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Entropy and mixing
for amenable group actions

By Daniel J. Rudolph and Benjamin Weiss*

Abstract

For Γ a countable amenable group consider those actions of Γ as measure-
preserving transformations of a standard probability space, written as {Tγ}γ∈Γ

acting on (X,F , µ). We say {Tγ}γ∈Γ has completely positive entropy (or simply
cpe for short) if for any finite and nontrivial partition P of X the entropy
h(T, P ) is not zero. Our goal is to demonstrate what is well known for actions
of Z and even Zd, that actions of completely positive entropy have very strong
mixing properties. Let Si be a list of finite subsets of Γ. We say the Si spread
if any particular γ 6= id belongs to at most finitely many of the sets SiS−1

i .

Theorem 0.1. For {Tγ}γ∈Γ an action of Γ of completely positive entropy
and P any finite partition, for any sequence of finite sets Si ⊆ Γ which spread
we have

1
#Si

h( ∨
γ∈Si

Tγ−1(P ))→
i
h(P ).

The proof uses orbit equivalence theory in an essential way and repre-
sents the first significant application of these methods to classical entropy and
mixing.

1. Introduction

The goal of this work is to lift a part of the theory of K-actions in the
class of measure-preserving transformations of standard probability spaces to
actions of countable amenable groups in particular to show that they must
be mixing and in fact mixing of all orders. The standard proof of this for
transformations (actions of Z in our vocabulary) or more generally for actions
of Zd relies on the existence of the past-algebra and tail -algebra of a partition
relative to the action. It seems there is no such good notion for actions of
general groups, in particular discrete amenable groups. There are two reasons
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for working with actions of countable amenable groups. First there is a rather
good analogue of the entropy theory of Z actions for them. This is found in
[7] and this as well as the general formulation there of a Rokhlin lemma for
such actions are the technical background ideas we will use. Second, these
actions are characterized in [1] as precisely those which are orbit-equivalent to
actions of Z. We use such an orbit equivalence in an essential way to transfer
our problem from Γ to Z. Neither entropy nor any mixing properties are orbit
equivalence invariants. On the face of it this would seem to block the use of such
an orbit equivalence in this area. We avoid this seeming obstacle by working
with entropy and mixing properties relative to a sub σ-algebra and with orbit
equivalences that are measurable with respect to this sub σ-algebra. We show
the former are invariants of the latter. This is the first significant application
of orbit equivalence theory to classical entropy and mixing questions.

We point out that J. Kieffer [5] constructed a version of the Shannon-
McMillan Theorem for amenable group actions predating the work of [7] by
the introduction of a generalized tail-field. T. Ward and Q. Zhang in [9] use this
method to obtain a conditional entropy theory for such actions. This approach
does not appear able to directly give Theorem 2.3 via this generalized tail-field.
The work of Ward and Zhang does give essentially all the results we need for
conditional entropy. We give an alternative approach to these results anyway
building on the methods of [7] rather than those of [5].

In the next section we give a detailed discussion of our results and the
proof of Theorem 2.3 except for two results (Theorems 2.6 and 2.11) that
require rather extended argument.

In Section 3 we lay out the theory of Rokhlin towers for actions of count-
able amenable groups, as developed in [7] and the basic geometry of transfer-
ence leading to Theorem 2.11 on spread sets and a dual result on invariant sets.
These results are the tools that allow us to pull entropy and mixing properties
through an orbit equivalence. In Section 4 we demonstrate the basic entropy
theory we will need to prove Theorem 2.6. As promised we also include the
simple argument that the direct product of a cpe action and a Bernoulli ac-
tion is relatively cpe over the Bernoulli coordinate. This will complete all the
technicalities for the proof of Theorem 2.3. In the final section we discuss a
number of natural extensions of our work here. These include generalizing our
work here to actions of continuous groups and several questions concerning
amenable groups that might be answerable using orbit equivalence methods.

2. Statements of results and proof of main theorem

Let Γ be a countable discrete amenable group. For our purposes the most
natural meaning for this is that Γ possesses a Følner sequence of sets Hi. We
will go into more detail on this later. Suffice it here to say that these provide
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a good analogue for intervals, squares, or boxes of indices in Zd for use as both
averaging sets for ergodic theorems and for index sets for Rokhlin-like lemmas.
Suppose T = {Tγ}γ∈Γ is an action of Γ by measure-preserving transformations
on a standard probability space (X,F , µ). If P is a finite partition of X one
can define the entropy of the process (T, P ) as

h(T, P ) = lim
i→∞

1
#Hi

h( ∨
γ∈Hi

Tγ−1(P )).

That this limit exists and is independent of the choice of Følner sequence is a
part of the standard machinery found in [7].

Definition 2.1. We say a Γ-action T has completely positive entropy (or
simply is cpe for short) if for any nontrivial finite partition P ,

h(T, P ) > 0.

This notion is analogous to one of the many definitions of K-ness of a
single measure-preserving transformation. As said earlier we use this more
precise vocabulary to avoid confusion among all these definitions. Our goal
is to demonstrate that if T is cpe then it must be mixing of all orders. We
will demonstrate something somewhat stronger, that there is a uniformity in
this that provides a condition equivalent to cpe. We now formulate this. In a
countable group Γ we say a sequence of sets Si spreads if each γ 6= id belongs
to at most finitely many of the sets SiS−1

i and for a finite set K ⊆ Γ we say
S is K-spread if for any γi 6= γ2 ∈ S we have γ1γ

−1
2 /∈ K. If Γ is Z, for a

sequence of sets to spread simply means the gaps between consecutive terms
in the sets grow. The following result is well known for cpe actions of a single
transformation and is what we will generalize here.

Theorem 2.2. For T a measure-preserving transformation, T is a
K-automorphism (is cpe) if and only if for any finite partition P and ε > 0
there is an N so that for any finite subset S = {s1 < s2 < . . . < st} ⊆ Z with
si+1 − si > N for all i,∣∣∣∣ 1

#S
h( ∨
γ∈S

Tγ−1(P )− h(P ))
∣∣∣∣ < ε.

In Theorem 2.2 the conclusion can be written in a couple of equivalent
forms. First a form that is a priori weaker:

1
#S

h(∨j∈ST−j(P )) > h(P )− ε

and now a form that is a priori stronger:

dt(∨j∈ST−j(P );Bt(P )) < ε



      

1122 DANIEL J. RUDOLPH AND BENJAMIN WEISS

whereBt(P ) is an independent and identically distributed sequence of t random
variables each with the distribution of P . It is quite standard to show that
these three are all in fact equivalent. The argument is on finite lists of random
variables and hence remains true for actions of countable groups. For actions
of a single transformation T one can state another equivalent condition, that
the sequence of processes (Tn, P ) converge in d to B(P ), the independent and
identically distributed process with time-zero distribution that of P .

This last formulation may not make sense for an arbitrary discrete amenable
group, as it may not have spread co-finite subgroups. But if it does we will be
able to reach this conclusion as well.

Here is the goal of our work:

Theorem 2.3. For T a cpe action of the discrete amenable group Γ and
any finite partition P and ε > 0 there is a finite subset K ⊆ Γ so that for any
finite set S that is K-spread∣∣∣∣ 1

#S
h(∨γ∈STγ−1(P ))− h(P )

∣∣∣∣ < ε.

To demonstrate Theorem 2.3 we “transfer” the problem to actions of Z
by the fundamental result of [1], that any discrete amenable group action is
orbit-equivalent to an action of Z and by our development here of a relative
entropy theory for actions of Γ.

Definition 2.4. For T a measure-preserving action of Γ, A a T -invariant
sub-σ-algebra and P a finite partition we define the conditional entropy of the
process (T, P ) given the algebra A to be

h(T, P |A) = inf{h(T, P ∨Q)− h(T,Q) : Q is A-measurable}.

This is of course just the standard definition for actions of Z. We can also
consider orbit equivalences that are A-measurable.

Definition 2.5. Let T be a measure-preserving and free action of Γ and
A a T -invariant sub-σ-algebra. Suppose S is a free action of some perhaps
different group Γ′ but having the same orbits as T . We say the orbit change
from T to S is A-measurable if for each γ′ ∈ Γ′ the functions γ(x) defined by

Tγ(x)(x) = Sγ′(x)

are A-measurable.

For example, suppose T is actually a direct product of two free Γ-actions
T1 × T2 and there is an action U of some Γ′ with the same orbits as T2. The
action of U then can be lifted uniquely to an action Û with the same orbits
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as T1 × T2. If Uγ′(x2) = T2,γ(x2)(x2) then we can (and must) set Ûγ′(x1, x2) =
(T1×T2)γ(x2)(x1, x2). In this case it is clear that the orbit change from T1×T2

to Û is measurable with respect to the second coordinate σ-algebra B2.
Note also that if the orbit change from T to U is A-measurable then A is

a U -invariant sub-σ-algebra.
With these comments in mind we can now state the core technical fact we

will use to obtain Theorem 2.3.

