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Characteristic cycles and wave front cycles
of representations of reductive Lie groups

By Wilfried Schmid and Kari Vilonen*

1. Introduction

In the papers [V1] and [BV], Vogan and Barbasch-Vogan attach two sim-
ilar invariants to representations of a reductive Lie group, one by an algebraic
process, the other analytic. They conjectured that the two invariants deter-
mine each other in a definite manner. Here we prove the conjecture. Our
arguments involve two finer invariants – the characteristic cycles of represen-
tations – which are interesting in their own right.

To describe the invariants, we consider a linear, reductive Lie group GR

and fix a maximal compact subgroup KR ⊂ GR. We denote their Lie algebras
by gR and kR, and the complexified Lie algebras by g, k. An element ζ of the
dual space g∗ is said to be nilpotent if it corresponds to a nilpotent element of
[g, g] via the isomorphism [g, g] ∼= [g, g]∗ ⊂ g∗ induced by the Killing form. Via
the adjoint action, the complexification G of GR acts with finitely many orbits
on N ∗, the cone of all nilpotents in g∗. Like all coadjoint orbits, each G-orbit
O ⊂ N ∗ carries a distinguished (complex algebraic) symplectic structure; the
intersection of O with ig∗

R
= { ζ ∈ g∗ | 〈ζ, gR〉 ⊂ iR } consists of finitely many

GR-orbits, each of which is Lagrangian in O. The choice of a maximal compact
subgroup determines a Cartan decomposition g = k⊕p, and dually g∗ = k∗⊕p∗.
The complexification K of the group KR operates on N ∗∩p∗ with finitely many
orbits, and each of these orbits is Lagrangian in the G-orbit which contains it
[KR].

Now let π be an irreducible, admissible representation of GR – for example
an irreducible unitary representation. To such a representation, one can asso-
ciate its Harish-Chandra module V , which is simultaneously and compatibly
a module for the Lie algebra g and a locally finite module for the algebraic
group K. Then V admits K-invariant “good filtrations,” as module over the
universal enveloping algebra U(g), relative to its canonical filtered structure.
Vogan [V1] shows that the annihilator of the graded module defines an equidi-
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mensional, K-invariant algebraic cycle, independently of the choice of good
filtration, whose support is contained in N ∗∩ p∗. Since K acts on N ∗∩ p∗ with
finitely many orbits, this “associated cycle” becomes a linear combination

(1.1) Ass(π) =
∑

aj [Op,j ] ( aj ∈ Z≥0 )

of fundamental cycles of K-orbits Op,j in N ∗∩ p∗, all of the same dimension.
This is the first of the two invariants which we relate. The other is constructed
in [BV], from the (Harish-Chandra) character Θπ. When Θπ is pulled back
to gR via the exponential map and the argument is scaled by a multiplicative
parameter t ∈ R>0, the resulting family of distributions has an asymptotic
expansion as t→ 0. The Fourier transform of the leading term can be thought
of as a complex linear combination of fundamental cycles of GR-orbits in iN ∗

R
=

N ∗∩ ig∗
R
,

(1.2) WF(π) =
∑

bj [OgR,j ] ( bj ∈ C ) ,

in the following sense: up to the multiplication by i, each OgR,j is a coadjoint
orbit, hence carries a canonical measure, whose Fourier transform defines a
distribution on gR. We shall call WF(π) the “wave front cycle” of π. Its support
coincides with the wave front set of the distribution Θπ at the identity, as was
proved by Rossmann [R3], [R4].

The similar nature of the two invariants (1.1–1.2) led Barbasch and Vogan
to suggest the existence of a natural bijection between the K-orbits in N ∗∩ p∗
and the GR-orbits in iN ∗

R
. This conjectured correspondence

(1.3) K\ (N ∗∩ p∗) ←→ GR\iN ∗R
was established by Sekiguchi [Se] and Kostant (unpublished). We shall show:

1.4 Theorem. The associated cycle Ass(π) coincides with the wave front
cycle WF(π) via the correspondence (1.3).

This result settles a conjecture of Barbasch-Vogan [V2]. In particular, it
implies that the coefficients bj of the wave front cycle are nonnegative integers.

The so-called orbit method suggests that certain irreducible unitary rep-
resentations of the reductive group GR should be attached to nilpotent orbits.
Ideally one would like to realize these “unipotent representations” geometri-
cally, as spaces of sections, or perhaps cohomology groups, of line bundles on
the nilpotent orbits in question. Such direct geometric constructions have been
carried out only in isolated cases. On the other hand, the associated cycle and
the wave front cycle attach nilpotent orbits to representations, and these nilpo-
tent invariants can be used in the process of labeling some representations as
unipotent. The affirmative answer to the Barbasch-Vogan conjecture thus set-
tles a natural question: the two types of nilpotent invariants, arising from the
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associated cycle and the wave front cycle respectively, give absolutely equiva-
lent information. Vogan’s paper [V3] contains a broad survey of the notion of
unipotent representation and various related matters. It is also a convenient
reference for a good part of the material used by us.

Theorem 1.4 fits into a general pattern. There are several other invari-
ants and constructions – such as n-homology, induction, geometric realiza-
tions – that can be carried out alternatively for Harish-Chandra modules or
GR-representations; the former emphasizes the role of the K-action, and the
latter, the role of GR. It sometimes happens that a calculation is doable on
one side, but has implications on the other side. In this spirit, J.-T. Chang
[C2] has used Theorem 1.4 to give a simple, conceptual proof of a theorem of
Vogan [V1].

Our proof of the theorem relates the associated cycle to the wave front
cycle via two geometric invariants. On the side of Harish-Chandra modules,
the Beilinson-Bernstein construction attaches representations to K-equivariant
D-modules on the flag varietyX, and these in turn correspond toK-equivariant
sheaves on X via the Riemann-Hilbert correspondence. The passage from
Harish-Chandra modules to K-equivariant sheaves has an analogue on the
side of GR-representations. This gives three sides of a square, with vertices
“Harish-Chandra modules,” “GR-representations,” “K-equivariant sheaves,”
and “GR-equivariant sheaves.” The fourth side, the “Matsuki correspondence
for sheaves,” makes the square commute; this is the commutative square (2.9)
below. Kashiwara’s characteristic cycle construction applies, in particular, to
the K-equivariant and GR-equivariant sheaves arising from representations,
producing Lagrangian cycles in the cotangent bundle T ∗X. The main point of
our proof is a microlocalization of the Matsuki correspondence – an explicit,
geometric passage from the characteristic cycle on the K-equivariant side to
that of the corresponding GR-equivariant sheaf.

The moment map of the G-action on the cotangent bundle sends T ∗X to
the nilpotent cone N ∗. It turns out that the associated cycle is the image, in an
appropriate sense, of the characteristic cycle of the K-equivariant sheaf under
the moment map. Similarly, the characteristic cycle of the GR-equivariant sheaf
determines the wave front cycle. In both cases the characteristic cycles carry
more information than Ass(π) and WF(π). The characteristic cycles merit
further study, we think; they may turn out to be more interesting invariants
than the associated cycle and the wave front cycle.

The two types of characteristic cycles, i.e., the associated cycle and the
wave front cycle, take values in four abelian groups which form the vertices
of a commutative square. We already mentioned three of the arrows: the
microlocalization of the Matsuki correspondence and the cycle maps induced
by the moment map. The fourth arrow, the “push-down” of the microlocalized
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Matsuki correspondence, is an explicit geometric passage from K-orbits in
N ∗ ∩ p∗, viewed as cycles in N ∗, to GR-orbits in N ∗ ∩ ig∗

R
, again viewed as

cycles. This, we prove, coincides with the Sekiguchi correspondence (1.3). The
final ingredient of the argument identifies the push-downs of the characteristic
cycles with the associated cycle and the wave front cycle, respectively.

A two-column commutative diagram, (7.1) in Section 7, encapsulates the
entire argument. Here we give it in heuristic form:

(1.5)

{H-C-modules} −−−→ {GR-representations}
LK

y yLGR
{K-equivariant sheaves} γ−−−→ {GR-equivariant sheaves}

CC

y yCC

{characteristic cycles} Φ−−−→ {characteristic cycles}
µ∗

y yµ∗
{K-orbits in N ∗ ∩ p∗} φ−−−→ {GR-orbits in N ∗ ∩ ig∗

R
} .

The top arrow represents some right inverse of Harish-Chandra’s passage from
representations to Harish-Chandra modules, such as the maximal globaliza-
tion functor [S]. Beilinson-Bernstein’s localization functor [B], [BB1], [BB2],
followed by the Riemann-Hilbert correspondence [K1], [Me], is LK . It has a
GR-analogue LGR

, whose inverse is constructed in [KSd]. Kashiwara [K3] con-
jectured the Matsuki correspondence for sheaves γ, an elaboration of Matsuki’s
correspondence between K-orbits and GR-orbits in the flag variety [Ma]; the
paper [MUV] establishes Kashiwara’s conjectured description of γ. The arrows
CC refer to Kashiwara’s characteristic cycle construction [K2], [KSa]. Theorem
3.7 below describes Φ, the microlocalization of the Matsuki correspondence.
Its proof, in Section 4, depends heavily on the “open embedding theorem”
[SV3], which describes the effect on characteristic cycles of push-forward un-
der an open embedding. Our construction of the functor Φ leads us outside the
customary real analytic context – i.e., outside the subanalytic setting; instead,
we need to work inside one of the “analytic-geometric categories” of van den
Dries-Miller [DM]. On the GR-side, the push-down map µ∗ is based on ideas of
Rossmann [R2], and the K-version first appears in [C1]. Both of these maps
are discussed in Section 5, where we also deduce a description of φ from that
of Φ. Theorem 6.3 below identifies φ with the Sekiguchi correspondence. Our
proof of this theorem again uses analytic-geometric categories; it also depends
on certain geometric properties of nilpotent orbits which are established in
[SV5]. We complete the proof of our main Theorem 1.4 in Section 7, by identi-
fying the composition of three vertical arrows LK , CC, µ∗ with the associated
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cycle construction, and the composition of LGR
, CC, µ∗ with the construction

of the wave front cycle. The former amounts to a rephrasing of a result of
J.-T. Chang [C1]. On the GR-side, we crucially use our integral formula for
characters [SV4], which is based on ideas of Rossmann [R1].

Our proof of the Barbasch-Vogan conjecture was announced and sketched
in [SV2]. Earlier, Chang [C1] had deduced the conjecture, in the case of
complex groups, from results of Rossmann [R2].

2. Geometric parametrization of representations

Our hypotheses and notation are those established in [SV4]. We recall
some of the results – not due to us – collected in Section 2 of that paper,
which will serve as general reference. In particular, we suppose that GR is a
real form of a connected, complex, linear, reductive group G. We choose a
maximal compact subgroup KR ⊂ GR; its complexification K is a subgroup of
G. We write gR, g, kR, k for the Lie algebras of GR, G, KR, K.

The group G acts transitively and algebraically on the flag variety X of g.
The two subgroups K, GR act with finitely many orbits. According to Matsuki
[Ma], the two types of orbits are in one-to-one correspondence

(2.1) K\X ←→ GR\X ,

with a K-orbit SK matched to a GR-orbit SGR
if and only if the two orbits in-

tersect along exactly one KR-orbit. As in [SV4, §2], we consider the “universal
Cartan algebra” h for g. Its dual space h∗ contains the universal root system Φ
and the universal system of positive roots Φ+, as well as the universal weight
lattice Λ. We fix a “localization parameter” λ ∈ h∗ and introduce DGR

(X)λ ,
the GR-equivariant derived category with twist (λ − ρ) [SV4, §2], and totally
analogously DK(X)λ, the K-equivariant derived category with the same twist.
We recall that the objects of these derived categories are represented by com-
plexes of equivariant monodromic sheaves on the enhanced flag variety. Here
ρ denotes the half-sum of the positive roots; thus DGR

(X)ρ , DK(X)ρ reduce
to the usual (untwisted) equivariant derived categories.

To each F ∈ DGR
(X)λ , one can associate a family of admissible rep-

resentations of GR, as follows. We let Ohol
X (λ) denote the twisted sheaf of

holomorphic functions on X with shift (λ − ρ), i.e., the same twist as in the
definition of DGR

(X)λ . Thus one can introduce the groups Extp(F ,Ohol
X (λ))

by deriving the functor Hom on the category of twisted sheaves with twist
(λ − ρ). These Ext groups carry a natural action of GR and, less obviously,
a natural Fréchet topology. The resulting representations are continuous, ad-
missible, of finite length, with infinitesimal character χλ, in Harish-Chandra’s
notation [HC]. The groups Extp(F ,Ohol

X (λ)) depend contravariantly on F . For
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technical reasons, we want to make the dependence covariant, by composing
it with the Verdier duality operator D : DGR

(X)−λ → DGR
(X)λ , as in [SV4].

Taking the alternating sum with respect to p, we obtain a map

(2.2)
β : DGR

(X)−λ −→ {virtual GR-representations}λ ,
β(F) =

∑
p (−1)p Extp(DF ,Ohol

X (λ)) .

Here “virtual representations” is shorthand for “integral linear combination
of irreducible, admissible representations,” which we take up to infinitesimal
equivalence. The subscript λ refers to the infinitesimal character of the sum-
mands, namely χλ .

The differential operators acting on the twisted sheaf Oalg
X (λ) constitute a

sheaf of “twisted differential operators” DX,λ , a sheaf (untwisted!) relative to
the Zariski topology on X. We let DK(Modcoh(DX,λ)) denote the bounded K-
equivariant derived category of coherent sheaves of DX,λ-modules [BL], [KSd].
Objects in this category are regular holonomic because K acts on X with
finitely many orbits; see [Ma], for example. According to Beilinson-Bernstein
[BB2], the cohomology groups Hp(X,M) of any M ∈ DK(Modcoh(DX,λ)) are
Harish-Chandra modules with infinitesimal character χλ. Thus we can take
the alternating sum over p,

(2.3)
∑

(−1)p Hp(X,M) ∈ {virtual Harish-Chandra modules }λ .
Here, as before, the subscript λ refers to the infinitesimal character. The
covariant de Rham functor

(2.4)
DR : DK(Modcoh(DX,λ)) −→ DK(X)−λ ,

DR(M) = R HomDhol
X,λ

(Ohol
X (λ) , Dhol

X,λ ⊗DX,λ M )

can be defined in the K-equivariant setting just as in the absolute case. Since
the twisted sheaf Ohol

X (λ) “lives” on the enhanced flag variety, the operation
R Hom must be performed there, and produces a twisted sheaf with the op-
posite twist since R Hom is contravariant in the first variable. The de Rham
functor implements the Riemann-Hilbert correspondence, which is an equiva-
lence of categories [K1], [Me], also in the equivariant case [BL]. Thus we can
take its inverse and compose it with the operation (2.3), to produce a map

(2.5) α : DK(X)−λ −→ {virtual Harish-Chandra modules}λ ,
in complete analogy to (2.2). Results of Beilinson-Bernstein [BB1], [BB2] imply
that α is surjective. We shall recall the relevant statements in more precise
form later, in Section 7.

