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Rational connectedness and Galois covers
of the projective line

By Jean-Louis Colliot-Thélène

Let k be a p-adic field. Some time ago, D. Harbater [9] proved that any
finite group G may be realized as a regular Galois group over the rational
function field in one variable k(t), namely there exists a finite field extension
F/k(t), Galois with group G, such that F is a regular extension of k (i.e. k
is algebraically closed in F ). Moreover, one may arrange that a given k-place
of k(t) be totally split in F . Harbater proved this theorem for k an arbitrary
complete valued field. Rather formal arguments ([10, §4.5]; §2 hereafter) then
imply that the theorem holds over any ‘large’ field k. This in turn is a special
case of a result of Pop [15], hence will be referred to as the Harbater/Pop
theorem. We refer to [10], [16], [6] for precise references to the literature (work
of Dèbes, Deschamps, Fried, Haran, Harbater, Jarden, Liu, Pop, Serre, and
Völklein).

Most proofs (see [10], [19, 8.4.4, p. 93] and Liu’s contribution to [16]; see
however [15]) first use direct arguments to establish the theorem when G is a
cyclic group (here the nature of the ground field is irrelevant), then proceed by
patching, using either formal or rigid geometry, together with GAGA theorems.

In the present paper, where I take the case of algebraically closed fields
for granted, I show how a technique recently developed by Kollár [12] may be
used to give a quite different proof of the Harbater/Pop theorem, when the
‘large’ field k has characteristic zero. This proof actually gives more than the
original result (see comment after statement of Theorem 1).

Before I formally state the main result, let us recall what a ‘large’ field is.
Let k be a field and let k((y)) be the quotient field of the ring k[[y]] of formal
power series in one variable. Following F. Pop, we shall say that k is ‘large’ if
it satisfies one of the three equivalent properties ([15, Prop. 1.1]):

(i) It is existentially closed in k((y)): any k-variety with a k((y))-point has
a k-point.

(ii) On a smooth integral k-variety with a k-point, k-points are Zariski dense.

(iii) On a smooth integral k-curve with a k-point, k-points are Zariski dense.
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(Such a field is clearly infinite. By going over to the completion at a smooth
k-point of a curve, one sees that (i) implies (iii). That (iii) implies (ii) is easy
(consider a regular system of parameters). In characteristic zero, one may use
resolution of singularities to show that (ii) implies (i).)

Known examples of ‘large’ fields k are fraction fields of a henselian discrete
valuation ring, such as a p-adic field or a field of the shape k = F ((x)) for F
some field.

Other well-known examples are real closed fields. That these are ‘large’
is a special instance of the following fact, which seems to have escaped the
attention of specialists: any field F , all finite field extensions of which are of
degree a power of a fixed prime p, is a ‘large’ field. To see this, one only needs
to observe that on a regular, projective, connected curve C over a field F ,
given any nonempty open set U , any zero-cycle (divisor) z on C is rationally
equivalent to a zero-cycle z1 whose support is contained in U (a semi-local
Dedekind ring is a principal ideal domain); the degree (over F ) of z and z1

clearly coincide. Applying this to an F -point of C, one produces a zero-cycle∑
i niPi (ni ∈ Z, Pi closed points) with support in U , such that the degree∑
i ni[F (Pi) : F ] = 1. For F as above, this forces one of the degrees [F (Pi) : F ]

to be one.
Other known examples are the fields of totally real algebraic numbers

and of totally p-adic algebraic numbers (that these fields are ‘large’ is a very
special case of a theorem of Moret-Bailly [14, Thm. 1.3]). The property trivially
holds for so-called pseudo algebraically closed fields, such as infinite algebraic
extensions of a finite field.

Theorem 1. Let G be a finite group. Let k be a ‘large’ field of charac-
teristic zero. Let E = Spec(K) be a G-torsor over Spec(k). Then there exist
an open set U of the affine line A1

k containing a k-point O and a G-torsor
V → U such that the following two properties hold :

(i) The fibre of V → U over O is isomorphic to E (as a G-torsor over
Spec(k));

(ii) The smooth k-curve V is geometrically connected.

The ring K is a finite separable extension of k; it need not be a field. In
loose terms: given a Galois extension K/k with group G, one may realize G
as the Galois group of a ‘regular’ extension of k(t), in such a way that over a
suitable k-place of k(t), the extension specializes to K/k.

When the G-torsor E/Spec(k) is trivial, i.e. E =
∐
g∈G Spec(k), we recover

the result of Harbater and Pop. The question whether E may be chosen ar-
bitrary had been investigated for special groups by several authors (see [6]).
For arbitrary groups, Dèbes proves a weaker result ([6, Thm. 3.1]) when k is
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‘large’, and he proves the theorem in the case where k is a pseudo algebraically
closed field ([6, Thm. 3.2]).