Theorem 2.6. Suppose T is a free and ergodic action of a countable and
discrete amenable group Γ and A is a T -invariant sub-σ-algebra. Suppose also
that U is a free (and necessarily ergodic) action of Γ′ with the same orbits
as T (Γ′ is necessarily amenable). Suppose the orbit change from T to U is
A-measurable. Then for any finite partition P we conclude

h(T, P |A) = h(U,P |A).

Notice that this result is in sharp contrast to the absolute case. All ergodic
actions of Z are orbit-equivalent so entropy itself cannot be invariant. Here that
we deal with conditional entropy and require the orbit change to be measurable
with respect to the sub-σ-algebra on which we condition changes the situation
entirely. In this situation the orbit change no longer has the freedom to modify
the conditional entropy, that is to say the entropy that T has above and beyond
the entropy on the sub-σ-algebra.

With this result in hand and T some cpe action of Γ we “transfer” the
problem to Z by considering a direct product action

T × T2 = {Tγ × T2,γ}γ∈Γ,

where all we really need of T2 is that this direct product should still be ergodic
and the action of T2 should be free and hence orbit-equivalent to an action of
Z. As described above this means the orbit equivalence of T2 to some Z-action
U will lift to an ergodic map Û giving a Z action orbit-equivalent to T × T2.
Moreover the orbit change from T × T2 to Û is measurable with respect to its
second coordinate.

In the direct product of T and T2 consider the relative Pinsker algebra over
the second coordinate, that is to say the σ-algebra generated by all partitions
P with h(T×T2, P |B2) = 0. When this algebra is just B2 the action is said to be
relatively cpe over B2. This relative Pinsker algebra contains both B2 and the
Pinsker algebra of T . It is a general fact in a direct product like this that the
relative Pinsker algebra is precisely the span of these two algebras. (see [2]).
When T2 is a Bernoulli action there is a particularly easy proof so we include
this (see Corollary 4.11). In our case this means that the Pinsker algebra of
T × T2 is just that of T2 which is to say T × T2 is relatively cpe over B2.
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We conclude that Û must be relatively cpe (relatively K) over the algebra
B2 as well. The theory of relative K-ness for actions of Z is well-developed
and parallels completely the nonrelative case. We will quite regularly write
expressions of the form E(P |A) where P is a finite partition and A is a sub-σ-
algebra. Consider P as a map from X to the labels {1, 2, . . . , n}. By E(P |A)
we will mean the probability vector

{E(1P−1(1)|A), . . . , E(1P−1(n)|A)}.

For U an ergodic measure-preserving transformation, A a U -invariant sub-
σ-algebra, P a finite partition, and S a finite subset of Z we define

L(∨i∈SU−i(P )|A) = H(E(∨i∈SU−i(P )|A)) = E(I(∨i∈SU−i(P )|A)|A).

That is to say, we calculate the conditional probabilities given A of the various
sets in ∨i∈SU−i(P ) and then take the entropy of this probability vector. (For
our purposes h calculates the entropy of a partition relative to a fixed measure
and H calculates the entropy of a probability vector.)

The following result, due to M. Rahe [8] is fundamental to obtaining our
result. Notice that when A is the trivial algebra it reduces to Theorem 2.2.

Theorem 2.7 (M. Rahe [8]). Suppose Û is an ergodic measure-preserving
transformation, A is a Û -invariant sub-σ-algebra, and Û is relatively K with
respect to A. Then for any finite partition P and ε > 0 there is an N so that
for any finite subset S ⊆ N with |si − sj | > N for all i 6= j,∥∥∥∥ 1

#S
L(∨i∈SÛ−iP |A)− 1

#S

∑
i∈S

L(Û−i(P )|A)
∥∥∥∥

1
< ε.

Notice that in the conclusion all the information functions are A-measur-
able but as stated the set S is a constant over the space. We need to consider
the possibility that S = S(x) is an A-measurable choice of the set of indices
along which the calculation is made. We also will need to loosen up the con-
dition that all gaps in the sequence are at least N .

Definition 2.8. Suppose S(x) is a measurable choice of a k-element subset
of Z. We say S(x) is N -quasi-spread if for all x outside a subset of measure
less than 1/N , there is a subset S′(x) ⊆ S(x) with #S′(x)/#S(x) > 1− 1/N
and for all distinct s, s′ ∈ S′(x) we have

|s− s′| ≥ N.

We can generalize this idea to a countable discrete group Γ by fixing a
listing of its elements γ1, γ2, . . . = Γ. Suppose S(x) = {s1(x), . . . , sk(x)} is
a measurable choice of a k-element subset of Γ. We say S(x) is N -quasi-
spread if for all x outside a subset of measure less than 1/N , there is a subset
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S′(x) ⊆ S(x) with #S′(x)/#S(x) > 1 − 1/N and for all distinct s, s′ ∈ S′(x)
we have

s−1s′ /∈ {γ1, γ2, . . . , γN}.

Although this latter definition depends explicitly on how we choose to list
the elements of the group it is easy to see that if we fix two listings of the
group, to be well quasi-spread for one listing is to be well quasi-spread for the
other.

We conjecture that just assuming that S(x) is sufficiently quasi-spread will
not be enough to prove Theorem 2.7. Our proof requires us to ask something
else of the function that is automatically true for a constant set.

Definition 2.9. For S(x) a measurable choice of k-element subset of Γ we
say S is uniform relative to the Γ-action T if there are k elementsWi = Tsi(x)(x)
in the full-group of T (i.e. the Wi are one-to-one, onto and measure-preserving)
such that

S(x) = {s1(x), . . . , sk(x)}.
Notice that this implies the k image points Wi(x) are distinct.

The following simple observation is one piece of our transference, saying
that the notion of uniformity transfers through a rearranging of the orbit.

Lemma 2.10. Suppose T is a free and ergodic action of the countable
group Γ and U is an action of another countable group Γ′ with the same orbits
as T . Suppose S(x) is a k-element set-valued function of X taking values in Γ
and uniform. Let Wi(x) be k maps whose set of images form the S(x). Each
Wi can be written as

Wi(x) = Uvi(x)(x).

Letting V (x) = {v1(x), v2(x), . . . , vk(x)}, the set-valued function V (x) takes
values in the k-point subsets of Γ′ and is also uniform.

This piece of the transference is transparent. The other piece will require
proof.

Theorem 2.11. Suppose T is a free action of the countable group Γ =
{γ1, γ2, . . .} and U is a free action of Γ′ = {γ′1, γ′2, . . .} with the same orbits.
Given any N ∈ N there is an M ∈ N so that for any k and S(x) taking values
in the k-point subsets of Γ that is uniform and M -quasi -spread, the set-valued
function V (x), taking values in the k-point subsets of Γ′ will be uniform and
N -quasi -spread.

We postpone the proof of Theorem 2.11 to Section 2.
In Theorem 2.7 it is enough to ask that the set S be N -quasi-spread as

the indices outside S′ will contribute only an error on the order of log #P/N
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to each term in the difference. What is not at all clear though is that we can
replace a constant set S with a variable S(x). We will see though that under
the assumption of uniformity we can.

Theorem 2.12. Suppose U is an ergodic measure-preserving transfor-
mation, A is a U -invariant sub-σ-algebra, and U is relatively K with respect
to A. Then for any finite partition P and ε > 0 there is an N so that for any
A-measurable function S taking values in the k-point subsets of Z that is both
N -quasi -spread and uniform we will have∥∥∥∥1

k
L(∨i∈SU−iP |A)− 1

k

∑
i∈S

L(U−i(P )|A)
∥∥∥∥

1
< ε.

Proof. To say that U is relatively K with respect to the σ-algebra A is to
say that any partition P has a trivial relative tail. That is to say,⋂

N

( ∨
i≥N

U−i(P ) ∨ A
)

= A

and hence
lim
N→∞

E(P | ∨i≥N U−i(P ) ∨ A) = E(P |A).

Assume P is an n-set partition

BN = {x : |L(P | ∨i≥N U−i(P ) ∨ A)(x)− L(P |A)(x)| < ε/(4 logn)}.
Choose N sufficiently large that µ(BN ) > 1 − ε/(4 logn) and that 1/N

< ε/(4 logn).
Now assume S(x), taking values in the k-point subsets of Z, is both

N -quasi-spread and uniform. For each x ∈ X rewrite S(x) as s1(x) > s2(x) >
· · · > st(x)(x), st(x)+1(x), . . . , sk(x) where the ordering is chosen so that t(x) is
maximal for the properties

1) for i < t(x), si(x)− si+1(x) > N, and

2) for i ≤ t(x), U si(x)(x) ∈ BN .