In the definition of the group of virtual GR-representations with infinites-
imal character χλ, we have taken representations up to infinitesimal equiva-
lence; so formally each representation is completely determined by its Harish-
Chandra module. Conversely, each irreducible Harish-Chandra module can be
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lifted to a GR-representation; hence
(2.6)
{virtual Harish-Chandra modules}λ ←→ {virtual GR-representations }λ

is a natural bijection. Kashiwara conjectured the existence of an equivalence
of categories

(2.7) γ : DK(X)−λ
∼−−→ DGR

(X)−λ ,

the “Matsuki correspondence for sheaves,” which was established in [MUV].
Define maps

(2.8) X
a←−− GR ×X

q−−→ GR/KR ×X
p−−→ X

by a(g, x) = g−1x, q(g, x) = (gKR, x), p(gKR, x) = x. They become GR ×KR-
equivariant with respect to the following actions on the four spaces in (2.8),
going from left to right: (g, k) · x = k · x , (g, k) · (g′, x) = (gg′k−1, g · x) ,
(g, k) · (g′KR, x) = (gg′KR, g · x) , (g, k) · x = g · x . Then any F ∈ DK(X)−λ
can be regarded as an object in DGR×KR

(X)−λ. Thus, by equivariance, a!(F) ∈
DGR×KR

(GR ×X)−λ. Now KR acts freely on GR ×X, so there exists a distin-
guished F̃ ∈ DGR

(GR/KR × X)−λ such that a!F ∼= q!F̃ . Then Rp!F̃ is an
object in DGR

(X)−λ – in the last two steps, we have dropped the subscript KR

since KR acts trivially. By definition, F 7→ Rp!F̃ is the map (2.7). The four
morphisms (2.2), (2.5–2.7) fit into a diagram

(2.9)

{virtual H-C-modules}λ ∼−−−→ {virtual GR-representations}λ
α

x xβ
DK(X)−λ

γ−−−→ DGR
(X)−λ ,

whose commutativity is implicit in Kashiwara’s conjectures [K3]. In the re-
mainder of this section, we deduce this commutativity from known facts.

The paper [KSd], which constructs the representations Extp(F ,Ohol
X (λ)),

also relates them to the Beilinson-Bernstein modules Hp(X,M). Let M =
DDR(M) be the image of M ∈ DK(Modcoh(DX,λ)) in DK(X)−λ under the
de Rham functor. Then, for all p, and with n = dimCX ,

(2.10)
Hp(X,M) is the dual, in the category of Harish-Chandra modules,

of the Harish-Chandra module of Extn−p(γ(M),Ohol
X (−λ))

[KSd, 1.1f]. We should remark that the functor γ of [MUV] and its analogue
in [KSd] – where it is denoted by Φ – are defined differently on the surface. To
see that the two functors are actually the same, we note that the operations of
restricting from G to GR and from S = G/K to SR = GR/KR in [KSd, (5.8)]
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amount to replacing the induction from K to G by induction from KR to GR.
In the language of [KSd], this means identifying

DKR
(X)−λ ∼= DGR×KR

(X×GR)−λ and DGR×KR
(X×GR)−λ ∼= DGR

(X×SR)−λ .

The first of these operations is a∗ in our previous notation, and the second
coincides with q∗. The definition of γ above involves a! and q!, which accounts
for a shift in degree by the complex dimension of S, since a and q are smooth
morphisms. The restriction from S to SR in [KSd] involves i! rather than i∗,
which accounts for another shift in degree; the combination of these two shifts
agrees, finally, with the shift in the definition of the functor Φ in [KSd].

At this point, to deduce the commutativity of (2.9) from the statement
(2.10), we need to know:

2.11 Proposition. The virtual representation
∑

(−1)p Extp(DF ,Ohol
X (λ))

is (up to infinitesimal equivalence) the dual of
∑

(−1)n+p Extp(F ,Ohol
X (−λ)),

for every F ∈ DGR
(X)−λ .

A more precise statement, which puts individual summands into duality
with each other, was conjectured by Kashiwara [K3]. Although the conjec-
ture is surely accessible with present techniques, no proof has appeared in the
literature. Here we shall deduce the weaker statement (2.11) from our proof
[SV4] of Kashiwara’s conjecture on characters and fixed point formulas [K4].
We should remark that the proposition is more than a purely formal assertion;
in particular, the analogous statement about the association (2.5) is incorrect.
As far as we know, there does not exist an explicit interpretation of the duality
of Harish-Chandra modules in terms of K-equivariant sheaves.

Proof of (2.11). Let G̃ denote the set of pairs (g, x) ∈ G × X such that
gx = x and G̃R the inverse image of GR in G̃, as in our paper [SV4]. Following
Kashiwara, we assign a cycle c(F) ∈ Hinf

d (G̃R,C−λ) to each F ∈ DGR
(X)−λ;

here d is the real dimension of GR and C−λ a certain local system on the
universal Cartan, pulled back to G̃R in a natural way. We write Θ(F) for the
character of the virtual representation

∑
(−1)p Extp(DF ,Ohol

X (λ)). Then

(2.12)
∫
GR

Θ(F)φdg =
∫
c(F)

(q∗φ) ω̃ ( φ ∈ C∞c (GR) )

[SV4, Theorem 5.12]. In this formula, q : G̃R → GR refers to the projection and
ω̃ denotes a differential form on G̃ derived from the Haar measure dg and a
choice of orientation of GR. The same choice of orientation is used to produce
the cycle c(F): reversing the orientation of GR affects both c(F) and ω̃ by the
factor (−1)d.
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The anti-involution g 7→ g−1 induces an anti-involution u : G̃R → G̃R.
Examining the fixed point formalism which produces c(F) from F , one finds

(2.13) c(DF) = e−2ρ u∗c(F) ,

as was already observed in [SV1, Prop. 5.3]. Several remarks are in order. First,
the twisted derived category DGR

(X)−λ involves the twist (−λ−ρ), so Verdier
duality for twisted sheaves maps DGR

(X)−λ to DGR
(X)λ+2ρ . On the other

hand, DGR
(X)λ+2ρ

∼= DGR
(X)λ because 2ρ is an integral weight. The factor

e−2ρ in (2.13) is forced by the identification DGR
(X)λ+2ρ

∼= DGR
(X)λ – recall

that the cycle c(F) can be viewed as a linear combination of d-dimensional
simplices with coefficients that are sections, over the simplices in question,
of the local system generated by eλ−ρ [SV4]. In our paper [SV1] we use a
different convention: there DGR

(X)λ refers to the derived category with twist
λ; consequently the version of (2.13) stated in [SV1] does not involve the
factor e−2ρ. The formula (2.13) is ambiguous until we specify the orientations
on GR used to construct the two cycles. Since u is an anti-involution, we take
orientations related by u∗ on the two sides. With this convention, there is no
sign change in (2.13), as can be checked by tracing through the construction
of the cycle c(F) in [SV4].

The character Θπ of an irreducible admissible representation π is obtained
by summing the diagonal matrix coefficients of π in the sense of distributions.
Thus, for entirely formal reasons,

(2.14) Θπ(g) = Θπ∗(g−1) ( π∗ = dual of π ) .

Let Θ∗(F) denote the virtual character dual to Θ(F). Then, for any test
function φ ∈ C∞c (GR),

(2.15)
∫
GR

Θ∗(F)φ(g) dg =
∫
GR

Θ(F)φ(g−1) dg =
∫
c(F)

(u∗q∗φ) ω̃ .

In the first step, we have used (2.14), and the second equality follows from
(2.12). The definition of ω̃ in [SV4] implies

(2.16) u∗ω̃ = (−1)d+ne−2ρω̃ .

We combine (2.13) with (2.16) and recall our choice of orientations of GR on
the two sides of (2.12), to conclude∫
c(F)

u∗(q∗φ) ω̃ = (−1)d+n

∫
c(F)

e2ρ u∗(q∗φ ω̃)

= (−1)d+n

∫
c(F)

u∗(e−2ρ q∗φ ω̃) = (−1)n
∫
u∗c(F)

e−2ρ q∗φ ω̃(2.17)

= (−1)n
∫
e−2ρu∗c(F)

q∗φ ω̃ = (−1)n
∫
c(DF)

q∗φ ω̃ .
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At this point (2.15), (2.17), and another application of (2.12) give

(2.18)
∫
GR

Θ∗(F)φ(g) dg = (−1)n
∫
GR

Θ(DF)φ(g) dg ,

in other words, the assertion of the proposition.

3. Microlocalization of the Matsuki correspondence

In the previous section, we described γ, the Matsuki correspondence for
sheaves, as a composition of certain geometrically induced morphisms. Ob-
jects in the derived categories DK(X)−λ and DGR

(X)−λ can be regarded as
complexes of (semi-algebraically) constructible sheaves. As such, they have
characteristic cycles in the sense of Kashiwara [K2], [KSa]. We shall now de-
termine the effect of γ on these characteristic cycles.

It will be convenient for us to adopt the geometric view [SV3] of char-
acteristic cycles, which was written with the present application in mind. In
particular, the characteristic cycle CC(F) of a complex of sheaves F , con-
structible with respect to a particular semi-algebraic (Whitney) stratification
S, is a top dimensional cycle with infinite support on T ∗SX, the union of the
conormal bundles of the strata S ∈ S. In regarding CC(F) as a cycle in
T ∗SX ⊂ T ∗X, we treat X as a real algebraic manifold. Thus it would be
notationally consistent to work in T ∗(XR), the real cotangent bundle of X,
considered as a manifold without complex structure. On the other hand, at
various points we do use the complex structure of X, for example, in putting
canonical orientation on the complex manifold X. We therefore identify the
real cotangent bundle T ∗(XR) with the (holomorphic!) cotangent bundle of
the complex manifold X,

(3.1a) T ∗(XR) ∼= T ∗X ,

using the convention of [KSa, (11.1.2)]. Concretely, in terms of local holomor-
phic coordinates zj = xj + iyj , 1 ≤ j ≤ n,

(3.1b) dxj 7→
1
2
dzj , dyj 7→

−i
2
dzj .

This convention will remain in force throughout the paper. As the cotangent
bundle of the complex manifold X, T ∗X carries a canonical holomorphic, non-
degenerate, closed 2-form σ. It is related to the canonical 2-form σR on T ∗(XR)
by the formula

(3.2) σR = 2 Re σ

via the identification (3.1) [KSa, (11.1.3)].



   

CHARACTERISTIC CYCLES AND WAVE FRONT CYCLES 1081

The actions of K and GR on X are, respectively, complex and real alge-
braic, and both groups act with finitely many orbits. It follows that the orbit
stratifications are semi-algebraic and satisfy the Whitney condition. We let
T ∗KX and T ∗GR

X denote the unions of the conormal bundles of the orbits of
the two groups. They are complex or real algebraic, Lagrangian subvarieties of
T ∗(XR) ∼= T ∗X – in the case of K, Lagrangian even with respect to the com-
plex algebraic symplectic form on T ∗X. Thus both have real dimension 2n,
with n = dimCX as before. Objects in DK(X) and DGR

(X) are constructible
with respect to the orbit stratifications, so the characteristic cycle construction
defines maps CC from these two derived categories to top dimensional cycles
on T ∗KX and T ∗GR

X, respectively. The characteristic cycle construction is local
with respect to the base X, so CC makes sense also in the twisted case:

CC : DK(X)−λ −→ Hinf
2n (T ∗KX,Z) ,

(3.3)
CC : DGR

(X)−λ −→ Hinf
2n (T ∗GR

X,Z) .

Alternatively but equivalently, we can represent objects in DK(X) and DGR
(X)

by complexes of constructible sheaves on the enhanced flag variety X̂, with
monodromic behavior along the fibers of X̂ → X; as such they have character-
istic cycles on T ∗X̂. Because of the monodromicity, the characteristic cycles
in T ∗X̂ descend to cycles in T ∗X, and this construction coincides with (3.1).
This will be made explicit later, below the proof of Lemma 4.2. We should re-
mark that Kashiwara defines the characteristic cycle of a sheaf as a cycle with
values in the orientation sheaf of the base X without choosing an orientation
of X first. We use the complex structure to put a definite orientation on X,
and thus may think of the characteristic cycles as absolute cycles.

The action of G on X induces a Hamiltonian, complex algebraic action
on the cotangent bundle T ∗X. We let m : T ∗X → g∗ denote the moment
map. It is G-equivariant, complex algebraic. In our particular situation, m
is easy to describe: the fiber T ∗xX at any x ∈ X is naturally isomorphic to
(g/bx)∗ = b⊥x ⊂ g∗; here bx denotes the Borel subalgebra which fixes x. In
terms of this identification, the moment map m is the identity when we regard
the fibers of T ∗X as subspaces of g∗. We choose a nondegenerate, symmetric,
G-invariant bilinear form B on g, which is defined over R and agrees with the
Killing form on [g, g]. Then B induces an isomorphism g∗ ∼= g. We write

(3.4a) µ : T ∗X −→ g

for the composition of this identification with the moment map m. We shall
refer to µ as the moment map from now on. By construction, it is holomorphic
and G-invariant. Note that

(3.4b) µ(T ∗X) = N = nilpotent cone in g ,
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since b⊥x ∼= nx =def [bx, bx] via the isomorphism g∗ ∼= g. The moment map
provides a useful characterization of the subvarieties T ∗KX , T ∗GR

X of T ∗X :

T ∗KX = µ−1(p) , T ∗GR
X = µ−1(igR) .(3.5)

To see this, we observe that a cotangent vector (x, ξ) with ξ ∈ T ∗xX ∼= nx is
normal to the GR-orbit through x precisely when ReB(ξ, igR) = 0, in other
words, when ξ ∈ nx ∩ igR. In the case of the first identity, we argue the same
way.

In the following, Reµ : T ∗X → gR refers to the real part of the moment
map relative to the real form gR ⊂ g. We define a one parameter family of
bianalytic maps:

(3.6)
Fs : T ∗X → T ∗X, s ∈ R>0,

Fs(ξ) = `(exp(−s−1Reµ(ξ)))∗ξ (ξ ∈ T ∗X),

where `(g−1) : X → X, for g ∈ G, denotes translation by g−1, and `(g−1)∗ the
induced map from T ∗xX to T ∗gxX. Since Fs preserves the symplectic structure
on T ∗X, (Fs)∗(C) is a Lagrangian cycle, for each C ∈ Hinf

2n (T ∗KX,Z) and each
s > 0. We recall the notion of the limit of a family of cycles and the various
equivalent ways of defining it; for a detailed discussion of these matters, see
[SV3, §3].

3.7 Theorem. For C∈Hinf
2n (T ∗KX,Z), the limit of cycles lims→0+(Fs)∗(C)

exists and is supported on T ∗GR

X. The resulting homomorphism

Φ : Hinf
2n (T ∗KX,Z) −→ Hinf

2n (T ∗GR
X,Z) , Φ(C) = lim

s→0+
(Fs)∗(C) ,

coincides with the map on characteristic cycles induced by γ. In other words,

DK(X)−λ
γ−−−→ DGR

(X)−λ

CC

y yCC

Hinf
2n (T ∗KX,Z) Φ−−−→ Hinf

2n (T ∗GR

X,Z)

is a commutative diagram.

