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The uncountable spectra
of countable theories

By Bradd Hart, Ehud Hrushovski, and Michael C. Laskowski *

Abstract

Let T be a complete, first-order theory in a finite or countable language
having infinite models. Let I(T, κ) be the number of isomorphism types of
models of T of cardinality κ. We denote by µ (respectively µ̂) the number of
cardinals (respectively infinite cardinals) less than or equal to κ.

Theorem. I(T, κ), as a function of κ > ℵ0, is the minimum of 2κ and
one of the following functions:

1. 2κ;

2. the constant function 1;

3.

{
|µ̂n/∼G| − |(µ̂− 1)n/∼G| µ̂ < ω; for some 1 < n < ω and

µ̂ µ̂ ≥ ω; some group G ≤ Sym(n)

4. the constant function i2;

5. id+1(µ) for some infinite, countable ordinal d;

6.
∑d
i=1 Γ(i) where d is an integer greater than 0 (the depth of T ) and

Γ(i) is either id−i−1(µµ̂) or id−i(µσ(i) + α(i)),

where σ(i) is either 1,ℵ0 or i1, and α(i) is 0 or i2; the first possibility
for Γ(i) can occur only when d− i > 0.

The cases (2), (3) of functions taking a finite value were dealt with by
Morley and Lachlan. Shelah showed (1) holds unless a certain structure theory
(superstability and extensions) is valid. He also characterized (4) and (5) and
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showed that in all other cases, for large values of κ, the spectrum is given by
id−1(µ<σ) for a certain σ, the “special number of dimensions.”

The present paper shows, using descriptive set theoretic methods, that
the continuum hypothesis holds for the special number of dimensions. Shelah’s
superstability technology is then used to complete the classification of the all
possible uncountable spectra.

1. Introduction

A theory is a set of sentences - finite statements built from the function
and relation symbols of a fixed language by the use of the Boolean connec-
tives (“and”, “not”, etc.) and quantifiers (“there exists” and “for all”). The
usual axioms for rings, groups and real closed fields are examples of theories.
Associated to any theory is its class of models. A model of a theory is an
algebraic structure that satisfies each of the sentences of the theory. For a
theory T and a cardinal κ, I(T, κ) denotes the number of isomorphism classes
of models of T of size κ. The uncountable spectrum of a theory T is the map
κ 7→ I(T, κ), where κ ranges over all uncountable cardinals. As examples, any
theory of algebraically closed fields of fixed characteristic has I(T, κ) = 1 for
all uncountable κ, while any completion of Peano Arithmetic has I(T, κ) = 2κ.

With Theorem 6.1 we enumerate the possible uncountable spectra of com-
plete theories in a countable language. Examples of theories possessing each
of these spectra are given in [8].

Starting in 1970, Shelah placed the uncountable spectrum problem at the
center stage of model theory. His goal was to develop a taxonomy of complete
theories in a fixed countable language. Shelah’s thesis was that the equivalence
relation of ‘having the same uncountable spectrum’ induces a partition of the
space of complete theories that is natural and useful for other applications.
Over a span of twenty years he realized much of this research program. In
addition to the results mentioned in the abstract, he showed that the uncount-
able spectrum I(T, κ) is nondecreasing for all complete theories T and that the
divisions between spectra reflect structural properties. Shelah found a number
of dividing lines among complete theories. The definitions of these dividing
lines do not mention uncountable objects, but collectively they form an im-
portant distinction between the associated classes of uncountable models. On
one hand, he showed that if a theory is on the ‘nonstructure’ side of at least
one of these lines then models of the theory embed a certain amount of set
theory; as a consequence their spectrum is maximal (i.e., I(T, κ) = 2κ for all
uncountable κ). This is viewed as a negative feature, ruling out the possibility
of a reasonable structure theorem for the class of models of the theory.
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On the other hand, for models of theories that are on the ‘structure’ side
of each of these lines, one can associate a system of combinatorial geometries.
The isomorphism type of a model of such a theory is determined by local
information (i.e., behavior of countable substructures) together with a system
of numerical invariants (i.e., dimensions for the corresponding geometries). It
follows that the uncountable spectrum of such a theory cannot be maximal.
Thus, the uncountable spectrum of a complete theory in a countable language
is nonmaximal if and only if every model of the theory is determined up to
isomorphism by a well-founded, independent tree of countable substructures.

