π is an inner
automorphism in Aut(AdG), and replacing φ : X → AdG by Φ = π φ : X →
Aut(AdG), we shall obtain

(4.3) A(γ, x) = Φ(γ · x)−1 Ad(γ) Φ(x)

in Aut(AdG). Coming back to the general measure-preserving (rather than
ergodic) case, we can decompose (Ω,m) into ergodic components (Lemma 2.2)
and proceed as above, so that Φ : X → Aut(AdG) will satisfy (4.3) for all
γ ∈ Γ1 and m-a.e. x ∈ X.

Recalling that (X,µ) is a Γ2 fundamental domain, let us extend the map
Φ : X → Aut(AdG) to Φ : Ω→ Aut(AdG) in a Γ2-equivariant way:

Φ(x γ2) = Φ(x) Ad(γ2), (x ∈ X ⊂ Ω, γ2 ∈ Γ2).

Claim 4.3. The map Φ : Ω→ Aut(AdG) is Γ1 × Γ2-equivariant, i.e.

Φ(γ1 ω γ2) = Ad(γ1) Φ(ω) Ad(γ2).

Proof. By definition Φ is Γ2-equivariant. It remains to show that

Φ(γ1 ω) = Ad(γ1) Φ(ω)

for γ1 ∈ Γ1. Let ω = x γ2 for some x ∈ X ⊂ Ω and γ2 ∈ Γ2. Then

γ1 ω = γ1 x γ2 = (γ1 · x)α(γ1, x) γ2

with γ1 · x ∈ X and α(γ1, x) γ2 ∈ Γ2. Therefore

Φ(γ1 ω) = Φ(γ1 · x)A(γ1, x) Ad(γ2)

= Φ(γ1 · x) Φ(γ1 · x)−1 Ad(γ1) Φ(x) Ad(γ2)

= Ad(γ1) Φ(x) Ad(γ2) = Ad(γ1) Φ(x γ2)

= Ad(γ1) Φ(ω).

This completes the proof of the existence of Γ1 × Γ2-equivariant map
Φ : Ω→ Aut(AdG).

Proposition 4.4. The Γ1 × Γ2-equivariant measurable map Φ : Ω →
Aut(AdG) is unique.
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Remark 4.5. Note that this, in particular, implies that the function
φ : X → AdG, and the homomorphism π are uniquely defined. It also follows
that the definition of Φ : Ω→ Aut(AdG) does not depend on the choice of the
fundamental domain (X,µ) from which α, φ and π were derived.

Proof. Suppose Φ and Φ′ are two measurable Γ1 × Γ2-equivariant maps.
Define Ψ : Ω→ Aut(AdG) by Ψ(ω) = Φ′(ω) Φ(ω)−1. Observe that Ψ satisfies

Ψ(γ1 ω γ2) = Ad(γ1) Ψ(ω) Ad(γ1)−1 (γ1 ∈ Γ1, γ2 ∈ Γ2).

In particular, Ψ is right Γ2-invariant; hence it can be considered as a function
on a Γ2-fundamental domain (X,µ). With respect to the Γ1-action on (X,µ)
(γ1 : x 7→ γ1 · x) we have

Ψ(γ · x) = Ad(γ) Ψ(x) Ad(γ)−1, (γ ∈ Γ1).

We claim that m-a.e. Ψ(ω) = e. This can be deduced from a more general
Lemma 5.3. However, in the present case the idea of the general argument can
be presented in an almost elementary way as follows.

It is enough to show that for any compact K ⊂ Aut(AdG) we have
Ψ(x) = e for µ-a.e. x ∈ EK = Ψ−1(K). Fix γ ∈ Γ. By Poincaré recurrence
theorem µ-a.e. x ∈ EK returns to EK infinitely often, so that

Ψ(γn · x) = Ad(γ)n Ψ(x) Ad(γ)−n ∈ K

infinitely often. It is well known that for any fixed regular element g ∈ AdG
and any h ∈ AdG which does not commute with g, one has gn h g−n → ∞
as n → ∞ or n → −∞. The same holds for h ∈ Aut(AdG). Hence, for
µ-a.e. x ∈ EK the element Ψ(x) commutes with all γ ∈ Ad Γ1. Borel’s density
theorem implies that on EK a.e. Ψ(x) belongs to the center of Aut(AdG)
which is trivial.