The existence of the limit is not entirely obvious. However, once it is
known to exist, it must have support in T ∗GR

X for elementary reasons. Indeed,
let (x, ξ) be a cotangent vector in the boundary of ∪s>0Fs(T ∗KX). Then there
must exist sequences {(xk, ξk)} and {sk}, such that µ(xk, ξk) ∈ p, sk → 0+,
Fsk(xk, ξk) → (x, ξ). We regard the cotangent spaces of X as subspaces of
g via µ. Thus we consider ξ and the ξk as lying in g, and more specifically,
in N ; further, µ(xk, ξk) = ξk ∈ p by assumption. For g ∈ G, the induced map
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`(g−1)∗ : T ∗xX → T ∗gxX reduces to Ad(g) : nx → ngx when we identify the
cotangent spaces with subspaces of g via µ. The assumption Fsk(xk, ξk) →
(x, ξ) implies

Ad(exp(s−1
k Re ξk))(ξk) −→ ξ .(3.8)

In particular, Re ξk → Re ξ ∈ pR. We choose a maximal abelian subspace aR

in pR so that Re ξ ∈ aR. Replacing the (xk, ξk) by appropriate KR-conjugates,
we can arrange Re ξk ∈ aR for all k without destroying any of our hypotheses.
Let us write

ξk = Re ξk + i
∑

α∈R (Im ξk)α ,(3.9)

where R denotes the restricted root system of (g, a) and (Im ξk)α the compo-
nent of Im ξk in the α-root space. Then

(3.10)
Ad(exp(s−1

k Re ξk))(ξk) = Re ξk + i
∑

α∈R es
−1
k
〈α,Re ξk〉(Im ξk)α ,

and i es
−1
k
〈α,Re ξk〉(Im ξk)α ∈ igR for each α ∈ R .

The Cartan involution θ maps the α-root space to the −α-root space, and acts
as multiplication by −1 on p. It follows that θ(Im ξk)α = −(Im ξk)−α ; in
particular,

‖(Im ξk)α‖ = ‖(Im ξk)−α‖ .(3.11)

Since s−1
k → +∞, 〈α,Re ξ〉 > 0 would imply (Im ξk)α→ 0; hence (Im ξk)−α→ 0

and es
−1
k
〈−α,Re ξk〉(Im ξk)−α → 0 . Thus, for α ∈ R ,

〈α,Re ξ〉 > 0 =⇒ (Im ξ)−α = 0 .(3.12)

Let m denote the centralizer of Re ξ and u the linear span of the root spaces
corresponding to roots α with 〈α,Re ξ〉 > 0. Then m ⊕ u is a parabolic
subalgebra of g, defined over R, with nilpotent radical u. Because of (3.12) and
the definition of m,

Re ξ ∈ m and Im ξ ∈ m⊕ u .(3.13)

As the limit of nilpotents, ξ is nilpotent. Thus (3.13) forces the nilpotence also
of ξm , the m-component of ξ. But Re ξm = Re ξ is semisimple and commutes
with Im ξm . We conclude that Re ξ = 0; hence ξ ∈ igR and (x, ξ) ∈ T ∗GR

X , as
was asserted.

The somewhat lengthy proof of the remaining (and deeper) parts of the
theorem occupies the next section.
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4. Proof of Theorem 3.7

In Section 2, we had described the functor γ in terms of the operations
a!, q!, and Rp! induced by the maps a, q, p in the diagram (2.8). We begin
by identifying the effect on characteristic cycles of the passage, via a and q,
from X to GR/KR ×X. We mentioned already that we regard characteristic
cycles as geometric cycles – not as cycles with values in an orientation sheaf
as in [KSa] – by putting a definite orientation on the ambient space. In the
case of X, we use the complex structure, and in the case of GR/KR, some as
yet unspecified orientation; the particular choice will not matter. We follow
the conventions of [SV3] in all orientation questions. In particular, we orient
products of manifolds by choosing forms of top degree on the two factors which
are positive with respect to the orientations; we then orient the product by the
wedge product of the two forms, in the given order of the factors. Also recall
the rule [SV3, (2.3)] for orienting the conormal bundle of a submanifold of an
oriented manifold.

We consider a particular F ∈ DK(X)−λ and its characteristic cycle CC(F).
As a top dimensional cycle in T ∗KX, we can express it as an integral linear
combination of conormal bundles of K-orbits in X,

(4.1) CC(F) =
∑

` c` [T ∗K·x`X] ,

with x` running over a complete set of coset representatives. We had argued
in Section 2 that there exists a canonical F̃ ∈ DGR

(GR/KR ×X)−λ such that
q!F̃ = a!F .

4.2 Lemma. For each `, M` = {(gKR, gkx`)∈GR/KR ×X | g∈GR, k∈K}
is a real algebraic submanifold of GR/KR ×X , and

CC(F̃) =
∑

` c` (−1)dim pR [T ∗M`
(GR/KR ×X)] .

Proof. We observe first of all that dim pR is the difference of the dimen-
sions of the fibers of the maps a and q, i.e., of the dimensions of GR and
GR/KR. Both a and q are smooth fibrations; hence q∗ agrees with q! except for
a shift in degree equal to the fiber dimension, and similarly in the case of a; see
[KSa, 3.3.2], for example. Note that the preceding statements use the explicit
isomorphism DM = orM [dimRM ] ∼= CM [dimRM ] given by the orientation of
any smooth manifold M . Thus we can drop the sign factor in the statement of
the lemma when we replace a!, q! by a∗, q∗. The characteristic cycle of a sheaf
is a local invariant, and locally a, q are products. Since a−1(K · x`) = q−1(M`)
by definition, our assertion now follows from these three facts:

(4.3a) CC(CS) = [T ∗SM ]
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when S is a closed submanifold of an oriented manifold M ;

(4.3b) CC(CM1 � F) = [M1]× CC(F)

when M1,M2 are oriented manifolds and F a semi-algebraically constructible
sheaf on M2; and

(4.3c) T ∗M1×S(M1 ×M2) = M1 × T ∗SM2 , as oriented manifolds,

with M1,M2 as before and S ⊂ M2 a submanifold. These three statements
are contained in the formalism and conventions of [KSa], but can also be de-
duced directly from the geometric definition of characteristic cycles and the
sign conventions in [SV3], specifically (2.3–2.7) and the convention for orient-
ing a product.

The question of sign is the only subtle matter in the proof of Lemma 4.2.
At first glance, it might appear that the signs of characteristic cycles depends
on whether we regard twisted sheaves on X as monodromic sheaves X̂ or – as
we have chosen to do – locally as sheaves on X. Not so: the fiber H of X̂ → X

is complex, hence even dimensional; when we treat this fibration locally as a
product, it does not matter where we place the factor H.

With F as in (4.1–4.2), we need to determine CC(Rp!F̃). We shall do
so using Theorem 6.9 in [SV3]. This requires a compactification GR/KR of
GR/KR , as well as a function f : GR/KR → R which vanishes on ∂(GR/KR)
and is strictly positive on GR/KR. The statement of [SV3, (6.9)] requires the
compactification and the function f to be semi-algebraic. To make our compu-
tation of CC(Rp!F̃) manageable, we shall need to work with a certain specific
function f which is not even subanalytic. However, with the present applica-
tion in mind, we showed in [SV3, §10] how to extend the validity of Theorem 6.9
and its generalization 6.10 beyond the semi-algebraic and subanalytic contexts.
Specifically, the two theorems apply in the setting of any analytic-geometric
category C as defined in [DM] – the sheaf F̃ must be constructible with respect
to a C-stratification of GR/KR ×X which is extendable to a C-stratification of
the compactification, and the function f must be a C-function of class C1.

In the argument below, we shall use the analytic geometric category [DM]
which corresponds to Ran,exp , in the notation of [DMM]. As in Section 3, we
choose a nondegenerate, symmetric, G-invariant bilinear form B on g, which
is defined over R and agrees with the Killing form on [g, g]. We compactify
GR/KR

∼= pR by adding a single point,

(4.4) GR/KR
∼= pR = pR ∪ {∞} ,
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with the real analytic structure of the standard sphere containing the Euclidean
space pR as the complement of {∞}. The function

(4.5)
f : pR → R , defined by

f(∞) = 0 , f(ζ) = e−
1
2
B(ζ,ζ) for ζ ∈ pR ,

takes real values since B is defined over R. It is C∞ because B > 0 on pR,
and visibly a C-function: the map ζ 7→ ‖ζ‖−2ζ gives a coordinate system at
infinity, and the graph of ζ 7→ e−

1
2
‖ζ‖−2

is a C-set.
Let us argue that F̃ is indeed constructible with respect to a C-strati-

fication of pR × X which extends to a C-stratification of pR × X. Since F̃ is
constructible with respect to a semi-algebraic stratification of GR/KR ×X , it
suffices to show

(4.6)
if S ⊂ pR ×X is semi-algebraic with respect to the real algebraic

structure coming from GR/KR ×X, then S is a C-set in pR ×X .

Let aR ⊂ pR be a maximal abelian subspace and AR
∼= (R>0)r the connected

subgroup of GR generated by aR. Every KR-orbit in pR meets aR; hence

(4.7) KR ×AR −→ GR/KR , (k, a) 7→ kaKR ,

is a surjective algebraic map. It follows that S̃ ⊂ KR × AR × X , the inverse
image of the semi-algebraic subset S of GR/KR ×X , is semi-algebraic. Note
that S is the image in pR ×X of S̃ under the map KR × AR ×X → pR ×X,
which is induced by

(4.8) KR ×AR −→ pR , (k, exp ζ) 7→ Ad(k)ζ .

To conclude (4.6), it now suffices to extend the map (4.8) to a C-map from an
algebraic compactification of KR × AR to pR. What matters are the following
two general properties of C-maps and C-sets: a) the product of two C-maps is
a C-map, and b) the image of a C-set under a proper C-map is a C-set.

The map (4.8) is KR-equivariant with respect to the action by left transla-
tion on itself, the trivial action on AR, and the adjoint action on pR; moreover,
KR acts algebraically on pR, relative to the algebraic structure coming from
GR/KR. The factor KR in (4.8) is therefore innocuous: it suffices to complete
the map AR → pR, exp ζ 7→ ζ to a C-map between their compactifications. We
choose coordinates y1, . . . , yr, yr+1, . . . , yq in the compactification of pR, cen-
tered at ∞, so that (

∑
k y

2
k)
−1yj , 1 ≤ j ≤ r, are linear coordinates on aR, and

yj = 0 on aR for j > r. The linear coordinates on aR induce isomorphisms
aR
∼= R

r and AR
∼= (R>0)r. We compactify AR algebraically by viewing xj

and x−1
j as algebraic coordinates on the jth factor R>0 of AR

∼= (R>0)r, near 0
and ∞, respectively. With these choices of coordinates, the graph of the map
AR → pR is given by the equations

(4.9) yj = εj (
∑

k y
2
k) log xj , 1 ≤ j ≤ r ; yj = 0 , r < j ≤ q ,
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with εj = ±1 specifying a particular component in the boundary of AR
∼=

(R>0)r. The equations (4.9) characterize the graph as a C-set. It is clear that
the map extends at least continuously to the boundary. The graph of the
continuous extension is the closure of the graph, hence a C-set. By definition,
a C-map is a continuous map whose graph is a C-set. Thus AR → pR can
indeed be compactified as a C-map. This completes the verification of (4.6).
Note that the particular nature of the compactification of pR plays no role in
Theorems 6.9 and 6.10 of [SV3] – all that matters is the existence of some
compactification with the right properties.

For the statement of our next lemma, we fix a particularK-orbitQ = K ·x`
in X, and let M = M` denote the corresponding submanifold of GR/KR ×X
defined in the statement of Lemma 4.2. Recall the definition (3.6) of the family
of bianalytic maps Fs.

4.10 Lemma. For 0 < s <∞, the submanifold T ∗M (GR/KR×X)−s d log f
of T ∗(GR/KR×X) intersects the submanifold GR/KR×T ∗X transversely along
a submanifold Ns. The projection GR/KR×T ∗X → T ∗X maps Ns isomorphi-
cally onto Fs(T ∗QX).

The transversality statement in this lemma will allow us to apply the re-
sults of [SV3] in the present context. Let F ∈ DK(X)−λ be given, and let
F̃ ∈ DGR

(GR/KR × X)−λ be the distinguished sheaf such that q!F̃ = Da!F .
To calculate the characteristic cycle of γ(F) = Rp!F̃ in terms of CC(F), we
appeal to Theorem 6.9 of [SV3], or more precisely, to its generalization for
C-constructible sheaves as described in [SV3, §10]. The first ingredient, namely
the constructibility of F̃ with respect to a C-stratification of GR/KR ×X, has
already been established in (4.6). We have also produced a C-function f on
GR/KR which vanishes precisely on the boundary. The transversality hypoth-
esis of Theorem 6.9, finally, follows from Lemma 4.2 and the transversality
statement in Lemma 4.10. Theorem 6.9 is stated for Rp∗ rather than for Rp!.
We need to apply the version for Rp!, which is completely analogous to the
other version, both in statement and in proof, with one exception: one uses the
open embedding theorem for Rj∗, which involves addition of the term sd log f ,
and the other the open embedding theorem for Rj!, which involves subtracting
sd log f – see [SV3, Theorem 4.2]. Alternatively, one can deduce the version
of Theorem 6.9 for Rp! from the stated version by appealing to the following
two facts. The operation of Verdier duality relates Rp! to Rp∗, Rp! = DRp∗D.
Also, for any constructible sheaf G, CC(DG) = A∗(CC(G)), with A denoting
the antipodal map on the cotangent bundle, i.e., the bundle map which acts
as multiplication by −1 on the fibers.
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Proof of 4.10. The one form d log f on pR defines a section of pR × pR
∼=

T ∗pR → pR, namely “minus the identity” on the fiber,

(4.11) d log f = { (ζ,−ζ) | ζ ∈ pR } ⊂ pR × pR
∼= T ∗pR ;

indeed, the function f was chosen to put d log f into this particularly simple
form. We want to lift this description of the one form d log f to GR/KR via the
identification GR/KR

∼= pR induced by the exponential map. For this purpose,
we identify

(4.12) T ∗eKR
(GR/KR) ∼= (gR/kR)∗ ∼= pR

∗ ∼= pR ;

the last step refers to the isomorphism determined by the symmetric form B.
We claim:

(4.13) d log f = { ( exp ζ ·KR , −`∗exp(−ζ)ζ ) | ζ ∈ pR } ⊂ T ∗(GR/KR) .

To deduce this from (4.11), recall the formula

(exp∗)|ζ = (`exp ζ)∗ ◦
1− e− ad ζ

ad ζ

(see, for example, [He, §II, Theorem 1.7]). Dually,

(4.14a)

exp∗ : T ∗exp ζ·KR
(GR/KR) −→ pR

∗ ∼= pR

coincides with
(
ead ζ − 1

ad ζ

)∗
◦ `∗exp(−ζ) .