Using general results from [EGA IV3], we immediately obtain a series of
concrete corollaries. These will be detailed in Section 2. In the case of a split
E/k, most of them had already been obtained, with somewhat different proofs.

After the paper was submitted, I was asked whether in Theorem 1 one
may impose arbitrary G-torsors as fibres of V → U at more than one k-point
of U ⊂ A1

k. The answer is in general in the negative, as shown in the appendix.
Let us say a few words on the tools used in this article. In a series of papers

which appeared in 1992, Kollár, Miyaoka and Mori developed a technique which
enables them, under some assumptions, to smooth a tree of rational curves into
a single rational curve ([13, Thm. (2.1)]; see also [11, Chap. II. 7, pp. 154–158]
and [5, §4.2]). That work was over an algebraically closed field. In his recent
paper [12], Kollár extends the technique over ‘large’ fields (e.g. local fields).
Under certain assumptions, he manages to deform a set of conjugate P1’s into
a single P1 defined over the ground field. From this he gets the finiteness of the
set of R-equivalence classes on k-points of a geometrically rationally connected
variety defined over a local field k. That the key lemma of [12] precisely holds
for ‘large’ fields provided the incentive for the present paper.

The proof I give for Theorem 1 starts from the classical fact that a finite
group G is a Galois group over k(t) when k is algebraically closed of character-
istic zero. It then uses a natural versal model for a G-torsor, and applies the
deformation result of [12] to (a smooth compactification of) the base space of
this G-torsor. The proof uses the existence of such a smooth compactification,
but it avoids any consideration of the divisor at infinity: there is no discussion
of inertia groups at all.

The idea of using a versal model of aG-torsor, originally due to E. Noether,
has come up a number of times in the literature, notably in work of E. Fischer,
D. Saltman [17], F. A. Bogomolov [1]; see [20] and [21] for further references.

Acknowledgement. I am much indebted to János Kollár for having
shown me his work [12] while in progress. I thank Pierre Dèbes, David Har-
bater and Laurent Moret-Bailly for their interest in my paper. Proposition
A.3 was found during a stay at M.S.R.I., Berkeley, in September, 1999.

1. Proof of Theorem 1

In this section, we shall assume that the ground field k (which is of char-
acteristic zero) is uncountable. The proof in the countable case will be given
in Section 2.

Let k be an algebraic closure of k. Given a k-scheme Z, let us write
Z = Z ×k k.
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(1) Let G be a finite group and E/Spec(k) a G-torsor. Let us fix an
embedding of G into some general linear group GLn. Here G is viewed as a
constant (split) k-group scheme, GLn is the linear group over k and i : G →
GLn is a homomorphism of k-group schemes. Let U = GLn/G be the affine
k-variety of ‘left classes’. This is the affine k-scheme whose ring is the ring
of invariants for G acting on the ring k[GLn]. The projection map GLn → U

makes GLn into a right G-torsor V over U . The left action of GLn on itself
induces a left action of GLn on U = GLn/G and the projection V → U is
equivariant for these (left) actions.

Let us recall basic facts from noncommutative étale cohomology. Given
any smooth affine k-group scheme H, and any commutative k-algebra A, we
denote by H1

ét(A,H) the pointed cohomology set which classifies (étale) (right)
H×kA-torsors over Spec(A) (up to nonunique isomorphism). Such torsors will
simply be called H-torsors over A. For any such A, there is an “exact sequence”

V (A)→ U(A)→ H1
ét(A,G)→ H1

ét(A,GLn).

Let us detail this sequence. The map V (A)→ U(A) is the obvious one; it re-
spects the (left) action of GLn(A) on both sets. The right G-torsor V → U de-
fines an element ξ ∈ H1

ét(U,G). To an element ρ ∈ U(A) = Homk(Spec(A), U),
the map U(A)→ H1

ét(A,G) associates the class ρ∗(ξ) ∈ H1
ét(A,G) of the pull-

back ρ∗(V → U), which is a G-torsor over A. Two points x, y ∈ U(A) have
the same image in H1

ét(A,G) if and only if there exists α ∈ GLn(A) such
that α.x = y. By Grothendieck’s version of Hilbert’s Theorem 90, the set
H1

ét(A,GLn) classifies projective modules of rank n over A. Thus if A is semi-
local, or if A is a Dedekind ring with trival class group, then H1

ét(A,GLn) is
reduced to one element, and for any right G-torsor T over A there exists an
element ρ ∈ U(A) such that T and ρ∗(V → U) are isomorphic G-torsors over
A. In particular, there exists a k-point P ∈ U(k) such that the fibre VP of
V above P is a G-torsor isomorphic to the given E/k. We shall fix such a
k-point P .