Our work is entirely contained in the stability-theoretic universe created
by Shelah. We offer three new dividing lines on the space of complete theories
in a (fixed) countable language (see Definitions 3.2 and 5.23) and show that
these divisions, when combined with those offered by Shelah, are sufficient to
characterize the uncountable spectra of all such theories. These new divisions
partition the space of complete theories into Borel subsets (with respect to the
natural topology on the space). The first two of these divisions measure how
far the theory is from being totally transcendental, while the third division
makes a much finer distinction between two spectra.

A still finer analysis in terms of geometric stability theory is possible. We
mention for instance that any model of a complete theory whose uncountable
spectrum is min{2ℵα ,id−1(|α + ω| + i2)} for some finite d > 1 interprets an
infinite group. This connection turns out not to be needed for the present
results, and will be presented elsewhere.

The main technical result of the paper is the proof of Theorem 3.3, which
asserts that the embeddability of certain countable configurations of elements
into some model of the theory gives strong lower bounds on the uncountable
spectrum of the theory. The proof of this theorem uses techniques from de-
scriptive set theory along with much of the technology developed to analyze
superstable theories.

We remark that the computation of I(T,ℵ0) is still open. To wit, it re-
mains unknown whether any countable, first-order theory T has I(T,ℵ0) = ℵ1,
even when the continuum hypothesis fails. Following our work, this instance
is the only remaining open question regarding the possible values of I(T, κ).

2. Background

Work on the spectrum problem is quite old. Morley’s categoricity theorem
[14], which asserts that if I(T, κ) = 1 for some uncountable cardinal κ, then
I(T, κ) = 1 for all uncountable κ is perhaps the most familiar computation
of a spectrum. However, some work on the spectrum problem predates this.
If T has an infinite model, then for every infinite cardinal κ the inequality
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1 ≤ I(T, κ) ≤ 2κ follows easily from the Löwenheim-Skolem theorem. Im-
proving on this, Ehrenfeucht [4] discovered the notion of what is now called
an unstable theory and showed that I(T, κ) ≥ 2 for certain uncountable κ

whenever T is unstable.
One cannot overemphasize the impact that Shelah has had on the the

uncountable spectrum problem. Much of the creation of the subfield of stability
theory is singlehandedly due to him and was motivated by this problem. The
following survey of his definitions and theorems establish the framework for
this paper and indicate why it is sufficient for us to work in the very restrictive
setting of classifiable theories of finite depth.

Call a complete theory T with an infinite model classifiable if it is super-
stable, has prime models over pairs, and does not have the dimensional order
property. The following two theorems of Shelah indicate that this notion is a
very robust dividing line among the space of complete theories.

Theorem 2.1. If a countable theory T is not classifiable then I(T, κ) = 2κ

for all κ > ℵ0.

Proof. If T is not superstable then the spectrum of T is computed in
VIII 3.4 of [18]; this is the only place where this spectrum is computed for
all uncountable cardinals κ. Hodges [9] contains a very readable proof of this
for regular cardinals. Shelah’s computation of the spectrum of a superstable
theory with the dimensional order property is given in X 2.5 of [18]. More
detailed proofs are given in Section 3 of Chapter XVI of Baldwin [1] and Theo-
rem 2.3 of Harrington-Makkai [5]. Under the assumptions that T is countable,
superstable, and does not have the dimensional order property, the property
of prime models over pairs is equivalent to T not having the omitting types
order property (OTOP). That the omitting types order property implies that
T has maximal spectrum was proved by Shelah in Chapter 12, Section 4 of
[18]. Another exposition of this fact is given in [6].

In order to state the structural consequences of classifiability we state
three definitions.

Definition 2.2. 1. M is an na-substructure of N , M ⊆na N , if M ⊆ N

and for every formula ϕ(x, y), tuple a from M and finite subset F of M ,
if N contains a solution to ϕ(x, a) not in M then M contains a solution
to ϕ(x, a) that is not algebraic over F .

2. An ω-tree (I,l) is a partial order that is order-isomorphic to a nonempty,
downward closed subtree of <ωJ for some index set J , ordered by initial
segment. The root of I is denoted by 〈〉 and for η 6= 〈〉, η− denotes the
(unique) predecessor of η in the tree.
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3. An independent tree of models of T is a collection {Mη : η ∈ I} of
elementary submodels of a fixed model of T indexed by an ω-tree I that
is independent with respect to the order on I.

4. A normal tree of models of T is a collection {Mη : η ∈ I} of models of T
indexed by an ω-tree I satisfying:

• η l ν l τ implies Mτ/Mν ⊥Mη;

• for all η ∈ I, {Mν : η = ν−} is independent over Mη.