But ad ζ , for ζ ∈ pR , is self-adjoint with respect to B, so

(4.14b)
(
ead ζ − 1

ad ζ

)∗
(ζ) = ( 1 +

1
2

ad∗ ζ + . . . )(ζ) = ζ .

Thus (4.11) and (4.14) do imply (4.13).
We need to describe the conormal bundle of the submanifoldM⊂(GR/KR)

×X. At the typical point x = k · x` in Q = K · x`, we identify

(4.15) T ∗xX = (g/bx)∗ ∼= nx and (T ∗QX)x ∼= p ∩ nx .

Note that M = {(exp ζ ·KR, exp ζ ·x) | ζ ∈ pR, x ∈ Q}. With convention (4.15),
for x ∈ Q and ζ ∈ pR , we have

(4.16)
(T ∗M (GR/KR ×X))(exp ζ·KR,exp ζ·x)

= { (−(`exp(−ζ))
∗Re η , (Ad exp ζ)η ) | η ∈ p ∩ nx } .

Indeed, since M is a union of GR-orbits, it suffices to check this description for
ζ = 0. Recall the definition of the maps a and q. Both are submersions, and
a−1(Q) = q−1(M); hence

(4.17)
q∗(T ∗M (GR/KR ×X)(eKR,x)) = (q∗T ∗M (GR/KR ×X))(e,x)

= (a∗T ∗QX)(e,x) = a∗((T ∗QX)x) .
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We identify the ambient space T ∗(e,x)(GR×X) ∼= gR
∗⊕ (g/bx)∗ with gR⊕ nx via

B as usual. Then

(4.18) a∗((T ∗QX)x) ∼= { (−Re(η), η)) | η ∈ p ∩ nx } ,

since (T ∗QX)x ∼= p ∩ nx, and since a∗ : T ∗xX → T ∗(e,x)(GR × X) is dual to the
map gR⊕g/bx → g/bx which is the identity on the second summand and minus
the identity of the first summand, followed by the projection to g/bx. But q∗

is injective on each cotangent space, so (4.17–4.18) imply (4.16) at ζ = 0, and
therefore in general.

Combining (4.13) and (4.16), we see that the intersection Ns of GR/KR×
T ∗X with T ∗M (GR/KR×X)−sd log f is given by the equation sζ = Re η , which
visibly describes a transverse intersection. Explicitly,

(4.19)
Ns = { (exp ζ ·KR, exp ζ · x, 0,Ad exp(ζ)η) | x ∈ Q , η ∈ p ∩ nx , sζ = Re η } .

Note that the first variable can be recovered from the others, so the projection
to T ∗X maps Ns isomorphically to its image. To identify this image with
Fs(T ∗QX), we only need to observe that

(4.20)
`(exp(−ζ))∗ : T ∗xX → T ∗exp(ζ)xX

corresponds to Ad(exp ζ) : nx → nexp(ζ)x

via the natural isomorphisms T ∗xX ∼= nx and T ∗exp(ζ)xX
∼= nexp(ζ)x . This com-

pletes the proof of Lemma 4.10.

Let us summarize what needs to be done to complete the proof of Theorem
3.7. Using the notation established at the beginning of this section, we have
γ(F) = Rp!F̃ ; hence

(4.21) CC(γ(F)) = CC(Rp!F̃) .

Following the statement of Lemma 4.10, we had argued that we can apply
Theorem 6.9 of [SV3], in the context of C-maps and C-functions, and for Rp!

instead of Rp∗. We recall the relevant statement. The differential of the
projection p induces

(4.22) dp : GR/KR × T ∗X ↪→ T ∗(GR/KR ×X) ,

the inclusion of {zero section}×T ∗X into the cotangent bundle of the product.
Projecting to the first factor, we get

(4.23) τ : GR/KR × T ∗X −→ T ∗X .

With this notation, the Rp!-version of Theorem 6.9 asserts

(4.24) CC(Rp!F̃) = lim
s→0+

τ∗ (dp)−1(CC(F̃)− sd log f) .
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Thus it suffices to equate τ∗ (dp)−1(CC(F̃) − sd log f) with Fs(CC(F)), for
s > 0.

Lemma 4.2 reduces the problem to the case of the conormal bundle of
a single K-orbit. Let Q = K · x` ⊂ X be a K-orbit and M = M` the
corresponding submanifold of GR/KR × X. We let [T ∗QX] play the role of
CC(F), and accordingly, (−1)dim pR [T ∗M (GR/KR ×X)] the role of CC(F̃). We
shall argue that

(4.25) τ∗ (dp)−1((−1)dim pR [T ∗M (GR/KR ×X)]− sd log f) = (Fs)∗([T ∗QX]) ,

for s > 0. Because of (4.2), (4.21), and (4.24), the proof of Theorem 3.7 will
be complete once we have established (4.25).

As an operation on cycles, (dp)−1 is simply intersection with GR/KR×T ∗X
– in our case, Lemma 4.10 asserts that the intersection is transverse. The
operation τ on the intersected cycle is also particularly simple, since projection
from GR/KR×T ∗X to T ∗X induces an isomorphism on the carrier of the cycle.
In short, Lemma 4.10 implies (4.25) up to sign.

Let us recall the relevant sign conventions. We choose a specific orien-
tation of pR

∼= GR/KR; the particular choice will not matter. This orients
the product of GR/KR with the complex manifold X. Our convention for ori-
enting conormal bundles gives meaning to the cycle [T ∗M (GR/KR × X)]; the
convention [SV3, (2.3)] depends on a choice of orientation of the base mani-
fold GR/KR ×X, which we have made. The operation of subtracting sd log f
defines a diffeomorphism of the ambient manifold T ∗(GR/KR × X). Via this
diffeomorphism, T ∗M (GR/KR ×X)− sd log f inherits an orientation from that
of T ∗(GR/KR ×X), and

(4.26)
(−1)dim pR [T ∗M (GR/KR ×X)]− sd log f

= (−1)dim pR [T ∗M (GR/KR ×X)− sd log f ] .

The ambient manifold T ∗(GR/KR ×X) is canonically oriented by the conven-
tion for orienting cotangent bundles – space coordinates first, then the corre-
sponding fiber coordinates in the same order; see [SV3, p. 456]. Thus every
oriented submanifold becomes co-oriented by the rule

(orientation of the submanifold) ∧ (co-orientation of the submanifold)
(4.27) = (orientation of the ambient manifold) ,

in symbolic notation. Since T ∗M (GR/KR × X) − sd log f intersects GR/KR ×
T ∗X transversely along Ns, the normal bundle of Ns in GR/KR × T ∗X is
canonically isomorphic to the normal bundle of T ∗M (GR/KR×X)− sd log f in
T ∗(GR/KR ×X) along Ns. Thus Ns inherits a co-orientation and, by (4.27),
an orientation. At this point the orientation of GR/KR comes in for the second
time. We had remarked earlier that τ is a diffeomorphism on Ns, so τ(Ns)
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carries a definite orientation, which gives meaning to the cycle [τ(Ns)]. Except
for the factor (−1)dim pR , this is the cycle on the left-hand side of (4.25):

(4.28) τ∗ (dp)−1((−1)dim pR [T ∗M (GR/KR×X)]−sd log f) = (−1)dim pR [τ(Ns)] .

Indeed, the procedure (4.26–4.28) for choosing signs at each step precisely
follows the prescription in [SV3].

At this stage, we have two orientations on the connected manifold τ(Ns) =
Fs(T ∗QX), which we must compare. We shall do so at points of the zero section
of T ∗QX, which are fixed by Fs. For x ∈ Q,
(4.29)

Ns ∩ τ−1(x, 0) = (eKR, x, 0, 0) ∈ GR/KR ×X × T ∗eKR
GR/KR × T ∗xX

∼= GR/KR ×X × pR × nx .

The tangent space of the ambient manifold at the point of intersection (4.29)
is

(4.30)

T(eKR,x,0,0)(T
∗(GR/KR ×X))

= T(eKR,x)(GR/KR ×X)⊕ T ∗(eKR,x)(GR/KR ×X)
∼= pR ⊕ g/bx ⊕ pR ⊕ nx .

It contains the tangent space of submanifold T ∗M (GR/KR×X)−sd log f . From
(4.11) and (4.16), we see

(4.31)

T ∗M (GR/KR ×X)− sd log f is the totality of points

(exp ζ ·KR, exp ζ · x,−Ad(exp ζ)(Re η − sζ),Ad(exp ζ)η) ,

with ζ ranging over pR, x over Q, and η over nx ∩ p .

Differentiating this parametrization, we get a description of the tangent space,
(4.32)

T(eKR,x,0,0)(T
∗
M (GR/KR ×X)− sd log f)

= { (ζ , (ζ + κ) + bx , −Re η + sζ , η) | ζ ∈ pR , κ ∈ k , η ∈ nx ∩ p } ;

here (. . . ) + bx denotes the image of . . . in g/bx. We choose C-linear comple-
ments vx of k/k ∩ bx in g/bx and qx of nx ∩ p in nx. Then, since s 6= 0,

(4.33)

pR ⊕ vx ⊕ 0⊕ qx is a linear complement of

T(eKR,x,0,0)(T
∗
M (GR/KR ×X)− sd log f) in

T(eKR,x,0,0)(T
∗(GR/KR ×X)) ∼= pR ⊕ g/bx ⊕ pR ⊕ nx ;

cf. (4.30).
An orientation of an orientable, connected manifold is described by ori-

enting its tangent space at one point. In the following, we shall think of an
orientation for a real vector space as an equivalence class of frames, i.e., of
ordered bases. In the case of a complex vector space V , the underlying real
vector space V R gets oriented by the complex structure: if {v1, . . . , vm} is a
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C-frame of V , the corresponding R-frame {v1, iv1, . . . , vm, ivm} orients V R in-
dependently of the order of the vj . The direct sum of two oriented vector
spaces is oriented by combining positively oriented frames of the summands
in the given order, and the dual space V ∗ of an oriented vector space V gets
oriented by the frame dual to an oriented frame of V . The underlying real
vector space (V ∗)R of the dual V ∗ of a complex vector space is canonically
isomorphic to (V R)∗. It thus has two orientations, related by the rule

(4.34)
dual orientation of (V R)∗ = (−1)dimC V complex orientation of (V ∗)R ;

reason: if {v∗1, . . . , v∗m} is dual to a C-frame {v1, . . . , vm} of V , the real part
of 〈iv∗j , ivj〉 equals -1. As a general rule, we orient the conormal bundle of a
complex submanifold as the conormal bundle of the underlying real manifold
– see the discussion at the beginning of Section 3. In the case of a submanifold
N of an oriented manifold M , the orientation of the conormal bundle T ∗NM is
given by identifying

T(n,0)(T
∗
NM) ∼= TnN ⊕ (T ∗NM)n ⊂ TnM ⊕ T ∗nM ∼= T(n,0)(T

∗M) ,

and proceeding as follows: we choose an orientation of TnN , orient the quotient
TnM/TnN ∼= ((T ∗NM)n)∗ consistently with the orientation of TnM ∼= TnN ⊕
((T ∗NM)n)∗ . We then put the dual orientation on (T ∗NM)n; then

(4.35)
orientation of (T ∗NM)n = (−1)codimR(N,M) orientation of TnN ⊕ (T ∗NM)n,

in accordance with the convention [SV3, (2.3)]. Note that (4.34) and (4.35)
are consistent when we identify V ∗ with the conormal bundle T ∗0 V .

Our choice of orientation for GR/KR orients pR
∼= TeKR

(GR/KR). Recall
the choice of complements vx, qx in (4.33). We regard nx , g/bx , k/k ∩ bx , nx ∩
p , vx , qx as real vector spaces, oriented by their complex structure. Then, via
the isomorphism

(4.36) T(eKR,x,0,0)(T
∗
M (GR/KR ×X)− sd log f) ∼= pR ⊕ k/k ∩ bx ⊕ nx ∩ p ,

which is implicit in (4.32),

orientation of T(eKR,x,0,0)(T
∗
M (GR/KR ×X)− sd log f)

(4.37)
= (−1)codimC(Q,X) product orientation of pR ⊕ k/k ∩ bx ⊕ nx ∩ p .

What matters here is the discrepancy (4.34) between the two orientations of
nx ∩ p ∼= v∗x; the sign in (4.35) does not show up because the real codimen-
sion of M is even. The co-orientation of T ∗M (GR/KR × X) orients the linear
complement (4.33), and

co-orientation on T(eKR,x,0,0)(T
∗
M (GR/KR ×X)− sd log f)

(4.38)
= (−1)dimR pR+dimCQ product orientation of pR ⊕ vx ⊕ 0⊕ qx .
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The sign reflects the sign in (4.37), the sign in

(4.39)
(−1)ncomplex orientation of nx

∼= T ∗xX
R

= dual orientation of gx/bx ∼= TxX
R ,

and one other sign. This third sign becomes transparent when we replace the
space (4.32) by 0⊕ k/k ∩ bx ⊕ pR ⊕ nx ∩ p, to which it is congruent modulo the
complement (4.33). Then

(4.40)
orientation of (0⊕ k/k ∩ bx ⊕ pR ⊕ nx ∩ p) ⊕ (pR ⊕ vx ⊕ 0⊕ qx)

= (−1)dimR pR orientation of pR ⊕ g/bx ⊕ pR ⊕ nx ;

in effect, we need to move the second copy of pR past the first copy – the other
necessary moves involve even dimensional spaces, and thus do not contribute
a sign.

Since (T ∗M (GR/KR ×X) − sd log f intersects GR/KR × T ∗X transversely
along Ns, and since the complement (4.33) lies in T(eKR,x,0)(GR/KR × T ∗X),

(4.41)
pR ⊕ vx ⊕ qx is a linear complement of T(eKR,x,0)Ns in

T(eKR,x,0)(GR/KR × T ∗X) ∼= pR ⊕ g/bx ⊕ nx .

Because of (4.38),

(4.42)
co-orientation on T(eKR,x,0)Ns

= (−1)dimR pR+dimCQ product orientation of pR ⊕ vx ⊕ qx .

This co-orientation and the orientation of GR/KR×T ∗X induce an orientation
on the tangent space of Ns at (eKR, x, 0). We get a description of this tangent
space by differentiating (4.19), at η = 0:

(4.43)
T(eKR,x,0)Ns = { (s−1 Re η , (s−1 Re η + κ) + fbx , η) | κ ∈ k , η ∈ nx ∩ p } .

Modulo the complement (4.41), we get the congruence

(4.44) T(eKR,x,0)Ns
∼= 0⊕ k/k ∩ bx ⊕ nx ∩ p ⊂ pR ⊕ g/bx ⊕ nx .

In view of (4.42), (4.39), and the even dimensionality of k/k∩bx and nx∩p, the
orientation of T(eKR,x,0)Ns and the product orientation of 0⊕k/k∩bx⊕nx∩p are
related by the factor (−1)dimR pR+codimC(Q,X). The projection τ simply drops
the first factor, hence

orientation on T(x,0)τ(Ns)
(4.45)

= (−1)dimR pR+codimC(Q,X) product orientation of k/k ∩ bx ⊕ nx ∩ p .