(2) By classical results (see [19, Chap. 6]), we know that G is a ‘regular’
Galois group over k(t). In other words there exist a nonempty open set W of
the affine line A1

k
= Spec(k[t]) and a G-torsor over W whose underlying variety

is integral. Let A be the semi-local ring of k[t] at t = 0 and t = 1, and let
S = Spec(A). Let us abuse notation and call 0, respectively 1, the points of S
defined by t = 0, respectively t = 1. Changing coordinates and semi-localizing
produces a G-torsor T over S such that T is an integral scheme.

By (1), there exists a nonconstant k-morphism ρ : S → U such that the
pull-back of the G-torsor V → U under ρ is isomorphic to the G-torsor T /S.
Given any α ∈ GLn(A), the G-torsor (α.ρ)∗(V → U) is G-isomorphic to the
G-torsor T . In particular, it is an integral scheme.
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(3) The action of GLn(k) on U(k) is transitive; hence the obvious action
of GLn(k)×GLn(k) on U(k)×U(k) is also transitive. Reduction of A modulo
t and modulo t− 1 induces a surjective homomorphism GLn(A)→ GLn(k)×
GLn(k). Thus given two points M,N ∈ U(k), there exists α ∈ GLn(A) such
that α.ρ ∈ U(A) sends the point t = 0 to M and the point t = 1 to N .

Remark. One should compare the present general position argument with
‘Kuyk’s lemma’ (see [20, Lemma 4.5]).

(4) Since char(k)=0, by Hironaka’s theorem, there exist smooth, projec-
tive, geometrically integral k-varieties X1 and X, with V open in X1 and U

open in X, together with a k-morphism p : X1 → X extending the map V → U

and inducing a k-isomorphism V ' p−1(U).

(5) According to a theorem of Kollár, Miyaoka and Mori ([13]; [11,
Thm. II. 3.11, p. 118]), to the point P ∈ U(k) ⊂ X(k) one may associate
countably many proper subvarieties Vi (i ∈ I) of the smooth projective variety
X such that if f : P1

k
→ X is a nonconstant morphism, f(0) = P and the

image of f is not contained in the union of the Vi’s, then f is free over 0 ∈ P1
k
.

By definition (see [11, II. 3.1, p. 113]), this means that the coherent cohomol-
ogy group H1(P1

k
, f∗TX(−2)) vanishes (here TX denotes the tangent bundle

of X), which amounts to the hypothesis that in Grothendieck’s decomposition
of the vector bundle f∗TX over P1

k
as a sum of line bundles OP1(nj), we have

nj > 0 for each j (this is the ampleness property for the vector bundle f∗TX
on P1

k
, see [11, II.3.8, p. 116]).

Since k is uncountable, there exists a point Q ∈ U(k), Q 6= P , which does
not lie on any of the Vi’s (proof: use a generically finite projection to projective
space and induct on dimension). By (3), there exists α ∈ GLn(A) such that
α.ρ ∈ U(A) sends the point t = 0 to P and the point t = 1 to Q. Since X/k
is proper, the morphism α.ρ : S → U extends to a (nonconstant) morphism
f : P1

k
→ X. The image of f contains P and is not contained in the union of

the Vi’s, since this image contains Q. By the quoted theorem ([11, II.3.11]),
we conclude:

(5.1) The vector bundle f∗TX on P1
k

is ample.

On the other hand, we have:

(5.2) The underlying variety of the G-torsor f∗(V → U) over f−1(U) is
integral.

Indeed, this follows from the same statement for the restriction of this
G-torsor over S = Spec(A) ⊂ f−1(U), which was pointed out at the end of (2).
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(6) We have now reached the situation studied in [12]. Starting from
f : P1

k
→ X such that f(0) = P and f∗TX is ample, Kollár ([12, 3.2], I change

notation) produces, over the ground field k, a smooth integral k-curve C with a
k-point O, a smooth geometrically integral k-surface Z proper over C, together
with a k-morphism h : Z → X, with the following properties:

(6.a) The projection Z → C admits a k-section σ : C → Z which by h is
mapped to P ∈ X.

(6.b) The geometric fibre ZO of Z → C at the point O is a comb
D +

∑
i∈I Ci on Z (here I is a nonempty finite set, the Ci’s are the teeth

of the comb, see [11, II.7.7, p. 156]), each component of which is a nonsingular
curve of genus zero; the map h : Z → X sends D to P and induces on Ci a
conjugate of f : P1

k
→ X.

(6.c) Over any closed point M of C different from O, the fibre ZM of
Z → C is k(M)-isomorphic to the projective line P1

k(M): the fibre is a smooth,
geometrically irreducible, projective curve of genus zero over the residue field
k(M), and it contains the k(M)-rational point σ(M).