Notice that as S(x) is A-measurable as is BN , we can assume that both si(x)
and t(x) are as well.

As S is uniform we can calculate∫
#{si(x) : U si(x)(x) ∈ BN} dµ ≥ k(1− ε/(4 logn))

and letting S′(x) ⊆ S(x) be a maximal set of indices pairwise more than N

apart, as S is N -quasi-spread∫
#S′(x) dµ ≥ k(1− ε/(2 logn)).
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We conclude that ∫
t(x) dµ ≥ k(1− 3ε/(4 logn)).

We now calculate L(∨i∈S(x)U
−i(P )|A) one term at a time in the form

k∑
i=1

L(U si(x)(P )| ∨j<i U sj(x)(P ) ∨ A).

We immediately conclude that

L(∨i∈S(x)U
−i(P )|A) ≤

k∑
i=1

L(U−si(x)(P )|A)

and so we only need an inequality in the other direction.
The following inequalities are true almost surely in x.

t
k∑
i=1

L(U si(x)(P )| ∨j<i U−sj(x)(P ) ∨ A)

≥
t(x)∑
i=1

L(U si(x)(P )| ∨j>si(x)+N U−j(P ) ∨ A)

≥
t(x)∑
i=1

(L(U si(x)(P )|A)− ε/(4 logn))

≥
k∑
i=1

(L(U si(x)(P )|A)− ε/(4 logn))− (k − t(x)) lnn.

We conclude that∫ ∣∣∣∣1kL(∨i∈S(x)U
−i(P )|A)− 1

k

∑
i∈S

L(U−i(P )|A)
∣∣∣∣ dµ

≤ ε/(4 logn) + k −
∫
t dµ ≤ ε.

Combining Theorems 2.12 and 2.11 we reach the following conclusion.

Theorem 2.13. Suppose T is a free and ergodic action of a countable
amenable group Γ = {γ1, γ2, . . .}, A is a T -invariant sub-σ-algebra restricted to
which the action of T is still free and relative to which the action of T is cpe,
and lastly P is a finite partition. Given any ε > 0 there is an M so that for
any k and any A-measurable function S(x) taking values in the k-point subsets
of Γ, if S is both uniform and M -quasi -spread then we will have∥∥∥∥1

k
L(∨γ∈STγ−1P |A)− 1

k

∑
γ∈S

L(Tγ−1(P )|A)
∥∥∥∥

1
< ε.
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Proof. Construct an action U of Z that has the same orbits as T and for
which the orbit rearrangement is A-measurable. For any S(x) we now obtain
a V (x) taking values in the k-point subsets of Z that must be uniform. Notice
that

L(∨γ∈S(x)Tγ−1(P )|A)(x) = L(∨i∈V (x)U
−i(P )|A)(x)

and for almost every (a.e.) x, for each γ ∈ S(x) there is a unique i ∈ V (x)
with Tγ(x) = U i(x) and so

L(Tγ−1(P )|A) = L(U−i(P )|A).

Thus we know

∥∥∥∥1
k
L(∨γ∈STγ−1(P )|A)− 1

k

∑
γ∈S

L(Tγ−1(P )|A)
∥∥∥∥

1

=
∥∥∥∥1
k
L(∨i∈V U−i(P )|A)− 1

k

∑
i∈V

L(U−i(P )|A)
∥∥∥∥

1
.

From Theorem 2.11 we know that for any N if M is large enough then V
will be N -quasi-spread and Theorem 2.12 completes the theorem.

In the case we are interested in T is in fact T1 × T2, the algebra A is the
second coordinate algebra, P is measurable with respect to the first coordinate
algebra and S is a constant choice of set. In this case notice that

L(∨γ∈STγ−1(P )|A) = h(∨γ∈STγ−1(P ))

and
L(Tγ−1(P )|A) = h(P ).

From this the proof of Theorem 2.3 is complete.

3. Discrete amenable groups and spread sets

In this section we lay out the basic ergodic theory of measure-preserving
actions of countable and discrete amenable groups. This material can all be
found in [7] or [4]. Our goal is to describe some particular structures that are
invariants of orbit equivalence. As described in the introduction we will be
“transferring” our work from an action of Γ to one of Z with the same orbits.
We here establish a vocabulary for transferring certain calculations through
this transference. The most important of these will be conditional entropy.
The transference of these calculations will be made by showing that they can
be made on towers. Our first step is to lay out the structure of Rokhlin towers
as developed in [7]. These build from notions of invariance of sets in Γ.
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Notions of essential invariance of finite subsets F ⊆ Γ is central to the
study of the ergodic theory of discrete amenable group actions. Here is the
fundamental definition used in [7].

Definition 3.1. Let δ > 0. Let K ⊆ Γ be a finite set. A subset F ⊆ Γ is
called (δ,K)-invariant if

#(KK−1F4F )
#F

< δ.

To say that a set F is sufficiently invariant means that for some (unspec-
ified) δ > 0 and finite K ⊆ Γ, F is (δ,K)-invariant.

To say that a list of sets F1, F2, . . . , Fk is sufficiently invariant is to say that
for some δ > 0 and finite set K ⊆ Γ, setting F0 = K, for each j ∈ {1, 2, . . . , k},
the set Fj is (δ, Fj−1)-invariant.

The existence of (δ,K)-invariant sets for all δ > 0 and finite sets K is
equivalent to the amenability of the countable group Γ.

For purely technical reasons a different but equivalent calculation of the
degree of invariance of a set is more convenient for us.

Definition 3.2. Let δ > 0 and K ⊆ Γ be a finite set. A subset F ⊆ Γ is
called [K, δ]-invariant if

#{γ ∈ F : KK−1γ ⊆ F} > (1− δ)#F.

One calculates that if F is (δ/(#K)2,K)-invariant, then F is [K, δ]-
invariant and conversely if F is [K, δ/(#K)2]-invariant, then F is (δ,K)-
invariant. Hence when one says that either F or a list F1, · · · , Fk are sufficiently
invariant one need not distinguish which of the two notions, Definition 3.1 or
Definition 3.2 is meant.

We now present the Ornstein-Weiss quasi-tiling theorem.

Definition 3.3. A finite list of sets H1, H2, . . . , Hk ⊆ Γ, with id ∈ Hi, for
all i, is said to ε-quasi -tile a finite set F ⊆ Γ if there exist “centers” ci,j ,
i = 1, 2, . . . , k, j = 1, 2, . . . , l(i), and subsets Hi,j ⊆ Hi such that:

1. #Hi,j ≥ (1− ε)#Hi, for j = 1, . . . , l(i),

2. the Hi,jci,j ⊆ F are disjoint, and

3. #(∪
i,j
Hi,jci,j) ≥ (1− ε)|F |.

Theorem 3.4 ([7]). Given ε > 0, there exists N = N(ε) such that in any
countable discrete amenable group Γ, if H1, . . . , HN is any sufficiently invariant
list of sets, then for any D ⊆ Γ that is sufficiently invariant (depending on the
choice of H1, . . . , HN ), D can be ε-quasi -tiled by H1, . . . , HN .
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This theorem is the essential content of Theorem 6, I.2 [7]. Our defini-
tion of ε-quasi-tiling is slightly different; weaker in that we do not ask that
Hici,j ∩ Hkck,l = ∅, i 6= k, and stronger in that we require Hi,jci,j ⊆ F . Ob-
taining the latter from Theorem 6, I.2 [7] is easy if D is sufficiently invariant
and N is fixed.

Suppose (X,B, µ) is a standard probability space. Suppose T is a measure-
preserving free action of Γ on X. It is useful to keep in mind that T is a function
of two variables, i.e., is a map from Γ ×X to X. For a finite set F ⊆ Γ and
measurable subset A ∈ B with µ(A) > 0, consider F × A ⊆ Γ × X. As a
measure on F × A, put the direct product c × µ of counting measure c and
µ. Consider the map T restricted to this rectangle F × A. On each level set
g × A, T is one-to-one and measure-preserving. On any fiber set F × x, T is
again one-to-one. We definitely do not expect T to be one-to-one on F × A.
It is clear, though, that T is nonsingular and, at most, #F to 1.

For S ⊆ F ×A, let

S(x) = #{g ∈ F ; (g, x) ∈ S}

and

cS(x) = #S(x).

Of course
(c× µ)(S) =

∫
A
cS(x) dµ(x).