The isomorphisms (4.15) induce

(4.46) T(x,0)(T
∗
QX) ∼= k/k ∩ bx ⊕ nx ∩ p ⊂ g/bx ⊕ nx

∼= T(x,0)(T
∗X) .
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Our rule for orienting conormal bundles implies

orientation of T(x,0)(T
∗
QX)

(4.47)
= (−1)codimC(Q,X) product orientation of k/k ∩ bx ⊕ nx ∩ p ;

to see this, we argue as in (4.37). The induced map (Fs)∗ reduces to the
identity along the zero section and T ∗QX is connected; hence

(4.48) [τ(Ns)] = (−1)dimR pR(Fs)∗([T ∗QX])

by (4.45–4.47). This, in combination with (4.28), proves (4.25).

5. Descent to the nilpotent cone

The nilpotent cone N ⊂ g is a finite union of G-orbits. Each orbit O ⊂ N
carries a G-invariant, nondegenerate, complex algebraic 2-form σO. This form
becomes canonical when we identify O with the corresponding coadjoint orbit
via B : g ∼= g∗ as in Section 3. In particular, the G-orbits O ⊂ N have even
complex dimension. We stratify N by dimension, with

(5.1) Nk =
⋃
{O | dimCO = 2k } , , Ñk =

⋃
`≤kN` .

Then Ñk is closed, and Nk is open in Ñk. For ζ ∈ N , the Springer fiber µ−1(ζ)
is complete, connected, equidimensional, of complex dimension n− 1

2 dimC(G·ζ)
[Spal]. The moment map is G-equivariant, so the preceding statement implies:

(5.2)
for each G-orbit Ok ⊂ Nk, µ : µ−1(Ok)→ Ok is a

G-equivariant fibration, whose typical fiber µ−1(ζ) is a connected,

complex projective, equidimensional variety of dimension n− k.

We shall use the stratification (5.1) to filter the spaces T ∗KX and T ∗GR

X.
In the case of T ∗KX, the kth filtrant is the closed complex algebraic sub-

space T ∗KX ∩ µ−1Ñk. Then
(5.3)

a) . . . ⊂ T ∗KX ∩ µ−1Ñk ⊂ T ∗KX ∩ µ−1Ñk+1 ⊂ . . . ;

b)
⋃
k T
∗
KX ∩ µ−1Ñk = T ∗KX ;

c) T ∗KX ∩ µ−1Nk is open in T ∗KX ∩ µ−1Ñk ;

d) the boundary of T ∗KX ∩ µ−1Nk is contained in T ∗KX ∩ µ−1Ñk−1 ;

e) T ∗KX ∩ µ−1Nk is equidimensional, of complex dimension n .

The first four statements follow formally from the corresponding statements
about the Ñk. To see e), note that, T ∗KX ∩ µ−1Nk fibers over Nk ∩ p, in
other words, over the union of K-orbits in Nk ∩ p. Because of (3.5), the fiber
at each point is the full Springer fiber µ−1(x). Because of (5.2), this fiber
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is equidimensional of complex dimension n − k. The same reasoning gives
properties a)–e) for the filtration of T ∗GR

X by the T ∗GR

X ∩µ−1Ñk. In this case,
of course, the T ∗GR

X∩µ−1Ñk are real algebraic subvarieties, and T ∗GR

X∩µ−1Nk
is equidimensional of real dimension 2n.

Recall that the characteristic cycle maps (3.3) take values in Hinf
2n (T ∗KX,Z)

and Hinf
2n (T ∗GR

X,Z). The filtration (5.3) and its real analogue induce filtrations

(5.4)
Hinf

2n (T ∗KX,Z)k = Im {Hinf
2n (T ∗KX ∩ µ−1Ñk,Z)→ Hinf

2n (T ∗KX,Z)},
Hinf

2n (T ∗GR
X,Z)k = Im {Hinf

2n (T ∗GR
X ∩ µ−1Ñk,Z)→ Hinf

2n (T ∗GR
X,Z)} .

Because of (5.3c,d), we get a well-defined restriction map

(5.5a) Hinf
2n (T ∗KX,Z)k −→ grk Hinf

2n (T ∗KX,Z) −→ Hinf
2n (T ∗KX ∩ µ−1Nk,Z) ,

and analogously,

(5.5b) Hinf
2n (T ∗GR

X,Z)k −→ grk Hinf
2n (T ∗GR

X,Z) −→ Hinf
2n (T ∗GR

X ∩ µ−1Nk,Z) .

Integration over the fibers of µ defines maps from the groups on the right in
(5.5a,b) to groups of cycles in Nk ∩ p and Nk ∩ igR, as we shall explain next.

The dual space h∗ of the universal Cartan contains the universal weight
lattice Λ, i.e., the lattice of differentials of algebraic characters of the univer-
sal Cartan group H. For λ ∈ Λ, the character eλ : H → C

∗ determines a
G-equivariant algebraic line bundle Lλ → X whose fiber at x ∈ X is the com-
plex line, on which Bx acts via eλ. The map λ 7→ c1(Lλ) (= first Chern class
of Lλ) defines a homomorphism from Λ to H2(X,Z); hence

(5.6) c1 : h∗ −→ H2(X,C) .

For simplicity, we write eλ for the cohomology class 1 + c1(λ) + c1(λ)2

2 + . . . ,
which we view as a class on T ∗X. The usual cap product pairing applies also
in the setting of homology with infinite support. Thus we can take the cap
product of any class in Hinf

2n (T ∗KX ∩ µ−1Nk,Z) against the component of eλ

in degree 2n − 2k; this produces a homology class in degree 2k, which can
then be pushed forward to a class in Hinf

2k (Nk ∩ p,C). This operation, and its
GR-analogue, is our process of integration over the fibers. In general, the
definition of cap product involves certain sign conventions. We do not need to
spell them out, since integration over the fiber can be described more concretely
in our particular situation.

The moment map defines a fibration µ : T ∗KX ∩ µ−1Nk → Nk ∩ p. As top
dimensional cycle, each C2n ∈ Hinf

2n (T ∗KX ∩ µ−1Nk,Z) can be regarded, locally
with respect to the base of the fibration, as a product of a top dimensional
cycle C2n−2k(ζ) in the (compact) fiber with a top dimensional cycle in Nk ∩ p

– here we are using the complex structure of the µ−1(ζ) to orient the fiber
component of the cycle; the even dimensionality of the fiber makes the order
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of the product irrelevant. We integrate the component of eλ in degree 2n− 2k
over C2n−2k(ζ); the resulting function m(ζ) is locally constant and independent
of the particular product decomposition. We multiply the base component of
C2n by the multiplicity m(ζ). This gives us a well-defined class

(5.7)
∫
C2n

eλ ∈ Hinf
2k (Nk ∩ p,C) ,

the pushforward of the degree 2k component of the cap product1 eλ ∩ C2n.
Analogously, we define integration over the fiber, as a map from Hinf

2n (T ∗GR

X ∩
µ−1Nk,Z) to Hinf

2k (Nk ∩ igR,C). In general, integration and cap product agree
only up to sign. Specifically, if M is a compact oriented m-manifold, cap
product ω∩ [M ] with the fundamental class, for ω ∈ Hm(M,C) is (−1)m times
the integral of a de Rham representative of ω over M . In our case, the sign
is doubly irrelevant: not only are the Springer fibers even dimensional, but if
there were a change of sign – as there may be in the more general situation
of a semisimple symmetric space – it will occur twice in the statement of
Theorem 5.10.

To each C ∈ Hinf
2n (T ∗KX ∩ µ−1N ,Z), we assign the degree k = k(C), the

least integer k such that C ∈ Hinf
2n (T ∗KX ∩ µ−1Ñk,Z). We then restrict C to

T ∗KX ∩ µ−1Nk and perform the operation (5.7). This gives us

(5.8a)
(grµ∗)λ : Hinf

2n (T ∗KX ∩ µ−1N ,Z) −→
⊕

k Hinf
2k (Nk ∩ p,C) ,

(grµ∗)λ(C) =
∫
C0 e

λ , C0 = C|T ∗KX∩µ−1Nk , k = k(C) .

All of this makes sense equally on the GR-side:

(5.8b)
(grµ∗)λ : Hinf

2n (T ∗GR
X ∩ µ−1N ,Z) −→

⊕
k Hinf

2k (Nk ∩ igR,C) ,

(grµ∗)λ(C) =
∫
C0 e

λ , C0 = C|T ∗GRX∩µ−1Nk , k = k(C) .

Note that the two maps (grµ∗)λ are not homomorphisms, since the definitions
involve going to the leading terms in the graded groups gr Hinf

2n (T ∗KX∩µ−1N ,Z)
and gr Hinf

2n (T ∗GR

X ∩ µ−1N ,Z).
The family Fs : T ∗X → T ∗X defined in (3.6) induces a family of bianalytic

maps fs on the nilpotent cone,

(5.9)
fs : N → N , s ∈ R>0 ,

fs(η) = Ad(exp(s−1 Re η))η , ( η ∈ N ) .

Because of (4.20), µ ◦ Fs = fs ◦ µ, so Fs does lie over fs.

1 To see that the geometric operation of integration over the fiber does agree with cap product,

followed by pushforward, one can use the formalism in [SV3], for example: when cycles are viewed

as local cohomology classes along their supports, cap product gets converted into cup product; this

makes available the full apparatus of cohomology.
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5.10 Theorem. For c ∈ Hinf
2k (Nk∩p,C), the limit of cycles lims→0+(fs)∗(c)

exists as cycle in Nk and has support in Nk∩igR. The resulting homomorphism

φ :
⊕

k Hinf
2k (Nk ∩ p,C) −→

⊕
k Hinf

2k (NK ∩ igR,C) ,

φ(c) = lims→0+(fs)∗(c) for c ∈ Hinf
2k (Nk ∩ p,C), makes the following diagram

commutative:

Hinf
2n (T ∗KX,Z) Φ−−−→ Hinf

2n (T ∗GR

X,Z)

(grµ∗)λ

y y(grµ∗)λ⊕
k Hinf

2k (Nk ∩ p,C)
φ−−−→

⊕
k Hinf

2k (Nk ∩ igR,C) .

Proof. Recall the definition of the analytic-geometric category C in Sec-
tion 4. To see that the limit of cycles exists, we shall argue that the family of
cycles (fs)∗(c) is a C-family – in other words, that the union of the supports
fs(|c|) is a C-subset of Nk × R. We proceed as in the proof of Theorem 3.7.
For dimension reasons, |c| is a union of K-orbits, hence algebraic in Nk. Thus

(5.11)
{ (Ad(g)η, gKR, s) | gKR ∈ GR/KR , η ∈ |c| , s ∈ R } ⊂ Nk ×GR/KR × R

is a real algebraic subset, and consequently a C-subset of Nk × GR/KR × R.
Since pR

∼= GR/KR as C-sets,

(5.12) { (Ad(exp ζ)η, ζ, s) | ζ ∈ pR, η ∈ |c|, s ∈ R } ⊂ Nk × pR × R

is a C-subset, as is its intersection with { sζ = Re η }. This intersection is
the support of the family of cycles {(fs)∗(c)}. In view of [SV3, §3], the limit
lims→0+(fs)∗(c) exists as cycle in Nk. More specifically,

(5.13) lim
s→0+

(fs)∗(c) ∈ Hinf
2k (NK ∩ igR,C) ,

as follows from the argument below the statement of Theorem 3.7.
We regard J = [0,∞] as a closed subinterval of the one-point compactifi-

cation R∪{∞} of R. Let us consider a particular C ∈ Hinf
2n (T ∗KX,Z). The cycles

(Fs)∗(C) constitute a family of 2n-cycles in T ∗X, parametrized by I = (0,∞),
in the sense of [SV3, §3]. In other words, there exists a (2n + 1)-chain CJ in
J × T ∗X such that

(5.14)

a) |CJ | = closure of { (s, Fs(ζ)) | s ∈ I , ζ ∈ |C| } ;

b) CI = CJ |(I×µ−1(Ñk)) is a 2n-cycle in I × T ∗X ;

c) Cs = (Fs)∗(C) for 0 < s <∞ ;

d) ∂CJ = {∞} × C − {0} × lim
s→0+

Cs .
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Here Cs denotes the specialization of the family CI at s; i.e.,

(5.15) {s} × Cs = ∂CI |(0,s]×T ∗X (boundary in (0, s]× T ∗X) .

Let k = k(C) be the least integer k such that C ∈ Hinf
2n (T ∗KX,Z)k – equiva-

lently, the least integer k such that C is supported in µ−1(Ñk). Since Nk is
G-invariant, this implies that all the cycles (Fs)∗(C) are supported in µ−1(Ñk).
Thus we can regard CJ as a family of cycles in µ−1(Ñk).

Recall the definition of Φ(C) as the limit of (Fs)∗(C) as s → 0+. The
preceding remarks imply, in particular, that Φ(C) is supported in µ−1(Ñk),
hence k(Φ(C)) ≤ k(C) . In fact,

(5.16) k(Φ(C)) = k(C) .

To see this, we observe that Φ is derived from the functor γ of (2.7), which
has an inverse, the functor Γ of [MUV] with an appropriate shift in degree.
Concretely, Γ is defined in terms of the diagram (2.8), but with K and K/KR

taking the places of GR and GR/KR and with stars instead of shrieks. Just as
γ determines Φ, the functor Γ determines

(5.17) Ψ : Hinf
2n (T ∗GR

X,Z) −→ Hinf
2n (T ∗KX,Z) .

Theorem (3.7) and its proof carry over to this situation word for word, with
one exception: in pinning down the sign in (3.7), it was convenient to use the
complex structure of the K-orbits. In any case, the same reasoning that gave
us the inequality k(Φ(C)) ≤ k(C) gives

(5.18) k(Ψ(C)) ≤ k(C) (C ∈ Hinf
2n (T ∗GR

X,Z) ) .

Since Γ ◦ γ is equivalent to the identity on DK(X)−λ, up to sign, Ψ ◦ Φ is the
identity on the CC-image of DK(X)−λ, up to the same sign. We claim:

(5.19) CC(DK(X)−λ) = Hinf
2n (T ∗KX,Z) ,

for integral λ ∈ h∗, and in particular for λ = ρ. Assuming this for the moment,
we see that Ψ ◦ Φ – which does not depend on the particular choice of λ – is
the identity, up to sign, on all of Hinf

2n (T ∗KX,Z). Thus (5.16) follows from (5.18)
and the earlier inequality k(Φ(C)) ≤ k(C) .