(7) Since the map h : ZO → X is not constant (because its restriction to
any Ci is not constant), the closed set h−1(P ) ⊂ Z is a proper closed set. Thus,
after shrinking C, we may assume: for no M ∈ C is h constant on the fibre
ZM (note that on any fibre ZM , h assumes the value h(σ(M)) = P ×k k(M)).

Let Ω ⊂ Z be the inverse image of U under h. Note that Ω contains
σ(C), hence the composite map Ω ⊂ Z → C is surjective. Let Ω1 → Ω be the
inverse image of the G-torsor V → U under h : Ω → U . Let M be a closed
point in C. We shall show: For all but finitely many M ∈ C, the total space
of the induced G-torsor Ω1,M → ΩM ⊂ ZM ' P1

k(M) is a smooth geometrically
integral k(M)-variety.

To prove this, it is enough to prove the corresponding statement over k.
For the rest of the proof of (7), to simplify notation, let us set k = k. Points
M will be k-rational points on C. For M 6= O, the (nonempty) variety ΩM

is smooth and connected and the variety Ω1,M is a finite étale cover of ΩM ,
hence is smooth. To prove that a given Ω1,M ,M 6= O, is integral, it is thus
enough to show that it is connected.

The inverse image in Ω1 of D ∩Ω is a disjoint union of copies Dg (g ∈ G)
of D ∩ Ω, each with multiplicity one; by (5.2) and (6.b), for a given i ∈ I the
inverse image in Ω1 of each Ci ∩Ω is a (smooth) connected curve, which meets
each Dg (g ∈ G), since Ci meets D (see (6.b)). Thus Ω1,O, which is the inverse
image of D +

∑
i∈I Ci, is a reduced connected divisor on Ω1.
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That Ω1,M is connected for all but finitely many M ∈ C now follows from
the general lemma (where X and Y have nothing to do with the previous Y
and X), to be applied to X = Ω1 and Y = Ω:

Lemma. Let C be a smooth, connected curve over an algebraically closed
field k, and let O ∈ C(k). Let X, Y , C be smooth varieties over k, equipped with
faithfully flat k-morphisms X → Y and Y → C. Assume that the generic fibre
of Y → C is smooth and geometrically integral. Assume that X → Y is finite
and étale. Assume moreover that the inverse image of O under the composite
map X → Y → C is a connected divisor on X and is not a multiple divisor.
Then there exists a finite set S of points of C such that for M ∈ C,M /∈ S, the
inverse image XM of M under the composite map X → Y → C is a smooth
connected variety.

Proof. Note first that X is connected. Indeed if it was not connected, the
finite étale cover X → Y would break up into a disjoint union of finite étale
(hence faithfully flat) covers Xi → Y , and the fibre of X → Y → C over O
would not be connected. Thus X is connected; since it is smooth, it is integral.
Let D be the normalization of C in the function field of X. This is a smooth
integral curve, and the map D → C is flat and finite. Since X is normal, the
map X → C factors through D. The finite (étale) map X → Y factors through
the scheme Y ×C D. The scheme Y ×C D is integral, because C is its own
normalization in Y , since we have assumed that the generic fibre of Y → C

is geometrically integral. The finite map of integral varieties X → Y ×C D
is dominant, hence surjective as a morphism of schemes (it need not be flat).
In particular, it is surjective on k-points (recall k = k). The projection map
Y ×C D → D is faithfully flat, since it is obtained by base change from the
faithfully flat map Y → C. In particular, Y ×C D → D is surjective on k-
points. We conclude that X → D is surjective on k-points. But then the
scheme-theoretic inverse image of O ∈ C under the map D → C must consist
of one reduced point, since the inverse image of O under the composite map
X → D → C is a connected divisor which is not multiple. Since D → C is
finite and flat, this implies that D → C is an isomorphism. Thus the function
field of C is algebraically closed in the function field of X, hence the generic
fibre of X → C is a smooth geometrically integral variety. By [EGA IV3,
(9.7.7)] this implies the same statement for all fibres of X → C away from a
proper closed subset of C.

(8) We finally make use of the hypothesis that the field k is ‘large.’ Since
the curve C has a k-rational point, namely O, this hypothesis implies that
there exists a k-point M on C away from the finitely many points excluded
in (7), such that the map P1

k → X induced by h on the fibre ZM ' P1
k
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does what we want: the inverse image of the G-torsor V → U under the map
h : h−1(U) ∩ P1 → U is a G-torsor over the open set h−1(U) ⊂ P1

k, whose
fibre at σ(M) ∈ h−1(U)(k) ⊂ P1(k) is isomorphic to the fibre of V → U at P ,
hence is isomorphic to E (by the very choice of P , see (1)), and whose total
space is a geometrically integral k-variety (see (7)).