Now let D ⊂ Aut(AdG) be a Γ2-fundamental domain. Since Φ is Γ1×Γ2-
equivariant, the set X = Φ−1(D) is a Γ2-fundamental domain in Ω. Thus the
projection Φ∗µ of the finite measure µ = m|X to D is an Ad Γ1-invariant finite
measure on D ∼= Aut(AdG)/Ad Γ2 and, by disintegrating µ (and m) with
respect to Φ∗µ (and Φ∗m) one obtains probability measures on the fibers.

Aut(AdG) consists of a finite number of AdG-cosets, each of which is
Ad Γ1 × Ad Γ2-invariant. Restricting Φ∗m to each of AdG-cosets one easily
deduces the last statement of Theorem 4.1 from the following:

Lemma 4.6. Let G be a simple connected Lie group with trivial center,
and let Γ1, Γ2 ⊂ G be lattices. Suppose that µ is a probability Borel measure on
G/Γ2, which is invariant and ergodic under the left Γ1-action on G/Γ2. Then
either µ is a finite atomic measure, or µ is the G-invariant probability measure
on G/Γ2.
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Proof. The assertion follows from Ratner’s theorem. Let µ̃ be the (right)
Γ2-invariant lifting of µ from G/Γ2 to G. Let m = mG denote a bi-invariant
Haar measure on G. Consider the measure M̃ on G×G, defined by∫

G×G
f(g1, g2) dM̃(g1, g2) =

∫
G

∫
G
f(g1, g2) dµ̃(g−1

1 g2) dm(g1).

Note that M̃ is invariant under the (right) actions of Γ1 ⊂ G × {e} and
Γ2 ⊂ {e} × G, so M̃ is a lifting of a measure M on G/Γ1 × G/Γ2. It is
easily seen that

M =
∫
G/Γ1

g−1µdm(g)

is a finite measure. Moreover, M̃ , and hence M , are ∆(G)-invariant, where

∆(G) := {(g, g) ∈ G×G | g ∈ G}.
Since Γ1 × Γ2 forms a lattice in G × G, and ∆(G) ⊂ G × G is generated by
unipotents, Ratner’s theorem [Ra] implies that M is supported on an orbit of
a closed subgroup L ⊂ G × G, where the intersection ΓL = (Γ1 × Γ2) ∩ L

is a lattice in L and M̃ = mL is a Haar measure on L. Let L0 ⊆ L be the
connected component of the identity.

Lemma 4.7. Let G be a simple connected Lie group with finite center.
Let L0 be a connected subgroup of G×G which contains the diagonal ∆(G) =
{(g, g) ∈ G×G | g ∈ G}. Then either L0 = ∆(G) or L0 = G×G.

Proof. For g ∈ G, let L(g) ⊆ G be the fiber of L0 over g, i.e. L(g)×{g} =
L0 ∩ G× {g}. Then L(e) is a closed subgroup of G. Note that for any g ∈ G:

∆(g) · (L0 ∩ G× {e}) = L0 ∩ G× {g} = (L0 ∩ G× {e}) ·∆(g).

Hence g L(e) = L(g) = L(e) g, so that L(e) is a normal closed subgroup of G.
Therefore, either L(e) = {e} and L(g) = {g}, or L(e) = L(g) = G. In the
former case L0 = ∆(G) and in the latter case L0 = G×G.

It is easily verified that in the case of L0 = ∆(G) the measure µ is finite
atomic; while in the case of L0 = G×G the measure µ is the unique G-invariant
probability measure on G/Γ2. This proves Lemma 4.6.