We need to establish (5.19). If λ = ρ, as we may assume, DK(X)−ρ =
DK(X) contains all the direct images Rj∗CS of constant sheaves CS on
K-orbits S ⊂ X. The characteristic cycle CC(Rj∗CS) differs from [T ∗SX] by a
linear combination of cycles [T ∗S′X] with S′ ⊂ ∂S. Thus, arguing by induction
on the dimension of S, we find [T ∗SX] ∈ CC(DK(X)) for all K-orbits S. These
cycles [T ∗SX] span Hinf

2n (T ∗KX,Z), so (5.19) follows.
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At this point, we have established the first assertion of Theorem 5.10, and
we have shown that Φ preserves the integer k(C) which enters the definition
of integration over the fibers. This operation can be applied to the family CI .
The family of diffeomorphisms Fs can be used to trivialize CI ; in other words,

(5.20) (0,∞]× |C| ∼−−→ |C(0,∞]| ,
so that C(0,∞] becomes the product of the interval (0,∞] with the cycle C.
Contrary to appearance, ∞ is a generic point of the family, since Fs extends
smoothly across s = ∞ – recall (3.6). Integrating eλ over the µ-fibers of this
family, we obtain a family of 2k-cycles c(0,∞] in Nk. It, too, is a product family
whose general member is cs = (fs)∗(c), with c =

∫
C e

λ. As in (5.14), c(0,∞] is
the restriction to (0,∞]×Nk of a (2k + 1)-chain cJ in J ×Nk, such that

(5.21) ∂cJ = {∞} × c − {0} × lim
s→0+

cs .

The two families CJ , cJ cease to be product families at s = 0. To see that
cs =

∫
Cse

λ even at s = 0, we appeal to the formalism of cap product, as
follows.

Let ω ∈ H2n−2k(T ∗X,C) be the component in degree 2n−2k of eλ, pulled
back from X to T ∗X. We shall take the cap product of a cochain representative
of ω with the chain CJ – or more precisely, with

(5.22) C ′J = restriction of CJ to J × µ−1(Nk) .
This can be carried out in several ways, but perhaps most transparently in the
simplicial setting. Thus we triangulate, compatibly, the spaces J × µ−1(Nk) ,
|C ′J | , {0} × µ−1(Nk) , and {∞} × µ−1(Nk); we can do so because |CJ | is a
C-set. We choose a cochain representative of ω and, for simplicity, denote it
by the same letter. We can then take the cap products ω∩C ′J , ω∩∂C ′J . Since
ω is closed, they are related by the formula

(5.23) ∂(ω ∩ C ′J) = ω ∩ ∂C ′J ;

for the sign conventions, we follow [Span]. Because of the triviality of the
family CI , µ∗(ω ∩ C ′I) is the family in Nk whose general member is obtained
by integrating ω over the µ-fiber – in other words, the general member is cs;
hence

(5.24) µ∗(ω ∩ C ′I) = cI .

All the top dimensional simplices of CJ lie in CI , so (5.24) remains valid with
J in place of I :

(5.25) µ∗(ω ∩ C ′J) = cJ .

Because of (5.14d), (5.23), and (5.25),

(5.26) µ∗(ω∩ ({∞}×C ′))−µ∗(ω∩ ({0}×Φ(C)′)) = {∞}× c−{0}×φ(c) ,
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where C ′ and Φ(C)′ denote the restrictions of the two cycles to µ−1(Nk).
From our definition of integration over the fiber, we see that µ∗(ω∩({0}×

Φ(C)′)) equals {0} ×
∫

Φ(C) e
λ. Hence, because of (5.26),

(5.27) φ(c) =
∫

Φ(C)
eλ .

Taken together, (5.16) and (5.27) give the commutativity of the diagram in
the statement of Theorem 5.10.

6. Nilpotent orbits

Let Ok be a G-orbit in Nk. Then Ok ∩ p is a union of finitely many
K-orbits, and similarly, Ok ∩ igR is a union of finitely many GR-orbits. These
intersections are Lagrangian – in the case of p, with respect to the holomorphic
symplectic structure σOk on Ok, and in the case of igR, with respect to ReσOk
[KR]; here, as in Section 5, we identify g ∼= g∗ and N ∼= N ∗ by means of the
bilinear form B. In particular, each K-orbit in Nk ∩p is a complex manifold of
dimension k. We use the complex structure to orient the orbits. This allows
us to regard them as K-invariant, top dimensional cycles in Nk ∩ p. In fact,
these cycles constitute a basis of Hinf

2k (Nk ∩ p,C)K , the K-invariant part of the
top dimensional homology of Nk ∩ p :

(6.1a) Hinf
2k (Nk ∩ p,C)K = {

∑
aj [Op,j ] | aj ∈ C , dimCOp,j = k } ,

with Op,j enumerating the K-orbits in N ∩ p. To see this, we note that the
connected components of the K-orbits provide a basis of Hinf

2k (Nk ∩ p,C); the
fundamental cycle [Op,j ] of a K-orbit Op,j is the sum of the fundamental cycles
of the components of Op,j . Analogously,

(6.1b) Hinf
2k (Nk ∩ igR,C)GR = {

∑
bj [OgR,j ] | bj ∈ C , dimROgR,j = 2k }

when we enumerate the GR-orbits in N ∩ igR as OgR,j . Each of them lies in
a G-orbit Ok, from which it inherits the symplectic form 1

2πiσOk – note that
the restriction of σOk is purely imaginary on Ok ∩ igR. We use the symplectic
structure to orient the OgR,j , to give meaning to the cycles [OgR,j ].

Sekiguchi [Se] and Kostant (unpublished) have described a bijective cor-
respondence between the K-orbits in N ∩ p on one hand, and the GR-orbits
in N ∩ igR on the other. Orbits that correspond to each other lie in the same
G-orbit, and thus have the same dimension. Recall the definition of

(6.2) φ :
⊕

k Hinf
2k (Nk ∩ p,C) −→

⊕
k Hinf

2k (Nk ∩ igR,C)

in the statement of Theorem 5.10, which was defined in terms of the family of
diffeomorphisms fs : g→ g , fs(η) = Ad(exp(s−1 Re η))(η).
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6.3 Theorem. The map φ is an isomorphism. It sends K-invariant cy-
cles to GR-invariant cycles. On the invariant part of the homology, φ coincides
with the Kostant-Sekiguchi correspondence via the identifications (6.1). Con-
cretely, if [Op] ∈ Hinf

2k (Nk ∩ p,C)K is the fundamental class of a K-orbit Op,
oriented by its complex structure, then the family of cycles (fs)∗[Op] has a limit
as s→ 0+, and this limit is the fundamental class [OgR ] ∈ Hinf

2k (Nk ∩ igR,C)GR

of the Sekiguchi image OgR of Op, oriented by its symplectic form.

Sekiguchi describes the correspondence between the two types of orbits
by reduction to the special case of GR = SL(2,R) , KR = SO(2,R). Let

(6.4) j : sl(2,C) −→ g

be a homomorphism, defined over R with respect to the real forms sl(2,R)
and gR, and equivariant with respect to the Cartan involutions – in the case of
sl(2,C), the Cartan involution corresponding to the maximal compact subgroup
SO(2,R) of SL(2,R). According to Kostant-Rallis [KR],

(6.5)
every ζ ∈ N ∩ p is K-conjugate to the j-image of

(
1 i

i −1

)
for some homomorphism j as in (6.4).

On the other hand, the Jacobson-Morozov theorem for the Lie algebra gR

implies

(6.6)
every η ∈ N ∩ igR is GR-conjugate to the j-image of

(
0 i

0 0

)
for some homomorphism j as in (6.4);

see, for example, [Ko]. Sekiguchi shows that the K-orbit of ζ, and similarly
the GR-orbit of η, determines the homomorphism j up to KR-conjugacy [Se].
Thus

(6.7) K-orbit of j

(
1 i

i −1

)
←→ GR-orbit of j

(
0 i

0 0

)
,

for every homomorphism j as in (6.4), sets up a well-defined correspondence
between K-orbits in N ∩ p and GR-orbits in N ∩ igR.

Every ζ ∈ N ∩ p is K-conjugate to its negative, but η ∈ N ∩ igR need not
be GR-conjugate to −η. It would be equally natural to let the K-orbit of ζ in
(6.5) correspond to the GR-orbit of −η in (6.6). From our point of view, the
microlocalization of the functor γ dictates the choice of η over −η : since

(6.8) exp
(
s−1 Re

(
1 i

i −1

))(
1 i

i −1

)
=

(
1 ie2s−1

ie−2s−1 −1

)
,

the definition of φ forces

(6.9) K ·
(

1 i

i −1

)
←→ GR ·

(
0 i

0 0

)
in the case of SL(2,R), and correspondingly (6.7) in general.
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The proof of Theorem 6.3 is lengthy. It uses methods completely different
from those in the rest of the paper. Here we shall reduce the assertion of
the theorem to certain technical statements about nilpotent orbits, which are
proved in [SV5].

We begin with a simplification of the problem: it suffices to consider the
case of a connected semisimple group GR. Indeed, when GR is connected,
then so are KR and K. In that case all homology classes in Hinf

2k (Nk ∩ p,C)
are K-invariant, and similarly all classes in Hinf

2k (Nk ∩ igR,C) are GR-invariant.
Now

(6.10) K/K0 ∼= KR/K
0
R
∼= GR/G

0
R
,

so the invariance conditions in (6.1) are equivalent to invariance under the
component group KR/K

0
R
. But φ commutes with the action of KR. Thus we

may as well assume that GR is connected. All nilpotents lie in the derived
algebra [g, g]. Hence, without changing the problem, we can replace GR by its
quotient by the connected component of the center. For emphasis,

(6.11) GR = G0
R
, g = [g, g] ,

as will be assumed from now on.
The support of the family of cycles (fs)∗[Op], s > 0, is contained in a

single G-orbit O – the G-orbit which contains the K-orbit Op. We suppose
O 6= {0}, since otherwise there is nothing to prove. According to Theorem
5.10, the limit of the family exists as cycle in the union of G-orbits having the
same dimension as O. This union is disjoint; hence

(6.12) the limit lim
s→0+

(fs)∗[Op] exists as cycle supported on O ∩ igR .

Since Op has the same dimension as O∩ igR, the limit is necessarily an integral
linear combination of fundamental classes of the finitely many GR-orbits in
O ∩ igR. We enumerate these orbits as OgR,j ; then

(6.13) lim
s→0+

(fs)∗[Op] =
∑

bj [OgR,j ] , bj ∈ Z .

Note that both Op and the OgR,j are connected because of (6.11). With this
notation, Theorem 6.3 amounts to a description of the bj ,

(6.14) bj =
{

1 if OgR,j is the Sekiguchi image of Op ,
0 otherwise .

That is what we must prove.
The multiplicities bj can be expressed as intersection multiplicities of the

cycles (fs)∗[Op] with normal slices to the OgR,j . To do this, we fix a particular
ν ∈ OgR,j and choose a linear complement qR to the kernel of ad ν in gR. For
a > 0 sufficiently small,

(6.15) N(ν, a) = {Ad exp(iη)(ν) | ν ∈ qR , ‖η‖ < a }
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is a real analytic submanifold of O which meets OgR,j only at ν, and the
intersection at ν is transverse; in other words, N(ν, a) is a “normal slice” to
OgR,j , at ν, in O. Then

(6.16)

for generic ν ∈ OgR,j , with a > 0 sufficiently small, and

s small in relation to a, the cycle (fs)∗[Op] intersects N(ν, a)

transversely, with total intersection multiplicity bj .

In this statement, “generic” means “on an open, dense C-set,” where C refers to
the analytic-geometric category introduced and used in Section 4; intersections
are to be counted with the same sign convention that makes OgR,j meet N(ν, a)
with multiplicity +1. We refer to [SV3, §3] for the notion of limit of a family
of cycles, as we have earlier.

It looks prohibitively difficult to compute the intersection multiplicities
at a generic point ν directly. Instead, we shall establish a slightly stronger
statement at certain (conceivably) nongeneric points2, from which we then
deduce the needed information about generic points. In preparation for the
argument, we introduce the compact real form

(6.17a)
uR = kR ⊕ ipR = { ζ ∈ g | θζ̄ = ζ }
( ζ̄ = complex conjugate of ζ with respect to gR )

in g, and the maximal compact subgroup

(6.17b) UR = connected subgroup of G with Lie algebra uR

of G. Since G is connected,

(6.17c) GR ∩ UR = KR = K ∩ UR ;

cf. [He], for example. In previous sections we had chosen a particular
Ad-invariant bilinear form B on g. Now that g is semisimple by assumption, we
let B denote the Killing form, normalized as follows. By Jacobson-Morozov,
any ζ ∈ O can be embedded in an essentially unique sl2-triple. In other words,
there exist τ , ζ− in g such that

(6.18) [τ, ζ] = 2ζ , [τ, ζ−] = −2ζ− , [ζ, ζ−] = τ .

τ is unique up to conjugacy by the centralizer Gζ of ζ, and ζ− becomes
unique once τ has been chosen. In particular, the orbit O determines τ up to
G-conjugacy. Since τ is nonzero (recall: we had assumed O 6= {0}), semisim-
ple, with integral eigenvalues, we can normalize B by requiring

(6.19) B(τ, τ) = 2 .

2 Indeed, we believe that in our particular situation, every point is generic in the sense of (6.16).
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Thus B restricts to the linear span of ζ, ζ−, τ as the trace form of sl(2,C), to
which this linear span is isomorphic. In terms of B, we define

(6.20) (ζ1, ζ2) = −B(ζ1, θζ̄2) ζ1, ζ2 ∈ g .

This is a (positive definite) UR-invariant inner product on g.
We introduce a moment map for the action of G on O, following Ness [N].

From an intrinsic point of view, we should think of the moment map as taking
values in iuR∗. It will be more convenient, however, to identify iuR ∼= iuR

∗, and
to define

(6.21a) m : O −→ iuR

implicitly, by the equation

(6.21b) 2 Re (m(ζ), η) =
1
‖ζ‖2

(
d

dt
‖Ad exp(tη)ζ‖2

)
|t=0 .

As η runs over g in this equation, m(ζ) becomes determined as vector in g. But
the inner product is UR-invariant; hencem(ζ) does lie in iuR. The UR-invariance
also implies

(6.22) m(Ad(u)ζ) = Ad(u)(m(ζ)) (u ∈ UR ) ;

i.e., the map m is UR-equivariant. To get an explicit formula for m(ζ), we
calculate:(

d

dt
‖Ad exp(tη)ζ‖2

)
|t=0 = 2 Re ([η, ζ], ζ)

= −2 Re B([η, ζ], θζ̄) = −2 Re B(η, [ζ, θζ̄]) = 2 Re B(η, θ[ζ, θζ̄])

= −2 Re (η, [ζ, θζ̄]) = −2 Re ([ζ, θζ̄], η) ,

for every test vector η ∈ g; hence

(6.23) m(ζ) = − [ζ, θζ̄]
‖ζ‖2 .

The moment map descends to the image of the orbit O in the projectivized Lie
algebra P(g). Viewed as map from P(g) to iuR ∼= iuR

∗, m coincides with the
moment map, in the sense of symplectic geometry, relative to a UR-invariant
symplectic structure on P(g) [N].

Because of the equivariance (6.22), the square length ‖m(ζ)‖2 is invariant
under the UR-action. It is also invariant under scaling by any nonzero complex
number. Scaling by positive real numbers plays a special role, since it preserves
GR-orbits. We thus regard O as manifold with UR × R+-action, with R

+, the
multiplicative group of positive real numbers, acting by scaling.
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6.24 Lemma. A point ζ ∈ O is a critical points of the function ζ 7→
‖m(ζ)‖2 if and only if [ζ, θζ̄] can be rescaled so that ζ, [ζ, θζ̄], θζ̄ becomes an
sl2-triple – in other words, if and only if there exists a ∈ R, a 6= 0, such that

[[ζ, θζ̄], ζ] = a ζ and [[ζ, θζ̄], θζ̄] = −a θζ̄ .
The set of critical points is not empty and consists of a single UR × R+-orbit.
The function ‖m‖2 on O assumes its minimum values exactly on the critical
set. Every K-orbit in O ∩ p and every GR-orbit in O ∩ igR meets the critical
set along exactly one KR × R+-orbit.