Set
c(S) = min

x∈A
cS(x).

Definition 3.5. We say that F ×A maps an ε-quasi -tower if there exists
a measurable subset S ⊆ F ×A such that:

1. T |S is one-to-one, and

2. c(S) ≥ (1− ε)#F .

We say F ×A maps a real-tower if T |F×A is one-to-one.

The ε-quasi-tower itself (or real-tower as the case may be) is the set
T (F × A) ⊆ X. Notice that we may always assume T (S) = T (F × A). Also
notice that if there exists an S ⊆ F × A, such that T is one-to-one on S and
(c × µ)(S) > (1 − ε2)(c × µ)(F × A), then there must exist an A′ ⊆ A, with
µ(A′) > (1 − ε)µ(A), such that cS(x) > (1 − ε)#F , for all x ∈ A′. Hence
F × A′ maps to an ε-quasi-tower. We will return to real-towers in a bit but
for now we focus on ε-quasi-towers, which are the core of the Rokhlin lemma
of [7]. This is only a minor modification of Theorem 5, II.2 of [7].



      

AMENABLE CPE-ACTIONS MIX 1131

Theorem 3.6 ([7]). Suppose Γ is a discrete amenable group. For any
ε > 0, there exist δ > 0, K ⊆ Γ and N = N(ε) such that for any sequence
H1, . . . , HN of [K, δ]-invariant subsets of Γ, and any free measure-preserving
Γ-action T = {Tg}γ∈Γ, acting on (X,B, µ), there exist sets A1, . . . , AN ∈ B
such that :

1. each Hi ×Ai maps to an ε-quasi -tower Ri in X,

2. for i 6= j, Ri ∩Rj = ∅, and

3. µ(∪Ni=1Ri) > 1− ε.

A collection of sets of the form {Hi×Ai}Ni=1 satisfying (1), and (2) we say
forms ε-Rokhlin towers. We indicate (3) by saying the towers cover (1− ε) of
X. If the Hi×Ai are real-towers satisfying (2) then we say {Hi, Ai} is a castle
(again covering (1− ε) of X.) We will be using castles a lot as we proceed so
we stress what they are. A castle is a collection of the form {Hi, Ai} where
each pair Hi, Ai form a real-Rokhlin tower and the list of towers have disjoint
images. We refer to the union of these images in X as the castle image.

Notice that if {Hi × Ai} form an ε-quasi-Rokhlin tower then in each of
the Hi × Ai there is a subset Si with c(Si) > (1 − ε)#Hi. For each x ∈ A

remember Si(x) = {γ : (γ, x) ∈ Si}. Partition Ai into subsets Ai,j on which the
choice of set Si(x) is a constant Hi,j . Now #Hi,j ≥ #Hi(1−ε). The collection
of sets {Hi,j × Ai,j} forms a castle covering the same set as the original ε-
quasi-Rokhlin tower. If each Hi is (K, δ)-invariant, then the new Hi,j are still
(K, δ+ 2ε)-invariant. Furthermore if the sets Ai were known to be measurable
with respect to some invariant sub-σ-algebra then the bases of the castle could
also be selected to be measurable with respect to that invariant algebra.

We now state and prove a castle based version of the mean ergodic theorem
for actions of countable amenable groups. This fact is not difficult to prove.
We choose a version of the proof which is parallel to our proof of Theorem 2.6
as a warm-up to that proof.

For T an action of Γ, f a real-valued function, and {Ai, Hi} forming towers
(real or quasi does not matter yet) we can ask how close averages of f across
the towers approximate the integral of f , that is to say we can ask how small
is ∑

i

∫
Ai

∣∣∣∣ ∑
γ∈Hi

f(Tγ(x))−#Hi

∫
f dµ

∣∣∣∣ dµ.
It may appear that a normalization by #Hi is missing but the sum is

normalizing each tower to have mass #Hiµ(Ai).
The next lemma gives the pivotal observation, that if there exist towers

where we are seeing convergence on average, then on all sufficiently invariant
towers we must also be seeing such convergence.
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Lemma 3.7. Suppose T is a free and ergodic action of the countable group
Γ and f ∈ L1(µ). Given any ε > 0 there is a δ > 0 so that if there exists a
castle {Ai, Hi} covering all but δ of X and satisfying∑

i

∫
Ai

∣∣∣∣ ∑
γ∈Hi

f(Tγ(x))−#Hi

∫
f dµ

∣∣∣∣ dµ < δ,

then for any sufficiently invariant Kj , if a castle {Bj ,Kj} covers at least ε of
X we will have ∑

j

∫
Bj

∣∣∣∣ ∑
γ∈Kj

f(Tγ(x))−#Kj

∫
f dµ

∣∣∣∣ dµ < ε.

Proof. Without loss of generality we can assume that
∫
f dµ = 0 and

hence that ∑
i

∫
Ai

∣∣∣∣ ∑
γ∈Hi

f(Tγ(x))
∣∣∣∣ dµ < δ.

Also without loss of generality we can assume that there are only finitely many
sets Hi and hence there is some finite K containing all of them. Choose δ1 so
small that for any set C with µ(C) < δ1 we must have

∫
C |f | dµ < ε/2. Assume

all the Kj are [K, δ1/3]-invariant and be sure ε(δ1/3)2 > δ. Let T ⊆ X be
the tower image of {Ai, Hi} and suppose the castle {Bj ,Kj} covers at least ε
of X.

Consider the set Dj ⊆ Bj where

#{γ ∈ Kj : Tγ(x) /∈ T } ≥ #Kjδ1/3.

As 1− δ < µ(T ) ≤ 1−∑j µ(Dj)#Kjδ1/3, we must have

εδ1/3 ≥
∑
j

µ(Dj)#Kj ,

which is to say∑
j

µ(Dc
j)#Kj ≥

∑
j

µ(Bj)#Kj(1− δ1/3) ≥ ε(1− δ1/3).

For each Bj and each x ∈ Dc
j consider the collection of group elements

dj(x) = {γ ∈ Kj : with Tγ(x) /∈ T or Kγ is not contained in Kj}.

For x ∈ Dc
j we know #dj(x) ≤ 2δ1#Kj/3.

Define a global “bad” set D in the castle image by

D =
⋃
j

( ⋃
x∈Dj
{Tγ(x) : γ ∈ Kj} ∪

⋃
x/∈Dj
{Tγ(x) : γ ∈ dj(x)}

)
.
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We calculate

µ(D) ≤
∑
j

µ(Dj)#Kj + µ(Bj)#Kj2δ1/3 ≤ δ1.

Split f into two functions as f = f1 + f2 where

f1(x) =

{
0 if x ∈ D
f(x) otherwise.

We know ∑
j

∫
Bj

∣∣∣∣ ∑
γ∈Kj

f2(x)
∣∣∣∣ dµ < ε/2.

To show the same for f1 notice that∑
j

∫
Bj

∣∣∣∣ ∑
γ∈Kj

f1(Tγ(x)
∣∣∣∣ dµ =

∑
j

∫
Dcj

∣∣∣∣ ∑
γ∈dj(x)

f(Tγ(x))
∣∣∣∣ dµ

=
∑
i,j

∫
Dcj

∣∣∣∣ ∑
γ′∈dj(x)

Tγ′ (x)∈Ai

(∑
γ∈Hi

f(Tγγ′(x))
)∣∣∣∣ dµ

≤
∑
i,j

∫
Dcj

∑
γ′∈dj(x)

Tγ′ (x)∈Ai

∣∣∣∣( ∑
γ∈Hi

f(Tγγ′(x))
)∣∣∣∣ dµ

≤
∑
i

∫
Ai

∣∣∣∣ ∑
γ∈Hi

f(Tγ(x))
∣∣∣∣ dµ

as ⋃
x∈Dcj

( ⋃
γ′∈dj(x)

Tγ′ (x)∈Ai

Tγ′(x)
)
⊆ Ai

is a disjoint union. This latter is less than ε/2, finishing the result.

Theorem 3.8. For T an ergodic action of the countable amenable group
Γ and f ∈ L1(µ) and ε > 0 for any sufficiently invariant castle {Ai, Hi} whose
image covers at least ε of X we will have∑

i

∫
Ai

∣∣∣∣ ∑
γ∈Hi

f(Tγ(x))−#Hi

∫
f dµ

∣∣∣∣ dµ < ε.