5. Construction of the representation ρ : Λ→ Aut(AdG)

This crucial step of the proof of Theorem 3.1 describes the construction
of a family of mutually equivalent representations ρx : Λ → Aut(AdG) of an
unknown group Λ which is ME to a lattice Γ. Let (Σ, σ) be a ME coupling of
Γ with Λ. The idea is to use the map ΦΩ constructed in Theorem 4.1 from the
Γ-self ME coupling Ω = (Σ×Λ Λ×Λ Σ̌) to Aut(AdG).
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Example 5.1. Consider the case where both Γ and Λ are lattices in G

with (G,mG) being the coupling. Assume that G has trivial center. Then the
map

Φ : (G×Λ Λ×Λ Ǧ)→ G ∼= AdG ⊂ Aut(AdG)

which is given by Φ([x, λ, y̌]) = xλ y−1 is the one constructed in Theorem 4.1.
Observe that in this case the map

Φ([x, λ, y̌]) Φ([x, e, y̌])−1 = (xλ y−1) (x y−1)−1 = xλx−1

does not depend on y, and for a.e. fixed x defines a representation of Λ.

Preliminaries. We shall prove that somewhat similar phenomenon exists
in the general case of an unknown Λ. The following lemma describes how
one constructs a representation, given a measurable function satisfying certain
a.e. identities. Note that the data consists of some identities on Σn which
hold σn-almost everywhere, but it is not known whether these identities hold
everywhere on Sn for any σ-conull S ⊆ Σ. This is a common feature of the
measure-theoretic framework.

Lemma 5.2. Let a countable group Λ act (from the right) on a measure
space (Σ, σ), and let F : Σ × Σ → G be some measurable map to a lcsc group
G. If F satisfies

(Cinv) F (x, y) = F (xλ, yλ) σ2-a.e. on Σ2 for all λ ∈ Λ.
(Ccncl) F (xλ, y)F (x, y)−1 = F (xλ, z)F (x, z)−1 σ3-a.e. on Σ3.

Then a.e. x ∈ Σ defines a homomorphism ρx : Λ→ G, given by

ρx(λ) = F (xλ, y)F (x, y)−1, (λ ∈ Λ).

If, moreover, F (x, y) satisfies

(Csym) F (x, y) = F (y, x)−1 σ2-a.e. on Σ2

(Ccoc) F (x, y)F (y, z) = F (x, z) σ3-a.e. on Σ3

then for σ2-a.e. (x, y) ∈ Σ2 the representations ρx and ρy are equivalent :

ρy(λ) = F (x, y)−1 ρx(λ)F (x, y), (λ ∈ Λ).

Proof. By Ccncl for σ-a.e. x ∈ Σ the function ρx(λ) = F (xλ, y)F (x, y)−1

has the same value for a.e. y ∈ Σ. For any λ1, λ2 ∈ Λ and a.e. x ∈ Σ, choosing
a.e. y ∈ Σ and using Cinv and Ccncl, we have:

ρx(λ1 λ
−1
2 ) = F (xλ1λ

−1
2 , y)F (x, y)−1

= F (xλ1, yλ2)F (xλ2, yλ2)−1

= F (xλ1, yλ2)F (x, yλ2)−1
(
F (xλ2, yλ2)F (x, yλ2)−1

)−1

= ρx(λ1) ρx(λ2)−1.
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Since Λ is countable, we conclude that for σ-a.e. x, the map ρx : Λ → G is
a homomorphism. Assume that F (x, y) satisfies also the conditions Ccoc and
Csym. Then for a.e. (x, y) ∈ Σ2 we have for a.e. z ∈ Σ:

F (x, y)−1 ρx(λ)F (x, y) = F (x, y)−1 F (xλ, z)F (x, z)−1 F (x, y)

= F (xλ, yλ)−1 F (xλ, z)F (x, z)−1 F (x, y)

= F (yλ, z)F (y, z)−1 = ρy(λ).