This follows from a general property of the moment map [N, Theorem
6.1]; for details, see [SV5]. We shall be able to analyze the intersection of the
family of cycles (fs)∗[Op] with an appropriately chosen normal slice N(ν, a) for
points ν ∈ OGR,j which are critical of the function ‖m‖2. As a first step, we
show:

6.25 Lemma. Let Op be a K-orbit in O ∩ p, and ζ ∈ Op a critical point
for ‖m‖2. Then fs(ζ) lies in the critical set for every s ∈ R>0. Moreover, the
limit

lim
s→0+

fs(ζ)
‖fs(ζ)‖

exists and lies in the Sekiguchi image OgR of Op.

Proof. For t > 0, fs(tζ) = tfst−1(ζ), so we are free to rescale ζ by a
positive real number. Also, ζ is KR-conjugate to −ζ, because [[ζ, θζ̄], ζ] is a
nonzero real multiple of ζ and exp(it[ζ, θζ̄]) ∈ KR for t ∈ R. Since fs is KR-
equivariant, we can now rescale ζ by any nonzero real number. In other words,
we may assume that a = −2, in the notation of the previous lemma. In that
case, the linear map j : sl(2,C)→ g, defined by

(6.26)
j

(
1 0
0 −1

)
= ζ − θζ̄ , j

(
0 1
0 0

)
=

1
2i

(ζ + θζ̄ + [ζ, θζ̄]) ,

j

(
0 0
1 0

)
=

1
2i

(ζ + θζ̄ − [ζ, θζ̄]) ,

satisfies the conditions on j in (6.4): it is a homomorphism, defined over R with
respect to the real form sl(2,R) ⊂ sl(2,C), and equivariant with respect to the
Cartan involution corresponding to the maximal compact subgroup SO(2,R)
of SL(2,R). In this way we can reduce the problem to a computation in sl2,
which we have already done; see (6.8).

For the moment, we keep fixed a particular ζ ∈ Op. Since m(fs(ζ)) ∈
iuR = ikR ⊕ pR, we can write

(6.27)
m(fs(ζ)) = m1(s, ζ) +m2(s, ζ) +m3(s, ζ) , with

m1(s, ζ) ∈ R · Re ζ , m2(s, ζ) ∈ pR ∩ (Re ζ)⊥ , m3(s, ζ) ∈ ikR .
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Experimental evidence suggests that ‖m(fs(ζ))‖2 is decreasing for s > 0. The
parametric curve fs(ζ) would then move away from the critical set of ‖m‖2 as
s approaches 0. We do not how to prove this; however, the following suffices
for our purposes.

6.28 Lemma. For s > 0 , ‖m1(s, ζ)‖2 + ‖m3(s, ζ)‖2 ≥ ‖m(ζ)‖2 .

This lemma plays the crucial role in the proof of the next one; both are
established in [SV5].

6.29 Lemma. Let ν0 ∈ OgR,j be a critical point for ‖m‖2. Then there
exists a normal slice N(ν0, a) with the following properties. If OgR,j is the
Sekiguchi image of Op, then the submanifolds fs(Op) and N(ν0, a) of O meet
exactly once, for all sufficiently small values of s. The intersection is transverse
and has multiplicity +1, relative to the sign convention which makes OgR,j meet
N(ν0, a) with multiplicity +1 at ν0. On the other hand, fs(Op) ∩N(ν0, a) = ∅
if OgR,j is not the Sekiguchi image of Op, again for all sufficiently small s.

We shall deduce Theorem 6.3 from Lemma 6.29. In effect, one can phrase
the criterion (6.16) less restrictively in the case of a subanalytic or C-family of
cycles: one may use even nongeneric normal slices to calculate the intersection
multiplicity, provided they satisfy two conditions. First, the normal slice is
normal not only to the carrier of the limit cycle, but also normal to limit of
the carriers; secondly, the carrier of the family is transverse to the particular
normal slice, except possibly at s = 0. We shall not try to establish the more
general statement in full generality, but only in our particular situation.

We fix a point ν0 ∈ OgR,j which is critical for the function ‖m‖2. The
normal slice N(ν0, a) mentioned in the lemma corresponds to a choice of a
linear complement qR to Ker(ad ν0) in gR. The same qR will then be a linear
complement also to Ker(ad ν) for every ν ∈ OgR,j close to ν0. We choose a
small open neighborhood V0 of ν0 and a sufficiently small constant a > 0 so
that

(6.30)
B(a)× V0 −→ O (B(a) = { η ∈ qR | ‖η‖ < a } ) ,

(η, ν) 7→ Ad(exp η)ν

is a bianalytic map onto its image. We shrink a further, if necessary, so that the
normal slice N(ν0, a) satisfies the conclusion of Lemma 6.29, and so that the
map (6.30) extends bianalytically to B(a)×V0, the partial closure of B(a)×V0

in the qR-directions. We use this bianalytic map and B(a) ∼= N(ν0, a) to
identify

(6.31a) N(ν0, a)× V0
∼= neighborhood of ν0 in O .

This identification is consistent with the tautological inclusions N(ν0, a) ⊂ O
and V0 ⊂ OgR,j ⊂ O. The projection
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π : N(ν0, a)× V0 −→ V0(6.31b)

retracts the neighborhood (6.31a) of ν0 in O to the neighborhood V0 of ν0 in
OgR,j . The fibers of π are normal slices; i.e.,

(6.31c) π−1(ν) = N(ν, a) = normal slice to ν .

By construction, the product structure (6.31) extends to the closure in the
fiber directions.

The carrier of the family of cycles {(fs)∗[Op]}s>0 is a closed real analytic
submanifold of R>0 ×O; it is also a C-set in R×O. Here, once again, C refers
to the analytic-geometric category used earlier. We denote the submanifold by
M . The natural bianalytic map

(6.32) R>0 ×Op ∼−−→ M , (s, ζ) 7→ fs(ζ)

orients M . We observe that

(6.33)
M ∩ (R>0 ×N(ν0, a)× V0) is closed in R>0 ×N(ν0, a)× V0 , and

M ∩ (R>0 ×N(ν0, a)× V0) is closed in R>0 ×N(ν0, a)× V0 .

The projection M ∩ (R>0 ×N(ν0, a)× V0)→ V0 can be partially compactified
to a proper C-map

(6.34) M ∩ ({0 ≤ s ≤ ∞} ×N(ν0, a)× V0) −→ V0 .

We shall show:

(6.35)

there exists a dense open C-set V1 ⊂ V0 such that

the projection M ∩ (R>0 ×N(ν0, a)× V1) −→ V1

is of maximal rank everywhere in the domain.

Indeed, by [DM, statement D.13], the projection (6.34) can be stratified, so
that on each stratum in the domain the projection has constant rank. Note
that dimM = dimV0 + 1. Thus, by dimension count, each stratum in the
domain either maps to a lower dimensional stratum in V0, or the projection
has maximal rank on it. Our statement (6.35) follows; it may happen, of
course, that R>0 ×N(ν0, a)× V1 does not intersect M at all.

The generic triviality statement [DM, 4.11] for compactifiable C-maps al-
lows us to shrink V1 further, so that

(6.36)
V1 ⊂ V0 is open, ν0 ∈ V1 , and

M ∩ (R≥0 ×N(ν0, a)× V1) −→ V1 is a product

(product in the C-continuous sense). What can we say about the fiber Fν of
this product over a ν ∈ V1? To begin with,

(6.37a) Fν is a C-curve in R≥0 ×N(ν, a) , unless Fν is empty ,
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for dimension reasons. Secondly,

(6.37b)
Fν ∩ ({0} ×N(ν, a)) ⊂ {(0, ν)} and

Fν ∩ (R>0 ×N(ν, a)) ⊂ R>0 × (N(ν, a)− {ν}) ;

here we use (5.13), which holds and is proved on the level of supports. Also,
for s 6= 0 and ζ ∈ Op, the real part of fs(ζ) equals the real part of ζ, hence is
nonzero, which prevents fs(ζ) from lying in igR. Lastly, because of (6.35),

(6.37c) Fν ∩ (R>0 ×N(ν, a)) is a closed submanifold of R>0 ×N(ν, a) .

It is also a C-subset; hence it only has a finite number of connected components.
We enumerate the finitely many connected components of Fν ∩ (R>0 ×

N(ν, a)) as Fν,` , 1 ≤ ` ≤ L; note that

(6.38) Fν ∩ (R>0 ×N(ν, a)) = Fν − {(0, ν)}

because of (6.37). A priori each of the Fν,` can be compact, have zero, one, or
two endpoints at ν, with the remaining ends “at infinity,” i.e., tending to the
boundary of the normal slice. Note that an end at ν corresponds to s = 0, and
an end in ∂N(ν, a) to a strictly positive value of s; cf. (6.37b). When we count
the net intersection multiplicity of (fs)∗[Op] with the normal slice N(ν, a), the
component Fν,` contributes only if it has one end at ν and the other at infinity.
After all, we are computing the multiplicity at {0} × ν of the boundary of the
chain [Fν ]. We claim:

(6.39)

a) among the Fν,`, either one or none run from zero to infinity,

depending on whether or not OgR,j is the Sekiguchi image of Op;

b) if Fν,` does run from zero to infinity, this curve can be continued

across ν = ν0.

According to Lemma 6.29, over ν = ν0 we see either one curve or none, again
depending on whether or not OgR,j is the Sekiguchi image of Op. In the former
situation, the curve runs from zero to the boundary of the normal slice and has
the same intersection multiplicity with (fs)∗[Op], 0 < s ¿ 1, as with [OgR ].
Thus (6.39) does imply Theorem 6.3.

The verification of (6.39) involves two processes: extending the curve over
ν0 – if there is one – to nearby points ν, and specializing to ν = ν0 those Fν,`
which run from zero to infinity. For the former, we note that

(6.40)
the projection M ∩ (R>0 ×N(ν0, a)× V0) −→ V0 has maximal

rank along Fν0 − {(0, ν0)} = M ∩ (R>0 ×N(ν0, a)× {ν0});
this follows from the transversality assertion in Lemma 6.29. We conclude that
the curve over ν0 – if it exists – can be continued smoothly to nearby points
ν, at least if we stay away from s = 0. These nearby curves over ν ∈ V1 must
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run from ν to ∂N(ν, a), or from ν back to ν, or from one point on ∂N(ν, a) to
another, or be compact – these are the only possibilities for curves over points
in V1, as was mentioned earlier. All but the first possibility are ruled out by
the local smoothness (6.40) of the family across Fν0 , away from s = 0. To
summarize, when there is a curve Fν0 over ν0, it can be continued to a curve
over nearby points ν ∈ V1 which runs from ν to ∂N(ν, a). There is at most one
such curve above nearby points ν ∈ V1, since otherwise the local smoothness
(6.40) would be contradicted.

The reverse process, of specializing from ν ∈ V1 to ν0, depends on a
property of our particular setting that we have not used so far. Let us consider
a curve Fν,` over a point ν ∈ V1 that runs from ν to ∂N(ν, a). It was mentioned
already that ν corresponds to s = 0 and the boundary point to some strictly
positive s∞ = s∞(ν). We need to know:

(6.41) s∞(ν) is bounded away from 0 for ν ∈ V1 near ν0.

Assuming this for the moment, we can specialize Fν,` to a curve Fν0 which runs
from ν0 to ∂N(ν0, a). Together with the conclusion of the preceding paragraph,
this establishes (6.39).

At this point, only (6.41) needs to be established. If the assertion were
false, there would exist sequences {sn} in R>0 and {ζn} in Op such that
sn → 0 and limn→∞ fsn(ζn) ∈ ∂N(ν0, a). On the other hand, the existence
of limn→∞ fsn(ζn) with sn → 0 forces limn→∞ fsn(ζn) ∈ igR, as was argued at
the end of Section 3. Finally, we can decrease a further, if necessary, to ensure
∂N(ν0, a) ∩ igR = ∅.

7. Completion of the proof of Theorem 1.4

The commutative squares (2.9), (3.7), and (5.10) can be combined into a
single commutative diagram, as follows:

(7.1)

{virtual H-C-modules}λ ∼−−−→ {virtual GR-representations}λ
α

x xβ
DK(X)−λ

γ−−−→ DGR
(X)−λ

CC

y yCC

Hinf
2n (T ∗KX,Z) Φ−−−→ Hinf

2n (T ∗GR

X,Z)

(grµ∗)λ

y y(grµ∗)λ⊕
k Hinf

2k (Nk ∩ p,C)
φ−−−→

⊕
k Hinf

2k (Nk ∩ igR,C) .

In Section 6, we saw that φ induces the Kostant-Sekiguchi correspondence
when we make the identifications (6.1).
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The parameter λ ∈ h∗ in (7.1) fixes the infinitesimal character of rep-
resentations, but not conversely: χλ = χµ when λ and µ are W -conjugate.
The particular choice of λ within its W -orbit has not mattered until now. At
this point, however, it will become convenient to suppose that λ is integrally
dominant, in the sense that

(7.2) 2
(λ, α)
(α, α)

/∈ Z<0 for every α ∈ Φ+ ;

here, as before, Φ+ refers to the universal positive root system. This situation
is special for the Beilinson-Bernstein construction [BB1]. First of all, it implies

(7.3) Hp(X,M) = 0 if p 6= 0 ,

for every coherent Dλ-module M; in particular, for every K-equivariant, coher-
ent Dλ-module. When λ is not only integrally dominant, but also regular, the
assignment M 7→ H0(X,M) establishes an equivalence of categories between
the category of K-equivariant, coherent Dλ-modules on one hand, and the cat-
egory of Harish-Chandra modules with infinitesimal character χλ on the other.
When λ is integrally dominant but singular, there exist Dλ-modules without
sections; however,

(7.4)

for each irreducible Harish-Chandra module M with

infinitesimal character χλ, there exists a unique irreducible

K-equivariant Dλ-module M such that H0(X,M) = M .

Concretely, M is the unique irreducibleK-equivariant quotient of the Beilinson-
Bernstein localization of M which does have nonzero sections.

We use the bilinear form B to identify g ∼= g∗, as in Section 5. Correspond-
ingly, we identify K-orbits in N ∩ p with K-orbits in N ∗ ∩ p∗ and GR-orbits
in N ∩ igR with GR-orbits in N ∗ ∩ igR∗. Thus we can think of the associated
cycle Ass(π) and the wave front cycle WF(π) as lying in the two groups of
nilpotent cycles in the bottom row of (7.1). Recall the definition (2.4) of the
K-equivariant de Rham functor.

7.5 Proposition. Let λ be integrally dominant, π an irreducible repre-
sentation with infinitesimal character χλ, and M the Harish-Chandra module
of π. With M as in (7.4), set F = DR(M). Then (grµ∗)λ(CC(F)) = Ass(π)
via the identification (6.1a).