Proof. From the previous lemma all we need to know is that for any δ > 0
there exist towers covering all but δ of X and for which the estimate holds
with δ replacing ε. Here is a very simple way to get them. Construct a direct
product of T with some auxiliary free and ergodic action T1 of Γ so that the
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direct product T × T1 is still ergodic. In this product consider only towers
{Bj ,Kj} that are measurable with respect to the second coordinate algebra.
As the σ-algebra generated by the action of T on f is independent of the second
coordinate algebra, if we know all the Kj are so invariant that from the mean
ergodic theorem ∫ ∣∣∣∣ ∑

γ∈Kj
f(Tγ(x))−#Kj

∫
f dµ

∣∣∣∣ dµ < δ#Kj

then the tower estimate will automatically follow.

We will reuse this little trick of adding on a second coordinate in an even
more decisive way later in proving Theorem 2.6. The next definition is dual to
that of a set being well quasi-spread. For consistency we make the definition
more parallel by fixing a listing of the elements of Γ = {γ1, γ2, . . .}.

Definition 3.9. We say that the castle {Hi×Ai} is N -invariant if setting
K = {γ1, . . . , γN}∑

i

#{γ ∈ Hi : KK−1γ * Hi}µ(Ai) < 1/N.

Notice that if each of the sets Hi is individually [K, 1/N ] invariant then the
castle will be N -invariant, but the invariance of the castle is an average notion
and so 1/N2 invariance of the castle will imply [{γ1, . . . , γN}, 1/N ]-invariance
of all but 1/N of the {Ai, Hi} (measured by their fraction of the castle image).

We have already seen how a spread set transfers through an orbit equiv-
alence to another action. We describe the parallel transference for castles.
Suppose T is a free and ergodic action of a countable group Γ and U is a free
action of Γ′ with the same orbits. What lies behind the transference is of course
the cocycle of the relation α : X×Γ→ Γ′ where Tγ(x) = Uα(x,γ)(x). It is useful
to also give a name to the cocycle in the other direction β : X ×Γ′ → Γ where
Uγ′(x) = Tβ(x,γ′)(x). Suppose {Ai, Hi} is a castle for the action of T . For each
Ai and point x ∈ Ai consider the set of points T (x) = {Tγ(x) : γ ∈ Hi}. This is
the slice through the tower image passing through x. Setting Ki(x) = α(x,Hi)
we have

T (x) = {Uγ′(x) : γ′ ∈ Ki(x)}.

Partition Ai into subsets Bi,j according to the set Ki(x) = Ki,j . Now the full
collection {Ki,j , Bi,j} is a castle for the action of U . We refer to this as the
image castle. It will be convenient to drop the double-indexing and write these
towers simply as {Kj , Bj}. Notice that if both the orbit change from T to U
and the sets Ai are measurable with respect to some invariant sub-σ-algebra
A then the sets Bj will automatically be A-measurable.
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We now verify Theorem 2.11 and the corresponding result for castles. The
following result is not essential for our work but we include it as it is perhaps
the most primitive of this type of result.

Lemma 3.10. Suppose T and U are orbit-equivalent free actions of
amenable groups Γ and Γ′ with α and β the cocycles as described above. Given
any K ′ ⊆ Γ′ and δ′ > 0 there is a K ⊆ Γ and δ > 0 so that if F ⊆ Γ is
[K, δ]-invariant, then

µ({x : α(x, F ) is [K ′, δ′]-invariant}) > 1− δ′.

Proof. For x ∈ X set κ(x) = β(x,K ′K ′−1) ⊆ Γ. Choose the set K1 so
that

µ({x : κ(x) ⊆ K1}) > 1− δ′/3
and set B = {x : κ(x) ⊆ K1}. Choose K containing K1 and δ ≤ δ′/3 so that
if F is [K, δ]-invariant then for all but a set of x of measure at most δ′, the
density in the set of points {Tγ(x) : γ ∈ F} of occurrences of the set B is
at least 1 − δ′/3 (using the mean ergodic theorem.) Notice that F must be
(K1, δ/3)-invariant. For such an x set F ′ = α(x, F ) and we get a lower bound
for #{γ′;K ′K ′−1γ′ ⊆ F ′} by noting it must contain all α(x, γ) where γ ∈ F ,
Tγ(x) ∈ B and K1γ ⊆ F . Both of these subsets of F omit a fraction of at most
δ′/3 from F .

Theorem 3.11. Suppose T and U are orbit-equivalent free actions of
amenable groups Γ and Γ′ with the cocycles α and β as described above. Given
any 1 > a > 0 and N , there is an M so that for all castles {Ai, Hi} for the
action of T that are M -invariant and cover a of X, the image castle {Kj , Bj}
relative to the action U must be N -invariant.

Proof. We assume M is divisible by N and write it as M = M ′N . As-
suming {Ai, Hi} to be M -invariant there must be a subset of indices I so that∑

i∈I
µ(Ai)#Hi > 1− 1

2N
µ (the castle image)

and for i ∈ I the setHi is ({γ1, . . . , γM ′}, 1/M ′)-invariant. ForK ′ = {γ′1, . . . , γ′N}
choose K so that setting

B = {x : β(x,K ′K ′−1)} ⊆ K
we have µ(B) > 1− a(4N3)−2. Let A′i ⊆ Ai consist of those x for which

#{γ ∈ Hi : Tγ(x) ∈ B} > (1− 1
4N3

)#Hi.
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As
∑
i µ(Ai)#Hi > a we must have∑

i

µ(A′i)#Hi > a(1− 1
4N3

).

Choose M ′ > 2N3 and so large that K ⊆ {γ1, . . . , γM ′}. Thus for i ∈ I
Hi is [K, (2N2)−1]-invariant and so for all i ∈ I

#{γ : Kγ ⊆ Hi} > (1− 1
2N3

)#Hi.

For x ∈ A′i consider κ(x) = α(x,Hi). Notice that

#{γ′ ∈ κ(x) : K ′K ′−1
* κ(x)}

= #{γ = β(x, γ′) : γ ∈ Hi, β(x,K ′K ′−1
γ′)

= β(Uγ′(x),K ′K ′−1)β(x, γ′) * Hi}
≤ #{γ′ : β(Uγ′(x),K ′K ′−1) * K}+ #{γ ∈ Hi : Kγ * Hi}

≤ #{γ ∈ Hi : Tγ(x) /∈ B}+
#Hi

2N3

≤ #Hi

N3
.

This says for such an x the set κ(x) is [K ′, 1/N ]-invariant completing the proof.

The proof of Theorem 2.11 is completely parallel to this and we now
present it.

Proof of Theorem 2.11. Set K ′ = {γ′1, . . . , γ′N} and as in the previous
proofs choose K so large that

B = {x : β(x,K ′) ⊆ K}

satisfies
µ(B) > 1− 1

(4N)2
.

Choose M large enough that M > 4N and so that K ⊆ {γ1, . . . , γM}. Sup-
pose S : X → {the k point subsets of Γ} is both uniform and M -quasi-spread.
Write

TS(x)(x) = {V1(x), . . . , Vk(x)}

where the Vi are in the full-group of T (and hence are one-to-one and measure-
preserving) and have distinct images.

As µ(Bc) < (4N)−2,

µ({x : #{i ≤ k : Vi(x) /∈ B} > 1
4N

k}) < 1
4N

.
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Set A = {x : #{i ≤ k : Vi(x) /∈ B} ≤ k/(4N)}. Consider those x ∈ A for
which there is a subset S′(x) ⊆ S(x) occupying a fraction 1 − 1/M of S(x)
that is M -spread. This set has measure at least 1− 1/M − 1/(4N) > 1− 1/N .

For such an x set

S′′(x) = S′(x) ∩ {γ ∈ S : Tγ(x) ∈ B}

and we note

#S′′(x) > #S′(x)− k

4N
> k(1− 1

N
).

In V (x) = α(x, S(x)) set V ′(x) = α(x, S′′(x)). For γ′ ∈ V ′(x) and γ′1 ∈ K ′
with γ′1 6= id, we need only show that γ′1γ

′ /∈ V ′(x) to be finished. This is the
same as saying

β(x, γ′1γ
′) /∈ S′′(x).

Now
β(x, γ′1γ

′) = β(Uγ′(x), γ′1)β(x, γ′).

As γ′ ∈ V ′(x), Uγ′(x) ∈ B and β(x, γ′) ∈ S′(x). As γ′ ∈ K ′, β(Uγ′(x), γ′1) ∈ K.
We must conclude, as S′(x) is M -spread, that β(Uγ′(x), γ′1)β(x, γ′) cannot be
in S′(x) which contains S′′(x).

4. Conditional entropy theory and proof of Theorem 2.6

The Shannon-McMillan theorem of [7] states that if T is an ergodic action
of Γ on (X,F , µ) and P is a finite partition then for any δ > 0 if F ⊆ Γ is
sufficiently invariant then among the atoms of ∨

γ∈F
Tγ−1(P ) is a collection G

with:

1) µ(∪η∈Gη) > 1− δ,

2) #(G) < 2(h(T,P )+δ)#F , and

3) for any η ∈ G, µ(η) < 2−(h(T,P )−δ)#F .