The crucial condition to be verified for an application of Lemma 5.2 is
Ccncl. The proof of this property for an appropriately chosen function F (x, y)
will rely on the following lemmas:

Lemma 5.3. Let a group Λ act ergodically (from the right) on a finite
measure space (W, η), let G be a semisimple Lie group with trivial center, and
B : W × Λ→ G be a measurable cocycles, which is Zariski dense in G. Sup-
pose, moreover, that there is a measurable map M : W → P(G) with values in
the space of probability measures P(G) on G, which satisfies

M(w · λ) = B(w, λ)−1M(w)B(w, λ), (λ ∈ Λ)

then for η-a.e. M(w) = δe is a the point measure at the identity e ∈ G.

Proof. The group G acts on itself by conjugation: Ad(g) : g′ 7→ g−1 g′ g.
Since the center is trivial, Ad : G→ AdG is an isomorphism. Moreover since
the AdG-action on itself is essentially algebraic, the corresponding action on
the space of probability measures P(G) is smooth (see [Zi3, 3.2.6]), in the
sense that there exists a countable family of AdG-invariant measurable sets
in P(G) which separate orbits. Without loss of generality we can assume that
Λ acts ergodically on W . Then Zimmer’s cocycle reduction lemma (see [Zi3])
implies that M is supported on a single AdG-orbit: M(w) = Ad(f(w))M0,
and B(g, x) is cohomologous to a cocycle B0, taking values in a stabilizer
of M0 ∈ P(G). Since the stabilizers are algebraic ([Zi3, 3.2.4]) and B(g, x) is
assumed to be Zariski dense, M0 is AdG-invariant. This implies that M0 = δe,
and thus M(w) = δe a.e. on W .

Lemma 5.4. Let Γ be a lattice in a semisimple Lie group G. Suppose Λ is
some group which is ME to Γ, let (Σ, σ) be their ME coupling, let (X,µ), (Y, ν)
be Λ- and Γ-fundamental domains, and let α : Γ×X → Λ and β : Y × Λ→ Γ
be the associated cocycles. Then the cocycle

B : Y × Λ
β−→ Γ Ad−→ Ad Γ ⊂ AdG

is Zariski dense in AdG.

Proof. The proof follows from Lemma 4.2, applied to the cocycle associ-
ated to the composition coupling Σ×Λ Σ̌ of Γ with Γ.
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First candidate for F (x, y). Let (Σ, σ) be a ME coupling between two
countable groups Γ and Λ, where Γ is a lattice in G as in Theorem 3.1. Consider
the dual coupling (Σ̌, σ̌) of Λ with Γ, and let (Ω,m) be the composition coupling
of Γ with Γ:

(Ω,m) = (Σ×Λ Λ×Λ Σ̌, σ ×Λ mΛ ×Λ σ̌).

Let ΦΩ : Ω = (Σ ×Λ Λ ×Λ Σ̌) → Aut(AdG) be the measurable map as in
Theorem 4.1. Let us simplify the notations introducing a measurable map
Φ̃ : Σ× Σ→ Aut(AdG), defined by

(5.1) Φ̃(x, y) = ΦΩ([x, e, y̌]).

By its definition Φ̃ satisfies

(5.2) Φ̃(xλ, yλ) = ΦΩ([xλ, e, λ−1y̌]) = ΦΩ([x, λλ−1, y̌]) = Φ̃(x, y)

while Γ× Γ-equivariance of ΦΩ gives

Φ̃(γx, y) = Ad(γ) Φ̃(x, y), (γ ∈ Γ)(5.3)

Φ̃(x, γy) = Φ̃(x, y) Ad(γ)−1, (γ ∈ Γ).

Having Example 5.1 and Lemma 5.2 in mind, an optimistic reader would expect
function Φ̃(x, y) to satisfy the conditions of Lemma 5.2. The crucial property
to be verified is Ccncl, i.e. that

Φ([x, λ, y̌]) Φ([x, e, y̌])−1 = Φ̃(xλ, y) Φ̃(x, y)−1

does not depend on y. Unfortunately, we cannot show this directly, although
by the end of the proof we shall see (Remark 7.2) that Φ̃(x, y) = ΦΣ(x) ΦΣ(y)−1

for some measurable ΦΣ : Σ → Aut(AdG), so that Φ̃ indeed satisfies all the
conditions in Lemma 5.2.