2. Corollaries

Theorem 2. Let O be a Q-point of the projective line P1
Q. Let G be

a finite group and let E = Spec(K) → Spec(Q) be a G-torsor. There exist a
smooth, geometrically integral curve Y/Q whose smooth compactification has
a Q-point, an open set U ⊂ P1 ×Q Y containing O ×Q Y , and a G-torsor
V → U (an étale Galois cover with group G), whose restriction to O ×Q Y is
the G-torsor E×QY , and such that the fibre of the composite map V → U → Y

at any geometric point of Y is nonempty and connected (hence integral).

Proof. Let G ↪→ GLn,Q be an embedding. The varieties U, V,X,X1 which
appear in the proof of Theorem 1 may all be defined over Q. We also have
P ∈ U(Q) ⊂ X(Q).

For any field F with Q ⊂ F , let us in this proof say that an F -morphism
f : P1

F → XF is good if f(O) = PF and the inverse image of VF → UF
under f (restricted to f−1(UF )) is a geometrically integral F -variety. Let
Z = HomQ(P1, X,O 7→ P ) (notation as in [11, II.1.4, p. 94]). This is a
countable union of Q-varieties Zd (d for degree of the image of P1, in a fixed
projective embedding of X). An F -point of Z will be called good if the corre-
sponding F -morphism f : P1

F → XF is good. Given arbitrary field extensions
Q ⊂ E1 ⊂ E2, a point in Z(E1) is good if and only if its image in Z(E2) is
good.

The field Q((x)) is uncountable. By Theorem 1 over such a field, as proved
in Section 1, there exists a good Q((x))-point on Z, hence on Zd for some d.
Let Y ⊂ Zd be the scheme-theoretic closure of the image of the corresponding
morphism Spec(Q((x))) → Zd. The Q-variety Y is geometrically integral.
We have the field embeddings Q ⊂ Q(Y ) ⊂ Q((x)). Thus on the one hand
the generic point of Y is a good Q(Y )-point of Z; on the other hand any
Q-compactification of Y has a Q-point. Indeed, for any such compactification
Yc, the map Spec(Q((x))) → Y extends to a Q-morphism Spec(Q[[x]]) → Yc;
the image of x = 0 is a Q-point of Yc.

Replacing Y by a nonempty open set, one may ensure ([EGA IV3, (8.8.2)])
that the corresponding good Q(Y )-morphism P1

Q(Y ) → XQ(Y ) extends to a
Y -morphism ϕ : P1 ×Q Y → X ×Q Y which sends O ×Q Y to P ×Q Y .
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Let Ω = ϕ−1(U×QY ) ⊂ P1×QY and let Ω1 → Ω be the G-torsor which is
the inverse image of the G-torsor V ×Q Y → U ×Q Y under ϕ. Upon replacing
Y by a nonempty open set (this is actually not necessary), the restriction of
this G-torsor over O ×Q Y ⊂ Ω is isomorphic to E ×Q Y (indeed, this is true
over the generic point of Y ). We have the maps Ω1 → Ω→ Y . The first map is
finite étale of constant rank, the second one is smooth and surjective. Thus the
composite map Ω1 → Y is smooth. Since the generic point of Y corresponds
to a good point of Z, the generic fibre Ω1,Q(Y ) is geometrically integral over
Q(Y ). Upon replacing Y by a nonempty open set ([EGA IV3, (9.7.7)(iv)]),
we therefore have that all geometric fibres of the map Ω1 → Y are smooth
and geometrically integral. In particular for any field F with Q ⊂ F and any
F -point of Y , the morphism ϕF : P1

F → XF induced by ϕ is good.
On a smooth projective model Yc of Y over Q, there exists a Q-pointR. By

considering a regular system of parameters at R one produces a geometrically
integral Q-curve C ⊂ Yc, smooth at R, and which meets Y . One now replaces
Y by Y ∩ C. This completes the proof of Theorem 2.

Remarks and corollaries.

(1) Note that Y in Theorem 2 need not have a Q-point. But for any field
k containing Q such that Y (k) 6= ∅, G is a ‘regular’ Galois group over the
rational field k(t), with the added information that the fibre at the point t = 0
is isomorphic to the torsor E ×Q k. This applies in particular to any ‘large’
field of characteristic zero, thus completing the proof of Theorem 1 for fields
which are countable.

(2) One should compare Theorem 2 with the contribution of Deschamps
in [16], and the proof given here with that given in [7, 4.2].