We need a version of this fact relative to, (or conditioned on) a T -invariant
sub-σ-algebra. To obtain this requires that we develop some basic condi-
tional entropy theory for actions of countable amenable groups. T. Ward and
Q. Zhang have given a development of conditional entropy for amenable group
actions but their results (Theorem 3.2 and Corollary 3.3 of [9]) are not quite
enough for our needs. Although it is possible to build from their development
and get what we need for the sake of consistency and completeness we give the
whole story here.
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First two primitive observations about entropy that hold equally well for
us here. If T is an action of Γ and F is some finite subset of Γ with

Q ⊆ ∨
γ∈F

Tγ−1(P )

a finite partition then
h(T,Q) ≤ h(T, P ).

Next, for any vector ~p = {p1, . . . , pt} of values pi ≥ 0 with
∑
pi ≤ 1 (yes,

≤) we can set pt+1 = 1−∑ pi and let

H(~p) = −
t+1∑
i=1

pi log(pi).

Suppose P and P ′ are partitions of X labeled by the same symbols, i.e.
P, P ′ : X → Σ where Σ is a finite set. We write

P4P ′ = {x : P (x) 6= P ′(x)}.

The following inequality always holds:

|h(T, P )− h(T, P ′)| ≤ H(µ(P4P ′)) + µ(P4P ′) log(#Σ).

In particular among Σ-valued partitions h(T, P ) is uniformly continuous in the
µ(·4 ·) metric.

Definition 4.1. We abstract the notion in the conclusion of the Shannon-
McMillan theorem of [7] as follows. For K ⊆ Γ a finite set and p a probability
measure on ΣK , we say p is (h, δ)-flat if there is a subset S0 ⊆ ΣK with:

1) p(S0) > 1− δ,

2) #S0 ≤ 2(h+δ)#K , and

3) for any η ∈ S0, µ(η) ≤ 2−(h−δ)#K .

For a probability measure on ΣK like p in this definition let

hK(p) = − 1
#K

∑
η∈ΣK

p(η) log(p(η)).

The following are basic calculations.

Lemma 4.2. If p satisfies 1) and 2) above then

hK(p) ≤ H(δ) + δ log(#Σ) + (1− δ)(h+ δ) ≤ h+H(δ) + δ log(#Σ).

If p satisfies 1) and 3) above then

hK(p) ≥ (1− δ)(h− δ) ≥ h− δ(log(#Σ) + 1).
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Now for the technical fact that if one writes a “flat” distribution on names
as a convex combination of distributions without dropping the average entropy
by much, then most of the terms in the convex combination must also be pretty
flat.

Theorem 4.3. Given h ≥ 0 and δ > 0 there is a δ1 so that if #K > 1/δ1,
p is (h, δ1)-flat and we write p as a convex combination of measures

p =
∫
pt dt

with ∫
hK(pt) dt ≥ hK(p)− δ1,

then
µ({t : pt is (h, δ)-flat }) > 1− δ.

Proof. In this calculation we will use Fi(z) to represent a sequence of
functions, all of which tend to 0 as z → 0. We will find F4 so that for all but
F4(δ1) of the values t, pt is (h, F4(δ1))-flat.

Assume K and p are as described for h and δ1. Let S0 ⊆ ΣK be the set
of names making p an (h, δ1)-flat distribution. For all but

√
δ1 of the values t,

pt(S0) ≥ 1−
√
δ1,

for example, pt satisfies 1) and 2) of (h,
√
δ1)-flatness and hence

hK(pt) ≤ h+H(
√
δ1) +

√
δ1(log(#Σ) + 1).

Thus there is a function F1 and for all but F1(δ1) of the values t,

hK(pt) ≤ h+ F1(δ1).

For all t we have hK(pt) ≤ log(#Σ) so as
∫
hK(pt) dt ≥ h− δ1 there is an

F2 and for all but F2(δ1) of the values t,

h− F2(δ1) ≤ hK(pt) ≤ h+ F2(δ1)

and

pt(S0) ≥ 1− F2(δ1).

Suppose for such a pt there is a c ≥ 0 and a set S1 ⊆ ΣK with pt(S1) = c

and for any name η ∈ C
pt(η) > 2−(h−c)#K .

We want to see that c must be small.
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Split ΣK into three sets:

1) S1 of measure c,

2) S0\S1 of measure > 1− δ1 − c, and

3) the rest, of measure < δ1.

We calculate, conditioning on this three set-partition, that

hK(pt) ≤
H(c, δ1)

#K
+ c(h− c) + (1− δ1 − c)(h+ δ1) + δ1 log(#Σ)

and
h− F2(δ1) ≤ h− c2 + δ1 log(#Σ) +

log 3
#K

+ δ1

and as #K > 1/δ1,

c2 ≤ F2(δ1) + δ1 log(#Σ) + δ1(log 3 + 1).

We conclude that there is an F3 with

c ≤ F3(δ1).

Let St = S0\S1 and we have:

1) pt(St) ≥ 1− F2(δ1)− F3(δ1),

2) #St ≤ #S0 ≤ 2(h+δ1)#K , and

3) for η ∈ St, pt(η) ≤ 2−(h−F3(δ1))#K .

That is to say for F4(z) = F2(z) + F3(z) + z, pt is (h, F4(δ1))-flat. For
δ > 0 choose δ1 so that F4(δ1) ≤ δ to give the result.

Of course the disintegration of the distribution envisioned in this result
will arise from conditioning on a sub-σ-algebra.

We now start to work with conditional entropy. Let A be a sub σ-algebra
and P a finite partition. For our purposes it is best to think of this partition
as a map P : X → Σ where Σ is a finite labeling set. The partition in the
usual sense is then the collection of sets {P−1(s)}s∈Σ. As described earlier by
E(P |A) we mean the probability vector-valued function (E(1P−1(s)|A))s∈Σ.
By L(P |A) we mean the conditional entropy as an A-measurable function

L(P |A)(x) = H(E(P |A)(x))

and now the conditional entropy of P given the σ-algebra A is defined as

h(P |A) =
∫
X
L(P |A) dµ.
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Lemma 4.4. For T an ergodic action of Γ, P and Q two finite partitions,
and any δ > 0 if F is sufficiently invariant, then for all but δ in measure of X

E( ∨
γ∈F

Tγ−1(P )| ∨
γ∈F

Tγ−1(Q))

is (δ, h)-flat where h = h(T, P ∨Q)− h(T,Q).

Proof. From Corollary 3.0.26 of [4] which is a simple extension of the
Shannon-McMillan theorem of [7] (§II.4 #5), if F is sufficiently invariant, then
for all but (δ/2)2 in measure of the atoms η of ∨

γ∈F
Tγ−1(P ∨Q) we have

1) µ(η) = 2−(h(T,P∨Q)±(δ/2)2)#F

and for all but δ/2 in measure of the atoms η′ ∈ ∨
γ∈F

Tγ−1(Q),

2) µ(η′) = 2−(h(T,Q)±δ/2)#F .

Consider those atoms η′ satisfying 2) and all but a fraction δ/2 in measure
covered by atoms η satisfying 1). For x in such an η′ and also in such an η we
compute

E(η| ∨
γ∈F

Tγ−1(Q))(x) =
µ(η)
µ(η′)

= 2−(h±δ)#F ;

hence
E( ∨

γ∈F
Tγ−1(P )| ∨

γ∈F
Tγ−1(Q))

is (δ, h)-flat.

Our next problem is to show that if F is sufficiently invariant then

h( ∨
γ∈F

Tγ−1(P )| ∨
γ∈Γ

Tγ−1(Q))/#F

cannot be much smaller than

h( ∨
γ∈F

Tγ−1(P )| ∨
γ∈F

Tγ−1(Q))/#F.

Theorem 4.5. For T an ergodic action of Γ, P and Q two finite parti-
tions and δ > 0, if F is sufficiently invariant then

1
#F

h( ∨
γ∈F

Tγ−1(P )| ∨
γ∈Γ

Tγ−1(Q)) ≥ h(T, P ∨Q)− h(T,Q)− δ.

Proof. Suppose F ⊆ F ′ and notice that the calculation
1

#F
h( ∨
γ∈F

Tγ−1(P )| ∨
γ∈F ′

Tγ−1(Q))

can only decrease as F ′ increases as a set. Suppose the result is false, that is
to say fails to hold for some δ0 > 0. This would mean we will be able to find
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arbitrarily invariant F ’s for which it fails. In particular for any δ1 > 0 we will
be able to find F1, . . . FN which δ1-quasi tile all sufficiently invariant F ’s and
a single F ′ finite with

1
#Fi

h( ∨
γ∈Fi

Tγ−1(P )| ∨
γ∈F ′

Tγ−1(Q)) < h(T, P ∨Q)− h(T,Q)− δ0/2.