The choice of F (x, y) which works. At this point we choose to consider
another map Ψ : Σ× Σ× Σ→ Aut(AdG) defined by

(5.4) Ψ(u, x, y) = Φ̃(u, y) Φ̃(x, y)−1.

We shall show that Ψ(u, x, y) does not depend on y, namely Ψ(u, x, y) =
Ψ(u, x, z), σ4-a.e. on Σ4. (Note, that this still does not prove Ccncl for Φ̃,
because the latter is given in terms of a zero measure set in Σ4.)

Properties (5.2) and (5.3) imply that Ψ satisfies:

(5.5)

Ψ(γx, y, z) = Ad(γ) Ψ(x, y, z) (γ ∈ Γ)
Ψ(x, γy, z) = Ψ(x, y, z) Ad(γ)−1 (γ ∈ Γ)
Ψ(x, y, γz) = Ψ(x, y, z) (γ ∈ Γ)
Ψ(xλ, yλ, zλ) = Ψ(x, y, z) (λ ∈ Λ).

The following lemma is the key point of the construction of the representation:
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Lemma 5.5. The map Ψ : Σ × Σ × Σ → G, defined by (5.4) does not
depend on the third coordinate, i.e. Ψ(x, y, z1) = Ψ(x, y, z2) σ4-a.e. on Σ4.

Proof. Let Y ⊂ Σ be a fundamental domain for the left Γ-action on Σ,
and let β : Σ × Λ → Γ be the associated cocycle. The right action of Λ on
Γ\Σ ∼= Y is given by

y · λ = β(y, λ)−1yλ, (y ∈ Y, λ ∈ Λ)

where the left Γ-action and the right Λ-actions on the right-hand side are in
Σ. By (5.5), it is enough to show that Ψ, restricted to Y × Y × Y , does not
depend on the third coordinate. Denote by B = Ad ◦ β the cocycle

B : Y × Λ
β−→ G

Ad−→ AdG ⊂ Aut(AdG).

Identities (5.5) yield the following crucial relation:

(5.6)
Ψ(x · λ, y · λ, z · λ) = Ψ

(
β(x, λ)−1xλ, β(y, λ)−1yλ, β(z, λ)−1zλ

)
= B(x, λ)−1 Ψ(xλ, yλ, zλ)B(y, λ)
= B(x, λ)−1 Ψ(x, y, z)B(y, λ).

We shall now use the fact that the transformation: Ψ 7→ B(x, λ)−1 ΨB(y, λ)
in (5.6) does not involve the z-variable. Let M(x, y) ∈ P(Aut(AdG)) be the
distribution of Ψ(x, y, z1) Ψ(x, y, z2)−1 as z1, z2 ∈ Y are chosen independently
with ν-distribution. In other words, for x, y ∈ Y define M(x, y) to be

dM(x, y) = Ψ(x, y, z1) Ψ(x, y, z2)−1 dν(z1) dν(z2).

By (5.6) we have

Ψ(x · λ, y · λ, z1 · λ) Ψ(x · λ, y · λ, z2 · λ)−1

= B(x, λ)−1 Ψ(x, y, z1) Ψ(x, y, z2)−1B(x, λ)

and therefore, using Λ-invariance of ν,

M(x · λ, y · λ) = B(x, λ)−1M(x, y)B(x, λ).

Conjugation by B(x, λ) ∈ AdG preserves the (finite number of) AdG cosets
in Aut(AdG). Thus we can assume that M(x, y) is supported on AdG.

Now, taking (W, η) = (Y ×Y, ν×ν) with the diagonal Λ-action and viewing
B(x, λ) as a cocycle on (W, η), we observe, that by Lemma 5.4, the cocycle
B(w, λ) is Zariski dense in the center free simple group AdG. Thus Lemma 5.3
shows that M(x, y) = δe.