(3) One amusing corollary is that for any finite group G, there exists a
finite set of number fields ki such that the greatest common denominator of the
degrees [ki : Q] is equal to one, and such that G is a ‘regular’ Galois group over
each ki(t), hence in particular a Galois group over each ki. The proof is simple:
on the smooth compactification Yc of the curve Y , there exists a Q-point, call
it M . If we let S ⊂ Yc be the complement of Y in Yc, there exists a zero-cycle∑
i∈I niPi (here the ni are integers, Pi is a closed point and I is finite) on Yc

which is rationally equivalent to M , hence of degree one, and whose support is
foreign to S, i.e. whose support is contained in Y . Let ki be the residue field
at the closed point Pi. Then

∑
i∈I ni[ki : Q] = 1 and Y (ki) 6= ∅ for each i,

hence the claim.
One could say that, for any groupG, the inverse Galois group problem over

Q acquires a positive answer when passing from rational points to ‘zero-cycles
of degree one.’
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This could have been noticed earlier. For any prime p, let Kp be the
fixed field of a pro-p-Sylow subgroup of the absolute Galois group of Q. As
proved in the introduction of this paper, Kp is a ‘large’ field. By Theorem 1
(or, for that matter, the Harbater/Pop theorem), G is a regular Galois group
over Kp(t). There exists a finite subextension Lp/Q of Kp/Q, such that G is
a regular Galois group over Lp(t). By Hilbert’s irreducibility theorem, G is a
Galois group over the number field Lp, whose degree [Lp : Q] is prime to p.

(4) Starting from the statement of Theorem 2 and writing a model of the
whole situation over an open set of the ring of integers (same references to
[EGA IV3] as above), one easily deduces the following result, which is a special
case of a theorem of Fried and Völklein: For a given finite group G, for almost
all primes p (“almost all” depending on G), G is a ‘regular ’ Galois group over
Fp(t) (see [10] and [7, 3.9] for references; in [7] a model-theoretic argument is
given). Simply note that if Y/Z is a smooth integral model of the smooth,
geometrically integral curve Y/Q, then by classical estimates (Weil) we have
Y(Fp) 6= ∅ for almost all primes p. Here again, the present proof enables us to
get more: if we start off with a given G-torsor E over a nonempty open set of
Spec(Z), we may satisfy the additional requirement that for almost all primes
p the ‘regular’ Galois extension over Fp(t) be unramified at t = 0, the fibre
being isomorphic to E ×Z Fp.

Appendix

In this appendix, where for simplicity I assume all fields to be of charac-
teristic zero, I address the question:

Let k be a field, G a finite group, n ≥ 1 an integer. Let E1, · · · , En be
G-torsors over k. Can one find an open set U ⊂ A1

k, a G-torsor V → U and
n points P1, · · · , Pn ∈ U(k) such that for each i, the fibre VPi is isomorphic to
Ei as a G-torsor over k?

Here are two cases where the answer is in the affirmative:

(i) G is an abelian group, its 2-primary subgroup is of exponent 2r, the
cyclotomic field extension k(µ2r)/k is cyclic, and n is arbitrary. This is a
special case of [3, Thm. 7.9] (various versions of this statement exist in the
literature; see [17], [20]).

(ii) G is arbitrary, k is ‘large’ and n = 1: this is Theorem 1 of the present
paper (with the additional piece of information that V may be chosen geomet-
rically integral).

In this appendix, I show by examples that for n ≥ 2 and k ‘large’ the
answer to the above question is in general in the negative.
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In the first part of the appendix, written in April 1999, I consider the
case left open in (i) above. I give an example with G = Z/8 and k the
2-adic field Q2. As may be expected, this example is closely related to Wang’s
counterexample to Grunwald’s theorem.

In the second part of the appendix, written in November 1999, for an
arbitrary prime p, I give examples with G a p-group and k a suitable ‘large’
field. That part builds upon work of Saltman [18].

Background and references for the first part of the appendix (algebraic
tori, quasi-trivial and flasque tori, groups of multiplicative type, R-equivalence)
will be found in [2], [3], and [21]. For G a commutative algebraic group over
a field k, the étale cohomogy group H1

ét(k,G) may be identified with a Galois
cohomology group, and will be simply denoted H1(k,G).

Proposition A.1. Let k be a field and A be a finite abelian group. One
may embed the constant k-group scheme A into a commutative diagram of exact
sequences of k-groups of multiplicative type:

1 → A → P1 → T → 1
↓ ↓ ↓ =

1 → F → P2 → T → 1

where T is a k-torus, F is a flasque k-torus and P1 and P2 are quasi -trivial
k-tori.