5. A tree decomposition of N is a normal tree of models {Mη : η ∈ I} with
the properties that, for every η ∈ I, Mη is countable, Mη ⊆na N and
η l ν implies Mη ⊆na Mν and wt(Mν/Mη) = 1.

Theorem 2.3. 1. Any normal tree of models is an independent tree of
models.

2. If T is classifiable then there is a prime model over any independent tree
of models of T .

3. Every model N of a classifiable theory is prime and minimal over any
maximal tree decomposition contained in N .

Proofs. The proof of (1) is an exercise in tree manipulations and orthogo-
nality. Details can be found in Chapter 12 of [18] or Section 3 of Harrington-
Makkai [5].

The proof of (2) only relies on T having prime models over pairs. Its proof
can be found in Chapter 12 of [18] or in [6].

The proof of (3) is more substantial. In [18] Shelah proves that any model
of a classifiable theory has a number of tree decompositions of various sorts.
However, the fact that a model of a classifiable theory admits a decomposi-
tion using countable, na-submodels is the content of Theorem C of Shelah-
Buechler [19].

The two parts of Theorem 2.3 provide us with a method of producing
upper bounds on spectra. Namely, I(T, κ) is bounded above by the number
of labelled ω-trees of size κ. Since the components of the tree decompositions
are countable, we may assume that the set of labels has size at most 2ℵ0 . In
Section 5 we obtain better upper bounds in a number of cases by adding more
structural information, which decreases the set of labels. However, at this
point, there are still too many ω-trees of size κ to obtain a reasonable upper
bound on I(T, κ). A further reduction is available by employing the following
additional definitions and theorems of Shelah.
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Definition 2.4. An ω-tree (I,l) is well -founded if it does not have an
infinite branch. The depth of a node η of a well-founded tree I is defined
inductively by

dpI(η) = sup{dpI(ν) + 1 : η l ν}

and the depth of I, dp(I) is equal to dpI(〈〉). A theory T is deep if some
model of T has tree decomposition indexed by a non-well-founded tree. A
(classifiable) theory T is shallow if it is not deep. The depth dp(T ) of a shallow
theory T is the supremum of the depths of decomposition trees of models of T .

We remark that this definition of the depth of a theory differs slightly
from the one given in [18]. The following theorem of Shelah is a consequence
of Theorems X 5.1, X 4.7, and X 6.1 of [18]. Other proofs appear in Harrington-
Makkai [5] and Baldwin [1].

Theorem 2.5. 1. If T is classifiable and deep then I(T, κ) = 2κ for all
κ > ℵ0.

2. If T is shallow then dp(T ) < ω1 and, if ω ≤ dp(T ) < ω1, then

I(T,ℵα) = min{2ℵα ,idp(T )+1(|α+ ω|)}.

As a consequence of these results, we are justified in making the following
assumption:

All theories in the rest of this paper are countable, classifiable and
of finite depth d.

For such theories, one obtains the naive upper bound of

I(T,ℵα) ≤ id−1(|α+ ω|2ℵ0 )

by induction on d, simply by counting the number of labelled trees in the
manner described above.

In general, obtaining lower bounds on spectra is a challenging enterprise.
The difficulty is due to the fact that the tree decomposition of a model given
in Theorem 2.3 is typically not canonical. The method of quasi-isomorphisms
introduced by Shelah and streamlined by Harrington-Makkai and Baldwin-
Harrington (see e.g., [5, §3], [3, §3], or [1, Theorem XVII.4.7]) can be employed
to show that if two models have ‘sufficiently disparate’ decomposition trees,
then one can conclude that the models are nonisomorphic. From this, one
obtains a (rather weak) general lower bound on the spectrum of a classifiable
theory of finite depth d > 1, namely

I(T,ℵα) ≥ min{2ℵα ,id−2(|α+ ω||α+1|)}.
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A proof of this lower bound is given in Theorem 5.10(a) of [16].
Accompanying Shelah’s ‘top-down’ analysis of the spectrum problem is

work of Lachlan, Saffe, and Baldwin, who computed the spectra of theories
satisfying much more stringent constraints.

In [11] and [12], Lachlan classifies the spectra of all ω-categorical, ω-stable
theories. We use this classification verbatim at the end of Section 5. With [16],
Saffe computes the uncountable spectra of all ω-stable theories. A more de-
tailed account of the analysis of this case is given by Baldwin in [1]. Aside
from a few specific facts, we do not make use of this analysis here.