Claim 5.6. The function F (x, y) = Ψ(x, y, z) = Φ̃(x, z) Φ̃(y, z)−1 satisfies
the conditions Cinv, Ccncl, Csym and Ccoc of Lemma 5.2.
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Proof. Condition Cinv follows from Λ-invariance of Φ̃. To verify property
Ccncl, note that σ3-a.e. on Σ3

F (xλ, y)F (x, y)−1 = Φ̃(xλ, z) Φ̃(y, z)−1
(
Φ̃(x, z) Φ̃(y, z)−1

)−1

= Φ̃(xλ, z) Φ̃(x, z)−1.

The right-hand side does not depend on y, while the left-hand side does not
depend on z. Hence Ccncl follows. By its definition F (x, y) satisfied Csym. Now
observe that σ4-a.e. on Σ4 we have

F (x, y)F (y, z) = Φ̃(x,w) Φ̃(y, w)−1 Φ̃(y, w) Φ̃(z, w)−1

= Φ̃(x,w) Φ̃(z, w)−1 = F (x, z),

which verifies condition Ccoc.

We can now apply Lemma 5.2 to produce a family of mutually equivalent
homomorphisms ρx : Λ→ G.

6. The kernel of ρ : Λ→ G is finite

Lemma 6.1. The subgroup Λ0 = Ker(ρx : Λ → Aut(AdG)) is at most
finite.

Proof. First note that since a.e. ρx are equivalent, the group Λ0 = Ker(ρx)
is a well-defined normal subgroup in Λ, which does not depend on x. Hence
the definition of ρx yields that λ ∈ Λ0 if and only if F (xλ , y) = F (x, y)
for a.e. (x, y) ∈ Σ × Σ. Since for a.e. z, F (xλ, y) = Φ̃(xλ, z) Φ̃(y, z)−1 and
F (x, y) = Φ̃(x, z) Φ̃(y, z)−1 simultaneously, we obtain

(6.1) λ ∈ Λ0 if and only if ΦΩ([x, λ, ž]) = ΦΩ([x, e, ž]).

Let D ⊂ Aut(AdG) be a fundamental domain for Aut(AdG)/Ad Γ and let
E = Φ−1

Ω (D) ⊂ Ω be its preimage. Γ × Γ-equivariance of ΦΩ implies that E
forms a fundamental domain for Ω/Γ.

Now observe that Ω = Σ×Λ Λ×Λ Σ̌ can be represented in the form

Ω = X × Λ× X̌

where X is some fundamental domain for Σ/Λ. So E is a disjoint union of
E(λ) = E ∩ (X × {λ} × X̌). The relation (6.1) implies that E(λ) = E(λλ0)
for any λ0 ∈ Λ0. Since E =

⋃
λ∈ΛE(λ) is a countable union, which has a finite

positive measure, we deduce that Λ0 has to be finite.
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7. End of the proof of Theorem 3.1

At this point we have proved that if Γ ⊂ G is a lattice as in Theo-
rem 3.1, and Λ is a group which is ME to Γ, then there exists a representation
ρ : Λ → Aut(AdG) with finite kernel Λ0 = Ker(ρ). Restricting ρ to a finite
index subgroup

Λ′ = Ker(Λ
ρ−→ Aut(AdG) o−→ Out(AdG)),

we can assume that Λ2 = ρ(Λ′) ⊆ AdG. This enables us to apply the result of
Zimmer ([Zi2, Cor. 1.2]) which shows that in this case, Λ2 is a lattice in AdG.
In fact, with our present setup, we need only Lemmas 2.6 and 2.7 of [Zi2] to
be applied to the cocycle

ρ ◦ α : Γ× Σ/Λ′ → Λ′ → AdG.

The first one ([Zi2, 2.6]), which is based on superrigidity for cocycles theorem
(both real and p-adic cases), shows that Λ2 = ρ(Λ′) ⊂ AdG is discrete.