Proof. By the well-known duality M 7→ M̂ = Homk−gr(M,Gm,k) between
k-groups of multiplicative type and finitely generated Galois modules over k,
it is enough to prove the dual result. There exist exact sequences of finitely
generated Galois modules

0→ T̂ → P̂1 → Â→ 0

and
0→ P̂ → F̂ → Â→ 0

with P̂1 and P̂ permutation modules, and F̂ a flasque module (for the second
sequence, see [3, (0.6.2)]). The pull-back of the first sequence under the map
F̂ → Â is an exact sequence

0→ T̂ → P̂2 → F̂ → 0

where the module P̂2 is an extension of the permutation module P̂1 by the
permutation module P̂ , hence is itself a permutation module. Taking duals
yields the proposition.



       

370 JEAN-LOUIS COLLIOT-THÉLÈNE

For a quasi-trivial k-torus P , Hilbert’s Theorem 90 implies H1(k, P ) = 0.
Passing over to Galois cohomology in the diagram of Proposition A.1, we get
the commutative diagram of exact sequences

P1(k) → T (k) → H1(k,A) → 0
↓ ↓ = ↓

P2(k) → T (k) → H1(k, F ) → 0.

From this diagram it immediately follows that the map H1(k,A)→ H1(k, F )
is onto.

Let us recall the following basic fact from [2]: the map T (k)→ H1(k, F )
induces an isomorphism T (k)/R ' H1(k, F ). Here R denotes R-equivalence
([2, §4]) on the set of k-points of the k-torus T .

Proposition A.2. With notation as above, assume that there exists
ξ 6= 0 ∈ H1(k, F ). Let η ∈ H1(k,A) denote a lift of ξ under the surjective map
H1(k,A) → H1(k, F ). Then there do not exist an open set U ⊂ A1

k and an
A-torsor X → U with the following properties: there exist points M,N ∈ U(k)
such that the fibre of X → U at M is trivial while the fibre of X → U at N
has class η ∈ H1(k,A).

Proof. Let us assume there exist such U,M,N . Since P1 is a quasi-trivial
k-torus, for any k-scheme V the étale cohomology group H1

ét(V, P1) is isomor-
phic to a sum of groups Pic(V ×kKi), where the Ki/k are finite separable field
extensions of k. For U ⊂ A1

k, we thus have H1
ét(U,P1) = 0. Hence the map

T (U) → H1
ét(U,A) associated to the upper exact sequence in the diagram of

Proposition A.1 is onto. There thus exists a k-morphism ϕ : U → T such that
ϕ∗(P1 → T ) is isomorphic to the A-torsor X → U . The map T (k)→ H1(k,A)
sends ϕ(M) to 0, and it sends ϕ(N) to η. Thus the map T (k) → H1(k, F )
sends ϕ(M) to 0, and it sends ϕ(N) to ξ 6= 0. Now since U is an open set
of A1

k, the points ϕ(M) ∈ T (k) and ϕ(N) ∈ T (k) are R-equivalent: their
images under the map T (k) → H1(k, F ) should coincide. This contradiction
establishes our contention.

We still need to exhibit one case where the hypotheses of Proposition A.2
are fulfilled. Let k be a field, let A = Z/8 and let T and F be two k-tori as
in Proposition A.1. Suppose the cyclotomic field extension k(µ8)/k has degree
4. Its Galois group is then Z/2× Z/2. In that case, we have H1(k, F̂ ) = Z/2
([21, §7.4, p. 79]). If k is a p-adic field, then the finite abelian groups H1(k, S)
and H1(k, Ŝ) are dual (Tate-Nakayama). Let k be the 2-adic field Q2. The
field extension Q2(µ8)/Q2 has degree 4; we thus have H1(Q2, F ) 6= 0.
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This completes the construction of the announced example, but one can
be more explicit. Let k = Q2. As a class η 6= 0 ∈ H1(k,Z/8), let us take
the class of the degree 8 unramified field extension E of k = Q2. Let us write
the commutative diagram in Proposition A.1 over Q. One may then write the
ensuing commutative diagram over Q and over Q2, in a compatible manner.
Let M ∈ T (k) be any point with image η in H1(k,Z/8). Suppose the image
of η in H1(k, F ) is trivial. Then M comes from a k-point of P2. But then
the point M lies in the closure of T (Q) in T (Q2), since P2/Q is a quasi-trivial
torus, hence Q-isomorphic to an open set of some affine space over Q. One
can then find a Q-point N of T such that the fibre of P1 → T at N is a
Galois extension F/Q with group Z/8 and such that F ⊗Q Q2 ' E (as Galois
extensions of Q2 with group Z/8). But there is no such extension (Wang’s
well-known counterexample to Grunwald’s theorem, see [17] and [20]). Thus
the image of η in H1(k, F ) is nontrivial.

Let us now turn to other types of examples.

Proposition A.3. Let p be a prime number. There exist a p-group G,
a ‘large’ field k, and G-torsors E1 and E2 over k with the following property :
given any G-torsor f : V → U over an open set U of A1

k, there do not exist
k-points P,Q ∈ U(k) such that the G-torsor VP is isomorphic to E1 and the
G-torsor VQ is isomorphic to E2.