Choose F to also be [F ′, δ1]-invariant. Now we take a δ1-quasi tiling of F by
F1, . . . , FN with centers ci,j , i = 1, . . . , N and j = 1, . . . , k(i). Delete from the
list of centers all ci,j with Fici,j not contained in F . The remainder of the tiles
will still 2δ1-quasi tile F .

We calculate with this an upper bound for

1
#F

h( ∨
γ∈F

Tγ−1(P )| ∨
γ∈F

Tγ−1(Q))

by successively adding on a conditional entropy of a span over a new tile of
indices Fici,j until they are exhausted and then adding a maximal bound for
the added entropy of the remaining indices. This gives the inequalities

1
#F

h( ∨
γ∈F

Tγ−1(P )| ∨
γ∈F

Tγ−1(Q))

≤ 1
#F

(∑
i,j

h( ∨
γ∈Fi

Tγ−1(P )| ∨
γ∈F ′

Tγ−1(Q))#Fi
)

+ 2δ1 log(#ΣP )

≤
∑
i,j Fi

#F
(h(T, P ∨Q)− h(T,Q)− δ0/2) + 2δ1 log(#ΣP )

≤ (1 + δ1)(h(T, P ∨Q)− h(T,Q)) + 2δ1 log(ΣP )− δ0/2.

If F is sufficiently invariant we conclude from Lemma 4.4 that

h(T, P ∨Q)− h(T, P )− δ1 ≤ (1 + δ1)(h(T, P ∨Q)− h(T,Q))(1)

+ 2δ1 log(ΣP )− δ0/2

for all values δ1 > 0. But this conflicts with δ0 > 0.

Corollary 4.6. For any T -invariant sub-σ-algebra A and δ > 0, if F
is sufficiently invariant, for all but δ in measure of the x ∈ X, the conditional
measure

E( ∨
γ∈F

Tγ−1(P )|A)(x)

is (h(T, P |A), δ)-flat.
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Proof. Fix a partition Q. As the invariance of F improves the measures

E( ∨
γ∈F

Tγ−1(P )| ∨
γ∈F

Tγ−1(Q))(x)

become ever flatter on ever more of X, and the amount the entropy can de-
crease when further conditioning from ∨

γ∈F
Tγ−1(Q) to ∨

γ∈Γ
Tγ−1(Q) becomes ever

smaller. Thus Theorem 4.3 gives the result for A of the form ∨
γ∈Γ

Tγ−1(Q). Any

invariant sub-σ-algebra is an increasing span of such algebras Ai. The condi-
tional entropies h( ∨

γ∈F
Tγ−1(P )|Ai)/#F decrease in i converging to

h( ∨
γ∈F

Tγ−1(P )|A)/#F.

This latter, as F becomes larger and more invariant, decreases to a value we
call h(T, P |A).

Thus for any δ > 0, once i is large enough and F sufficiently invariant,
1

#F
h( ∨
γ∈F

Tγ−1(P )|A) ≥ 1
#F

h( ∨
γ∈F

Tγ−1(P )|Ai)− δ.

Once F is sufficiently invariant for all but δ in measure of the x ∈ X, we
already know E( ∨

γ∈F
Tγ−1(P )|Ai) will be (h(T, P ∨Qi)−h(T,Qi), δ)-flat. Once

more Theorem 4.3 gives the result.

Corollary 4.7. As the invariance of a set F increases to infinity,
1

#F
L( ∨

γ∈F
Tγ−1(P )|A)→ h(T, P |A).

Proof. Notice that
1

#F
L( ∨

γ∈F
Tγ−1(P )|A)(x) ≤ log(#ΣP ).

The increasing flatness of the measures E( ∨
γ∈F

Tγ−1(P )|A) now gives the result.

The corollary above can be obtained quite easily as well from Theorem
3.2 of [9] where it is shown that I( ∨

γ∈F
Tγ−1(P )|A)/#F converges in L1 as the

invariance of F increases.
Our next step is to show that conditional entropy can be found by ex-

amining it on sufficiently invariant castles. This is the critical step in proving
Theorem 2.6. Our approach is parallel to that of our proof of the ergodic
theorem on castles, we will show that if it holds on some sequence of castles
of growing invariance then it must hold on all such. To get the existence of a
sequence we use the same trick as before, we add on another coordinate and
note that then it is implied by the previous corollary.
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To begin, for any finite subset H ⊂ Γ and A ⊂ X with the pair forming a
tower we can calculate a local conditional entropy on the tower H ×A as

h(H,A)(T, P |A) =
∫
A
L( ∨

γ∈H
Tγ−1(P )|A).

Notice we have not normalized this by either µ(A) or by #H. The reason is
easy to understand from the inequalities

h(H,A)(T, P |A) ≤
∫

#H log ndµ ≤ log n#Hµ(A)

where P is an n-set partition. That is to say this tower entropy is automatically
bounded by the measure of the tower image times logn. For a castle T =
{Hi, Ai} we can define a conditional entropy on the castle now as

hT (T, P |A) =
∑
i

h(hi,Ai)(T, P |A)

and again we see that this tower entropy will be bounded by the measure of
the castle image times log n.

Lemma 4.8. Suppose T is a free and ergodic action of the countable and
amenable group Γ, A is an invariant sub-σ-algebra and P is an n-set partition.
Suppose T = {Hi, Ai} is a castle covering all but δ ≥ 0 of X with Ai ∈ A.
Given any ε > 0 there is an N , so that for all castles T ′ = {Kj , Bj} that are
N -invariant with Bj ∈ A we will have

hT ′(T, P |A) ≤ hT (T, P |A) + δ log n+ ε.

Proof. We will abuse language a bit here and use µ(T ) and µ(T ′) to
represent measures of the two castle images. We assume now that the partition
P and the castle T are given. For a castle T ′ = {Kj , Bj} and x ∈ Bj define

d(x) = {γ ∈ Kj : there exists an i with(2)

γ = γ2γ1, Tγ1(x) ∈ Ai, γ2 ∈ Hi and Hiγ1 ⊆ Kj}
that is to say the collection of elements in Kj which lie in a slice through the
T castle which lies completely inside this slice through the T ′-castle.

We note that if T ′ is sufficiently invariant, by the ergodic theorem on
towers and this invariance we will obtain∑

j

∫
Bj

∣∣∣∣#d(x)−#Kjµ(T )
∣∣∣∣ dµ < ε

2 logn
.

Define a function h on X by

h(x) =


1

#Hi
L( ∨

γ∈Hi
Tγ−1(P )|A)(x′) if x = Tγ(x′), γ ∈ Hi, x

′ ∈ Ai
0 otherwise.
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Notice that h(x) ≤ log n and∫
h(x) dµ = hT (T, P |A).

Using the ergodic theorem on towers, once T ′ is sufficiently invariant we
will obtain ∑

j

∫
Bj

∣∣∣∣ ∑
γ∈Kj

h(Tγ(x))−#KjhT (T, P |A)
∣∣∣∣ dµ < ε/2

and in particular∑
j

∫
Bj

∑
γ∈Kj

h(Tγ(x)) dµ < hT (T, P |A) + ε/2.

For x ∈ Bj for a first estimate

L( ∨
γ∈Kj

Tγ−1(P )|A)(x) ≤ L( ∨
γ∈d(x)

Tγ−1(P )|A)(x) + (#Kj −#d(x)) logn.

Let di(x) = {γ ∈ d(x) : Tγ(x) ∈ Ai} and now

d(x) =
⋃
i

⋃
γ1∈di(x)

⋃
γ2∈Hi

Tγ2γ1(x)

a disjoint union.
Choose some ordering for each of the di(x) = {γik} and set

Ci,k = {γ ∈ d(x) : γ = γ1γi′k′ where γ1 ∈ Ai′ , i′ ≤ i and k′ < k}.
What this has done is simply to give an ordering to the slices through T

that lie within the slice of T ′ passing through x with Ci,k consisting of those
elements in the slice that occur earlier in the order than the one through γi,k.

As both T and T ′ are A-measurable we compute that

I( ∨
γ∈d(x)

Tγ−1(P )|A)(x) =
∑
i,k

L( ∨
γ∈Ai

Tγ−1(P )| ∨
γ∈Ci,k

Tγ−1(P ) ∨ A)(Tγi,k(x))

≤
∑
i,k

L( ∨
γ∈Ai

Tγ−1(P )|A)(Tγi,k(x))

=
∑

γ∈d(x)

h(Tγ(x)).