This is essentially a reformulation of a result of J.-T. Chang [C1]. At
the end of this section, we shall reduce our statement to Chang’s result, and
comment on certain aspects of his proof.
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7.6 Proposition. Let π be an irreducible representation with infinitesi-
mal character χλ, and F ∈ DGR

(X)−λ a sheaf such that β(F) = π up to infini-
tesimal equivalence. Then either (grµ∗)λ(CC(F)) vanishes or (grµ∗)λ(CC(F))
= WF(π) via the identification (6.1b).

We shall see, after the fact, that the first alternative, i.e., the vanishing
of (grµ∗)λ(CC(F)), cannot happen when F is chosen appropriately. We shall
deduce the proposition from our integral formula for characters [SV4]. In the
case of complex groups and regular infinitesimal character, (7.6) is due to
Rossmann [R2]. Our proof is a generalization of Rossmann’s argument.

Before turning to the proof of (7.6), let us argue that the two propositions,
together with Theorem 6.3 and the commutativity of the diagram (7.1), do
imply Theorem 1.4.

Proof of Theorem 1.4. We consider a particular irreducible representa-
tion π, with infinitesimal character χλ. From the construction of the asso-
ciated cycle, it is clear that Ass(π) 6= 0. With λ and F as in Proposition
7.5, (grµ∗)λ(CC(F)) = Ass(π) 6= 0. The commutativity of (7.1) now ensures
that (grµ∗)λ(CC(γ F)) 6= 0; hence (grµ∗)λ(CC(γ F)) = WF(π) by Propo-
sition 7.6. We appeal once more to the commutativity of (7.1) to conclude
WF(π) = φ(Ass(π)). Because of Theorem 6.3, this gives the assertion of the
theorem.

Proof of Proposition 7.6. Let Θπ denote the character of π, and θπ the
pullback of Θπ to the Lie algebra gR ,

(7.7) θπ =
√

det(exp∗) exp∗Θπ .

Our integral formula for characters3 ( [SV4]), transferred to g via g ∼= g∗,
asserts

(7.8)
∫
gR

θπ φdx =
1

(2πi)nn!

∫
CC(F)

µ∗λφ̂ (−σ + π∗τλ)n ,

for every test function φ ∈ C∞c (gR). Here µλ : T ∗X → g denotes Rossmann’s
twisted moment map, n the complex dimension of X, σ the canonical holo-
morphic symplectic form on T ∗X, π : T ∗X → X the natural projection, and
finally τλ a particular differential form on X such that

(7.9)
τλ
2πi

represents the cohomology class c1(λ) ∈ H2(X,C) .

3 Our formula is the explicit version of a formula of Rossmann [R1], [R2], who represents

invariant eigendistributions on gR, with regular infinitesimal character, as integrals over unspecified

cycles.
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We define the Fourier transform φ̂ of φ as a holomorphic function on g by the
formula

(7.10) φ̂(ξ) =
∫
gR

eB(ξ,x) φ(x) dx .

Since we have omitted the customary factor of i in the exponent, φ̂ decays
rapidly along the imaginary directions. This decay property of φ̂ makes the
second integral in (7.8) converge.

The definition of the wave front cycle involves scaling the argument of
θπ by a scaling parameter t ∈ R>0. Let mt : g → g denote scaling by t, i.e.,
mt(ξ) = tξ. Since∫

gR

θπ(tx)φ(x) dx = t−d
∫
gR

θπ(x)φ(t−1x) dx ( d = D dim gR ),

and since

ξ 7→ td φ̂(tξ) is the Fourier transform of x 7→ φ(t−1x) ,

the scaled family of invariant eigendistributions is given by the formula

(7.11)
∫
gR

θπ(tx)φ(x) dx =
1

(2πi)nn!

∫
CC(F)

µ∗λm
∗
t φ̂ (−σ + π∗τλ)n .

Scaling of cotangent vectors by t defines a map on T ∗X; for convenience, we
denote this map also by the symbol mt. The definition of the twisted moment
map implies

(7.12) mt ◦ µλ = µtλ ◦mt and limt→0 µtλ = µ .

In particular,
(7.13)

µ∗λm
∗
t φ̂ (−σ + π∗τλ)n = m∗tµ

∗
tλφ̂ (−σ + π∗τλ)n

= m∗t
(
µ∗tλφ̂ m

∗
t−1(−σ + π∗τλ)n

)
= m∗t

(
µ∗tλφ̂ (−t−2σ + π∗τλ)n

)
.

In the last step we have used the identitiesm∗t−1π
∗τλ = π∗τλ andm∗t−1σ = t−2σ;

the former follows from π ◦mt−1 = π, the latter from the definition of σ. By
(7.11) and (7.13),

(7.14)
∫
gR

θπ(tx)φ(x) dx =
1

(2πi)nn!

∫
CC(F)

µ∗tλφ̂ (−t−2σ + π∗τλ)n ,

since (mt)∗CC(F) = CC(F) – recall: the characteristic cycle is invariant under
scaling by a positive factor.

As in Section 5, we let k = k(CC(F)) denote the least integer such that
µ−1(Ñk) contains the support of CC(F). On T ∗KX ∩ µ−1(N`),

1
n!

(−t−2σ + π∗τλ)n =
t−2`

`!(n− `)! (−σ)` ∧ (π∗τλ)n−` .
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Thus we can rewrite the integral on the right in (7.14) as a sum,

(7.15)

∫
gR

θπ(tx)φ(x) dx

=
∑
`≤k

t−2`

(2πi)n`!(n− `)!

∫
CC(F)∩µ−1(N`)

µ∗tλφ̂ (−σ)` ∧ (π∗τλ)n−` .

To get the full asymptotic expansion of m∗t θπ, one can expand µ∗tλφ̂ as a Taylor
series in t. There are no convergence problems, even though we integrate over
cycles with infinite support: the remainder for the truncated Taylor series
involves various partial derivatives of φ̂, which satisfy the same kind of bound
as φ̂ itself; see [SV4, (3.15–3.16)], where the convergence is deduced from the
rapid decay of φ̂. In particular, since µtλ → µ ,
(7.16)∫

gR

θπ(tx)φ(x) dx

=
t−2k

(2πi)nk!(n− k)!

∫
CC(F)∩µ−1(Nk)

µ∗φ̂ (−σ)k ∧ (π∗τλ)n−k + O(t1−2k)

as t→ 0. The integral on the right is therefore either zero or the leading term
in the asymptotic expansion of the left-hand side.

To relate the integral on the right to the wave front cycle of π, we must
express it as linear combination of integrals of φ̂ over GR-orbits in igR ∩Nk , in
each case with respect to the canonical measure of the orbit in question. We
consider a particular GR-orbit OR in igR ∩Nk, and let O denote the G-orbit in
which OR lies. According to [SV3, Lemma 8.19],

µ∗σO = −σ|µ−1(O) .

Hence, on µ−1(OR),

(7.17)

1
(2πi)kk!

µ∗φ̂ (−σ)k = µ∗(φ̂ dmOR
) ,

where dmOR
=

(σO)k

(2πi)kk!
is the canonical measure on OR .

Note that (2πi)−1σO is a real, nondegenerate 2-form on OR, whose top exterior
power orients OR; this orientation allows us to regard the top exterior power
as positive measure. The restriction of CC(F) to µ−1(OR) can be regarded,
locally, as a product of OR, oriented as above, and a top dimensional cycle
CC(F)(ζ) in the Springer fiber µ−1(ζ) over any particular ζ ∈ OR; this fibration
was used already in the definition of the map (grµ∗)λ in Section 5. We now
appeal to (7.9) and the definition of eλ as 1 + c1(λ) + . . . , and conclude

(7.18)
1

(2πi)n−k(n− k)!

∫
CC(F)(ζ)

µ∗φ̂ τn−kλ = φ̂(ζ)
∫

CC(F)(ζ)
eλ .
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The characteristic cycle CC(F) of the GR-invariant sheaf F is GR-invariant.
It follows that the integral of eλ over CC(F)(ζ) depends on the orbit OR, not
the particular choice of ζ ∈ OR. Let b(OR) denote the value of this integral.
Combining (7.17–7.18), we find

(7.19)

1
(2πi)nk!(n− k)!

∫
CC(F)∩µ−1(OR)

µ∗φ̂ (−σ)k ∧ (π∗τλ)n−k

= b(OR)
∫
OR

φ̂ dmOR
.

The assignment φ 7→
∫
OR

φ̂ dmOR
defines a distribution, the Fourier transform

of the orbit OR ⊂ igR – more precisely, of the canonical measure dmOR
on

OR. We normalize the Fourier transform as in (7.10), without a factor i in the
exponent.

Let us summarize what we have established so far. Taking the sum of the
expressions (7.19) for all GR-orbits igR ∩Nk, we find

(7.20)

φ 7→ 1
(2πi)nk!(n− k)!

∫
CC(F)∩µ−1(Nk)

µ∗φ̂ (−σ)k ∧ (π∗τλ)n−k

is the Fourier transform of
∑

OR⊂igR∩Nk
b(OR) OR

with OR shorthand for the distribution on igR defined by the measure dmOR
.

We do not yet know that ∑
OR⊂igR∩Nk

b(OR) OR 6= 0 .

However, when this holds, (7.16) shows that the distribution (7.20) is the
Fourier transform of the leading term of m∗t θπ as t→ 0. In other words,

(7.21)
∑

OR⊂igR∩Nk
b(OR) OR =

{
WF(π) or

0 .

The definition of the constants b(OR) tells us that
∑
b(OR) [OR] is the cycle in

Nk∩ igR obtained from CC(F) by integrating eλ over the fibers of µ, as defined
in Section 5. Thus, in the notation of Section 5,

(7.22)
∑

OR⊂igR∩Nk
b(OR) [OR] = (grµ∗)λ(CC(F)) .

Proposition (7.6) now follows from (7.21-22).

Remarks on Proposition 7.5. The characteristic cycle of a holonomic
D-module is a local invariant, i.e., local with respect to the base manifold X.
In particular, the holonomic Dλ-module M has a well-defined characteristic
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cycle CC(M). By construction, it is a complex algebraic cycle of the same
dimension as X. We regard it as a geometric cycle, in other words, as cycle in
Hinf

2n (T ∗KX,Z), by orienting its components via the complex structure. A result
of Kashiwara [K2, §8.2] asserts that CC(M) coincides with the characteristic
cycle of F = DR(M):

(7.23) CC(M) = CC(DR(M)) .

We shall give a short proof, based on a result of Ginzburg and on [SV3, The-
orem 4.2], which we have used already.

The reason for (7.23) is simple: both notions of characteristic cycle obey
the same formalism. We shall establish the equality for every (algebraic) regu-
lar holonomic D-module on a complex algebraic manifold X. Since the charac-
teristic cycles are local invariants, we may as well assume that X is affine. To
begin with, we suppose that M is the D-module direct image of a vector bun-
dle ES , with a flat algebraic connection, on a closed irreducible submanifold
S ⊂ X. In that particular case,

(7.24) DR(M) is the sheaf of flat sections of ES in degree codimC(S,X) ,

as can be computed directly. Thus, by (4.3a),

(7.25) CC(DR(M)) = (−1)codimC(S,X) rkC(ES)[T ∗SX] ,

with T ∗SX oriented according to our general convention, as in [SV3, (2.3)]. On
the other hand,

the D-module characteristic cycle CC(M) is the conormal bundle
(7.26)

T ∗SX , oriented by its complex structure, with multiplicity rkC(ES) .

The two orientations of T ∗SX – by our general convention for orienting conormal
bundles and via the complex structure – are related by (−1)codimC(S,X); see
(4.34–4.35). This implies (7.23) in the special case of a flat vector bundle on a
closed submanifold.

Next we suppose that M is the D-module direct image of a regular holo-
nomic D-module N on U , the complement of a divisor {f = 0} in X, and
further, that N satisfies (7.23) on U . Let j denote the embedding U ↪→ X.
Then

(7.27) DR(M) = Rj∗DR(N) ;

see, for example, [Bo]. Thus our open embedding theorem [SV3, (4.2)] implies

(7.28) CC(DR(M)) = lim
s→0+

(
CC(DR(N)) + s d log |f |2

)
.
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Ginsburg’s theorem [Gi, Theorem 3.2], which inspired our theorem, asserts

(7.29) CC(M) = lim
s→0

(
CC(N) + s

df

f

)
.

The equality (7.28) takes place in the real cotangent bundle of X, and (7.27)
in the holomorphic cotangent bundle. Our convention (3.1) for identifying the
two bundles identifies the two differentials d log |f |2 and df

f . Since CC(N) =
CC(DR(N)) by assumption,

(7.30) CC(DR(N)) + s d log |f |2 ∼= CC(N) + s
df

f
( s ∈ R )

via T ∗(XR) ∼= T ∗X. The family of cycles whose limit we take in (7.28) is
therefore the restriction to R≥0 of the complex family appearing in (7.29).
The two notions for taking limits are consistent; hence (7.23) holds for the
D-module direct image M = j∗N if it does for N.

Beginning with flat vector bundles on closed submanifolds, one can gen-
erate the K-group of holonomic D-modules on smooth affine varieties by a
succession of direct images under open affine embeddings. This now gives us
the equality (7.23) in general.

The identity we just established reduces the assertion (7.5) to the analo-
gous one about the D-module characteristic cycle CC(M) of the K-equivariant
D-module M. This cycle is K-invariant and thus can be expressed as an inte-
gral linear combination of conormal bundles of K-orbits in X,

(7.31) CC(M) =
∑

j mj [T ∗SjX]C .

Here [T ∗SjX]C is the fundamental cycle of T ∗SjX oriented by its complex struc-
ture, not by our general convention for orienting conormal bundles. The mo-
ment map exhibits each of these conormal bundles as a fiber bundle over a
K-orbit Op,j in N ∩ p ,

(7.32) T ∗Sj
Fj−−→ Op,j ,

with fiber Fj , which is a union of irreducible components of the Springer fiber
µ−1ζ over any particular ζ ∈ Op,j . Note that several conormal bundles may
lie over the same K-orbit in N ∩ p; in other words, as the index j enumerates
K-orbits Sj in X, there may be repetition among the Op,j . J.-T. Chang proves

(7.33) Ass(π) =
∑

jmj

∫
Fj
eλ [Op,j ]

[C1, (2.5.6)]. Chang’s actual statement relates two homogenous polynomials,
one of which expresses the multiplicity of a K-orbit in Ass(π) as π runs over
the coherent family generated by π. Chang expresses this polynomial in terms
of the integral of eλ over fibers Fj , regarded as a polynomial in the variable λ,
which ranges over h∗. The polynomial identity, evaluated at the localization
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parameter λ, reduces to (7.33). Going back to our definition of integration
over the Springer fiber, one finds

(7.34)
∑

jmj

∫
Fj
eλ [Op,j ] = (grµ∗)λ(CC(M)) .

Proposition 7.5 now follows from (7.23), Chang’s identity (7.33), and the re-
interpretation (7.34) of the right-hand side of (7.33).
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