The second one ([Zi2, 2.7]) shows that AdG/Λ2 carries a finite invariant
measure. Hence Λ2 = ρ(Λ′) is a lattice in AdG, and therefore Λ1 = ρ(Λ) is a
lattice in Aut(AdG). This proves the first part of Theorem 3.1.

Now consider Γ2 = Ad Γ and Λ2 = ρ(Λ′) as lattices in AdG. Let
(Σ2, σ2) be the factor space of (Σ, σ) divided by the action of the finite group
(Γ2 ∩ Z(G)) × (Λ0 ∩ Λ′). It forms a ME coupling of Γ2 and Λ2-lattices in
AdG. Applying Theorem 4.1 we obtain a (unique) measurable Γ2 × Λ2-
equivariant map : Σ2 → Aut(AdG). Lifting it to Σ we obtain a measurable
map ΦΣ : Σ→ Aut(AdG) satisfying σ-a.e.

(7.1) ΦΣ(γ xλ′) = Ad(γ) ΦΣ(x) ρ(λ′) (γ ∈ Γ, λ′ ∈ Λ′).

Claim 7.1. The map ΦΣ : Σ→ Aut(AdG) is Γ×Λ-equivariant (and not
just Γ× Λ′-equivariant).

Proof. Consider a function f : Σ× Λ→ Aut(AdG) given by

f(x, λ) = ΦΣ(xλ) (ΦΣ(x) ρ(λ))−1 .

Then for any λ ∈ Λ and any λ′ ∈ Λ′:

f(xλ′, λ) = f(x, λ′λ) = f(x, λλ′).

So f is actually defined on X ′ × Λ/Λ′, where X ′ is a Λ′-fundamental domain.
If M(x) is the uniform distribution of f(x, λ) over Λ/Λ′, then

M(γ · x) = Ad(γ)M(x) Ad(γ)−1 (γ ∈ Γ)

and Lemma 5.3 (or the similar argument in Proposition 4.4) implies that
M(x) = e, so that ΦΣ(xλ) = Φ(x) ρ(λ) for all λ ∈ Λ.
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This completes the proof of Theorem 3.1.

Remark 7.2. In a retrospective on the proof, one can see (using the
uniqueness part of Theorem 4.1) that the map ΦΩ : (Σ×ΛΛ×ΛΣ̌)→ Aut(AdG)
in the proof of Theorem 3.1 is given by

ΦΩ([x, λ, y̌]) = ΦΣ(x) ρ(λ) ΦΣ(y)−1

and therefore the maps Φ̃, F : Σ× Σ→ G in (5.1) and in Claim 5.6 satisfy

F (x, y) = Φ̃(x, y) = ΦΣ(x) ΦΣ(y)−1

and finally,
ρx(λ) = ΦΣ(x) ρ(λ) ΦΣ(x)−1.

8. Measure Equivalence and unitary representations

Let (Ω,m) be a ME coupling of two countable groups Γ, Λ and let (X,µ)
and (Y, ν) be Λ- and Γ-fundamental domains in Ω. Denote by Ṽ the L2 space
of measurable functions X → V . More precisely,

Ṽ = L2(X,V ) =
{
f : X → V

∣∣∣∣∫
X
‖f(x)‖2 dµ(x) <∞

}
.

Let Γ act on Ṽ by

(π̃(γ)f) (x) = π(α(γ−1, x)−1)
(
f(γ−1 · x)

)
.

One checks that (π̃, Ṽ ) is a unitary Γ-representation, which will be called the
induced representation.

Recall that a unitary representation (π, V ) of a discrete group Λ is said to
contain almost invariant vectors, if there exists a sequence {vn} of unit vectors
such that ‖π(λ)vn − vn‖ → 0 as n→∞ for every λ ∈ Λ.

Lemma 8.1. If the Λ-representation (π, V ) contains almost invariant
vectors, then so does the induced Γ-representation (π̃, Ṽ ).