Proof. Saltman’s work [18] (extended by Bogomolov [1], see [21, §7.6 and
§7.7]) produces finite p-groups G together with faithful (finite dimensional) lin-
ear representations W of G over the complex field C, such that the unramified
Brauer group Brnr(F ) of F = C(W )G is a nontrivial (p-primary) group. Here
by C(W ) we denote the fraction field of the symmetric algebra on W . The
unramified Brauer group of F is the subgroup of the Brauer group Br(F ) con-
sisting of classes which are unramified with respect to any (rank one) discrete
valuation on F . As is well-known, the group Brnr(C(W )G) does not depend
on the particular faithful (finite dimensional) linear representation of G.

Let us fix one such p-group G. As in the beginning of Section 1, let us fix a
homomorphic embedding G→ GLn = GLn,C. We may take for W the vector
space of C-points of Mn (the ring scheme of n by n matrices over C), with the
action induced by left multiplication. Let U = GLn/G and V = GLn ⊂ Mn.
Projection V → U makes V into a G-torsor, whose properties are described at
the beginning of Section 1.

By Hironaka’s theorem, there exists a smooth projective variety X/C
containing U as a dense open set. The function field C(X) of X is F . By
results of Grothendieck, the natural map from the étale Brauer group Br(X) =
H2

ét(X,Gm) to Br(F ) is one-to-one, and it induces an isomorphism Br(X) '
Brnr(F ) (see [4]). Let A ∈ Br(X) ⊂ Br(F ) be a nontrivial element. Let XF
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be the smooth, projective F -variety XF = X ×C F . This contains the open
set UF = U ×C F . On the one hand, the natural field embedding C ⊂ F

induces an inclusion X(C) ⊂ XF (F ) of the set of C-rational points of X
into the set of F -rational points of XF , and similarly U(C) ⊂ UF (F ). Let
P ∈ UF (F ) be an arbitrary point in that subset. On the other hand, the
generic point Spec(F ) → X of X gives rise (via the diagonal map) to an
F -rational point Q of Y . Let AF ∈ Br(XF ) be the inverse image of A under the
projection map XF → X. Let us evaluate AF on the F -rational points P and
Q. We have AF (P ) = 0 ∈ Br(F ) because AF (P ) comes from Br(C). We have
AF (Q) 6= 0 ∈ Br(F ) becauseAF (Q) is none other than the image ofA ∈ Br(X)
under the embedding Br(X) ↪→ Br(F ). Let k be a field, F ⊂ k, such that the
induced map Br(F ) → Br(k) is one-to-one. Changing the base field from F

to k, we obtain rational points which we still denote P,Q in Xk(k), such that
Ak(P ) = 0 and Ak(Q) 6= 0 in Br(k). The points P,Q both lie in Uk = U ×C k.
Let E1 = VP , respectively E2 = VQ, be the G-torsors over k defined as the fibre
of the G-torsor V → U at P , respectively Q. Suppose there exist a G-torsor
Z → Y over an open set Y ⊂ A1

k and two k-points p, q ∈ Y (k) such that the
fibre Zp, respectively Zq, is a G-torsor over k isomorphic to E1, respectively
E2. By the general properties of the G-torsor Vk → Uk (see beginning of §1)
and the fact that Pic(Y ) = 0, there exists a k-morphism r : Y → Uk such
that the inverse image of the G-torsor Vk → Uk under r is isomorphic to the
G-torsor Z → Y . Let P1 = r(p) ∈ U(k) and Q1 = r(q) ∈ U(k). Then VP and
VP1 are isomorphic as G-torsors over k, and similarly VQ and VQ1 . The general
properties of the G-torsor V → U then imply that there exist g, h ∈ GLn(k)
such that gP1 = P and hQ1 = Q. Since GLn is an open set of an affine
space over k, this implies that the k-points P1 and P of Uk(k) ⊂ Xk(k) are
R-equivalent. Similarly, Q1 and Q are R-equivalent. Clearly, P1 and Q1 are
R-equivalent. Thus P and Q are R-equivalent on the projective k-variety Xk.
By Prop. 16 of [2] (p. 213) this implies Ak(P ) = Ak(Q). But then we cannot
have Ak(P ) = 0 and Ak(Q) 6= 0.

To complete the proof of Proposition A.3, it remains to notice that the
field k = F ((t)) of formal power series in one variable is a ‘large’ overfield of
F for which the map Br(F )→ Br(k) is one-to-one.

Whether examples as in Proposition A.3 may be exhibited over a p-adic
field remains to be seen.
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boration de J. Dieudonné. IV. Étude locale des schémas et des morphismes de schémas
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