We now complete our work by combining our estimates to give

hT ′(T, P |A) =
∑
j

∫
Bj

L( ∨
γ∈Kj

Tγ−1(P )|A) dµ

≤
∑
j

∫
Bj

L( ∨
γ∈d(x)

Tγ−1(P )|A)(x) dµ(x)

+
∑
j

∫
Bj

(#Kj −#d(x)) logndµ
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≤
∑
j

∫
Bj

∑
γ∈d(x)

h(Tγ(x)) dµ

+
(∑

j

#Kjµ(Bj)(1− µ(T ))
)

log n+ ε/2

≤
∑
j

∫
Bj

∑
γ∈Kj

h(Tγ(x)) dµ+ δ log n+ ε/2

≤ hT (T, P |A) + δ log n+ ε.

Corollary 4.9. For T an ergodic action of the countable and amenable
group Γ, A a T -invariant sub-σ-algebra and P an n-set partition, then for
any ε > 0 there is an N and a δ so that if T = {Hi, Ai} is a castle that is
N -invariant and covers all but δ of X, then

h(T, P |A) + δ log n+ ε < hT (T, P |A) < h(T, P |A) + ε.

Proof. We split the proof into two pieces. First, suppose that T possesses
a sequence of castles Ti which are A-measurable, whose invariance tends to
infinity, and for which µ(Ti)→ 1 and

hTi(T, P |A)→ h(T, P |A).

Choose a Ti covering at least ε/(3 logn) of X and so that

hTi(T, P |A) < h(T, P |A) + ε/3

and using ε/3 in the previous lemma we conclude that once T is sufficiently
invariant and A-measurable we will have

hT (T, P |A) < hTi(T, P |A) + 2ε/3 < h(T, P |A) + ε.

Now fixing such a T and again using the previous lemma with ε/2, choose
Tj with hTj (T, P |A) > h(T, P |A)− ε/2 and giving now

h(T, P |A) < hTj (T, P |A) + ε/2 < hT (T, P |A) + ε/2 + δ log n+ ε/2

giving the result.
Where will we find the castles Ti? We use the same trick as we did for

the ergodic theorem on towers. Construct a direct product T × T2 that is still
ergodic. We leave P fixed but replace A with A1 = A ∨ B2. For any tower
{H,A} that is B2-measurable,

h(H,A)(T × T2|A1) = h( ∨
γ∈H

Tγ−1(P )|A)/#H.

From Corollary 4.7 we know that as the invariance of H grows,

h( ∨
γ∈H

Tγ−1(P )|A)/#H
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will converge to h(T, P |A). Thus if we choose a sequence of castles Ti which
are B2-measurable, whose invariance grows and which cover more and more
of X ×X2 we will have the sequence of castles we want. We now obtain the
conclusion for all castles in the product action that are A1-measurable and in
particular for those just in the first coordinate and A-measurable.

Proof of Theorem 2.6. From Theorem 2.11 we know that for any sequence
of castles Ti for the action of T whose invariance grows to infinity, the image
castles T ′i for the action of U will have the same property. If the Ti are A-
measurable, as the orbit change is also A-measurable, the castles T ′i will again
be A-measurable. Hence we must have both

lim
i→∞

hTi(T, P |A) = h(T, P |A)

and
lim
i→∞

hT ′i (U,P |A) = h(U,P |A).

As the orbit change is A-measurable, for almost every x ∈ X and finite
set H ⊆ Γ, letting H ′ = α(x,H),

L( ∨
γ∈H

Tγ−1(P )|A)(x) = L(∨γ′∈H′Uγ′−1(P )|A)(x);

hence for all Ti we have

hTi(T, P |A) = hT ′i (U,P |A)

which completes the result.

As promised in the introduction, we will finish by showing that in certain
special cases it is easy to see why the relative Pinsker algebra of a direct
product over its first coordinate is simply the span of the first coordinate and
the Pinsker algebra of the second. In particular our argument will hold when
the first coordinate action is Bernoulli.

Theorem 4.10. Suppose T1 and T2 are two ergodic and measure-preserv-
ing actions of Γ on the spaces (X1,B1, µ1) and (X2,B2, µ2) respectively. Let
Π(Ti) represent the Pinsker algebra of Ti and E represent the relative Pinsker
algebra of the direct product T1× T2 with respect to the first coordinate algebra
B1. Suppose that C(T1), the group of all measure-preserving bijections of X1

commuting with all elements of T1, acts ergodically on X1. We conclude that

E = B1 ×Π(T2).

Proof. Denote by Ex1 the trace of E on the fiber x1 × X2. Up to µ2-
null sets we can identify Ex1 with the conditional expectation operator from
L2(X2,B2, µ2) to L2(X2, Ex1 , µ2) which we write as Ex1 . Using the strong
operator topology on these conditional expectations, we get a map from X1
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into a subset of the closed subset of conditional expectation operators in this
Polish space. Notice that for any function f ∈ L2(X2,B2, µ2) we can lift f to
X1 ×X2 as f(x1, x2) = f(x2) and we have

Ex1(f)(x2) = E(f |E)(x1, x2).

This shows that for any f the evaluation of Ex1(f)(x2) is jointly measurable
in both variables and hence the map Ex1 is a measurable map to this Polish
(in particular separable metric) space. If S is an element of C(T1) the fact
that S × id(E) = E tells us that ESx1 = Ex1 for µ1-a.e. x1. The ergodicity of
C(T1) now implies that the operators Ex1 must be µ1-almost surely constant,
and hence the algebras Ex1 must be almost surely a constant E0. Since B1 is
contained in E we conclude that E = B1 × E0 and it is an observation that
E0 = Π(T2) as any set in B2 with zero conditional entropy over B1 must have
zero entropy for the action T2.

For our purposes here all we need is a single example of such a map T1

for which we can guarantee the T1 × T2 will remain ergodic for all ergodic T2.
Here is perhaps the simplest such example. Let X = {0, 1}Γ be the full 2-shift
over Γ with the left action, i.e.

Tγ(x1)(γ′) = x1(γ−1γ′)

and let µ1 be independent and identically distributed measure (1/2, 1/2)Γ.
Notice that C(T1) will contain the right action of Γ

Sγ(x1)(γ′) = x1(γ′γ1).

The action S is just as ergodic as that of T .

Corollary 4.11. If T1 acting on (X1,B1, µ1) is Bernoulli and T2 acting
on (X2,B2, µ2) is cpe then the product action T1×T2 is relatively cpe over X1.

5. Final comments

Recent work in this area has not focused on proving that completely pos-
itive entropy implies multiple mixing, but rather on the characterizing the
unitary theory of such systems. In particular the goal is to show that the
spectral type of any system of a completely positive entropy action of Γ is that
of the shift on `2 of the group Γ. This has been shown for Zn by B. Kaminsky
and for the discrete rationals by J.-P. Thouvenot. Is it possible to approach
this question using the orbit equivalence notions presented here? That is to
say can one pull the relativized spectral structure through an orbit equivalence
to show that the result is simply the transference of the classical fact for Z?
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Having restricted our attention here to countable amenable groups one
must ask whether the methods here will apply to continuous such groups. The
answer is certainly going to be yes. For groups that possess a cocompact
countable subgroup the result on the subgroup together with some coding
approximations will give the result for the larger group. For groups which do
not possess such a subgroup the path is a bit trickier. Remember that central
to our proof was the taking of a direct product with a standard second action.
We once more do this but in this standard action we also select a section. The
induced equivalence relation on this section will be hyperfinite of type II1, that
is to say orbit-equivalent to a measure-preserving action of Z. It is through
this orbit equivalence that we will transfer the relative cpe property and mixing
properties to obtain our result. This work will be presented separately.

We end with a tantalizing open question. An area of the ergodic theory
of discrete amenable groups that remains very cloudy is the nature of Følner
sequences along which the pointwise ergodic theory holds for all f ∈ L1. We
pose the following question: Suppose T is some fixed action of the countable
and discrete amenable group Γ and U is an action of Z with the same orbits.
For a.e. x ∈ X Lemma 3.10 tells us the sequence of sets Fn(x) = {γ ∈ Γ :
Tγ(x) = Ui(x),−n ≤ i ≤ n} is a Følner sequence in Γ. Is it the case that for
a.e. x ∈ X this sequence is universally good for the pointwise ergodic theorem?
What is easily seen from our transference is that for any action S of Γ on a
space Y and any f ∈ L1(Y ) that for almost every x ∈ X, the sequence Fn(x)
is good for the pointwise ergodic theorem for the S action on f .
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