Proof. Let {vn} be a sequence in V of almost Λ-invariant unit vectors and
let fn ∈ Ṽ be the sequence of vectors fn(x) ≡ vn. Then ‖fn‖ = µ(X)1/2, and
for any fixed γ ∈ Γ

〈π̃(γ) fn, fn〉 =
∫
X

〈
α(γ−1, x)−1 vn, vn

〉
dµ(x).

For a sufficiently large finite set F ⊂ Λ, one has α(γ−1, x)−1 ∈ F on X \ E
with µ(E) being small. As n→∞, the vectors vn become almost F -invariant,
so the integrand is close to 1 on X \E, and is bounded by 1 on E. This shows
that (π̃, Ṽ ) contains Γ-almost invariant vectors.
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A unitary Λ-representation (π, V ) is said to be weakly mixing if either of
the following equivalent conditions holds (see [BR]):

(i) The representation (π, V ) does not contain finite dimensional subrepre-
sentations.

(ii) The representation (π ⊗ π∗, V ⊗ V ∗) does not contain invariant vectors
(here (π∗, V ∗) denotes the dual, or the contragradient, to (π, V ) repre-
sentation).

(iii) For any unitary representation (σ,W ) the representation (π⊗σ, V ⊗W )
does not contain fixed vectors.

Lemma 8.2. Let (Ω,m) be an ergodic ME coupling of Γ with Λ and let
(π, V ) be some weakly mixing unitary Λ-representation. Then the the induced
Γ-representation (π̃, Ṽ ) has no fixed vectors.

Proof. Assume that φ ∈ Ṽ is a π̃(Γ)-invariant unit vector; i.e.
π((α(γ, x)−1)φ(γ · x) = φ(x) for all γ ∈ Γ. Define F : Ω → V by
F (xλ) = π(λ−1)φ(x) for x ∈ X, λ ∈ Λ. Then for x ∈ X,

F (γ x) = F ((γ · x)α(γ, x)) = π(α(γ, x)−1)φ(γ · x) = φ(x) = F (x)

and F (γ ω) = F (ω) for general ω ∈ Ω. Consider the restriction f = F |Y : Y →
V . We have

f(y · λ) = F (β(y, λ)−1 y λ) = F (y λ) = π(λ−1) f(y)

and

‖f‖2 =
∫
Y
‖F (y)‖2 dm(y) =

m(Y )
m(X)

∫
X
‖F (x)‖2 dm(x) =

m(Y )
m(X)

· ‖φ‖2.

Now observe that the Λ-representation on the space L2(g : Y → V ) defined by

λ : g(y) 7→ π(λ) g(y · λ−1)

is isomorphic to the tensor product (π ⊗ σ, V ⊗ L2(Y )) where σ is the
Λ-representation on L2(Y ). The fact that f ∈ V ⊗ L2(Y ) is a fixed vector
contradicts the assumption that (π, V ) is weakly mixing.

Recall that a countable (or more generally locally compact) group Γ is
said to have Kazhdan’s property T if any unitary representation with almost
invariant vectors necessarily contains an invariant vector. Corollary 1.4, as-
serting that property T is a ME invariant, can now be easily deduced from the
following result of Bekka and Valette:

Theorem 8.3 ([BV]). If Λ does not have Kazhdan’s property T, then
it admits a weakly mixing unitary representation (π, V ) with almost invariant
vectors.
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Suppose that Γ and Λ are ME and Λ does not have property T. Choose
an ergodic ME coupling (Ω,m) of Γ with Λ (Lemma 2.2), and let (π̃, Ṽ ) be
the Γ representation induced from a weakly mixing Λ-representation (π, V )
which has almost invariant vectors. Then Lemmas 8.1 and 8.2 imply that
the induced Γ-representation (π̃, Ṽ ) has almost invariant vectors, but does not
have an invariant one.

Remark 8.4. A statement similar to Corollary 1.4 appears in [Zi3, Th.9.1.7
(b)], where the weak mixing assumption was imposed on the orbit equivalent
group actions on the space. The result of Bekka and Valette enables us to
bypass this assumption.

University of Illinois at Chicago, Chicago IL
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