The history of this paper is modestly complicated. Shelah knew the value
of I(T,ℵα) for large values of α (reported in Chapter XIII of [18]) modulo a
certain continuum hypothesis-like question known as the SND (special number
of dimensions) problem. In 1990, Hrushovski solved the SND problem; he also
announced a calculation of the uncountable spectra. This calculation included
a gap related to the behavior of nontrivial types but nonetheless a framework
for the complete computation was introduced. The project lay fallow for several
years before being taken up by the current authors; their initial work was
reported in [8]. Hart and Laskowski recast the superstructure of the argument
in a way to avoid the earlier gap and the work was completed while the three
authors were in residence at MSRI.

We assume that the reader is familiar with stability theory. All of the nec-
essary background can be found in the union of the texts by Baldwin [1] and
Pillay [15]. Our notation is consistent with these texts. In Sections 3–6 we as-
sume that we have a fixed, classifiable theory in a countable language of some
finite depth. (The sufficiency of this assumption is explained in Section 2.)
We work in T eq. In particular, every type over an algebraically closed set is
stationary. As well, throughout the paper we denote finite tuples of elements
by singletons. For a stationary type p(x) and a formula ϕ(x, y), the notation
dpxϕ(x, y) denotes the ϕ-definition of p. As usual in the study of stable the-
ories, we assume that we are working within the context of a large, saturated
model C of T . All sets are assumed to be subsets of C, and all models are
assumed to be elementary submodels of C. In particular, the notation M ⊆ N
implies M ¹ N .

3. More dividing lines

In this section we provide a local analysis of a classifiable theory of finite
depth d. In particular, we ask how far away the theory is from being totally
transcendental. Towards this end, we make the following definitions.

Definition 3.1. 1. For any n ≤ dp(T ), a chain of length n, M, is a
sequence M0 ⊆ . . . ⊆Mn−1 of n countable models of T , where Mi+1/Mi

has weight 1 and Mi+1/Mi ⊥Mi−1 for i > 0.
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2. A chain M is an na-chain if, in addition, each Mi ⊆na C.

3. For M a chain of length n, the set of relevant regular types is the set

R(M) = {p ∈ S(Mn−1) : p is regular and p ⊥Mn−2}.

When n = 1, R(M) is simply the set of regular types over M0.

4. A type p ∈ R(M) is totally transcendental (t.t.) over M if there is a
strongly regular q ∈ R(M), q 6⊥ p with a prime model M(q) over Mn−1

and any realization of q.

It is clear that the notion of a relevant type being t.t. depends only on its
nonorthogonality class. Our new dividing lines concern the presence or absence
of a relevant type that fails to be t.t. and whether there is a trivial ‘bad’ type.

Definition 3.2. A theory T is locally t.t. over M if every type in R(M)
is t.t. overM. We say T admits a trivial failure (of being t.t.) over M if some
trivial type p ∈ R(M) is not t.t. over M.

Our notation is consistent with standard usage, as any totally transcen-
dental theory is locally t.t. over any chain. The heart of the paper will be
devoted to showing that these conditions provide dividing lines for the spectra.
In particular, the proof of the lower bounds offered below follows immediately
from 3.17, 3.21, and 5.10.

Theorem 3.3. 1. If T is not locally t.t. over some chain of length n then

I(T,ℵα) ≥
{

min{2ℵα ,i2} if n = 1
min{2ℵα ,in−2(|α+ ω|i2)} if n > 1

for all ordinals α > 0.

2. If T admits a trivial failure over some chain of length n then

I(T,ℵα) ≥ min{2ℵα ,in−1(|α+ ω|i2)}

for all ordinals α > 0.

Complementing this theorem, in Subsection 3.4 we show that if T is locally
t.t. overM, then there is a strong structure theorem for the class of weight-one
models over Mn−1 that are orthogonal to Mn−2, especially when the chainM
has length equal to the depth of the theory.

The proof of Theorem 3.3 is broken into a number of steps. For the most
part, the two parts of the theorem are proved in parallel. In Subsection 3.1
we define the crucial notions of diverse and diffuse families of leaves. Then,
in the next two subsections we analyze the two ways in which a theory could
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fail to be locally t.t. over a chain. For each of these, we will show that the
failure of being locally t.t. over some chain of length n implies the existence
of a diverse family of leaves of size continuum over some na-chain of length n.
In addition, if there is a trivial failure of being t.t., then the family of leaves
mentioned above will actually be diffuse. Then, in Section 4, we establish
some machinery to build many nonisomorphic models from the existence of
a diverse or diffuse family of leaves. Much of this is bookkeeping, but there
are two important ideas developed there. Foremost is the Unique Decompo-
sition Theorem (Theorem 4.1), which enables us to preserve nonisomorphism
as we step down a decomposition tree. The other idea which is used is the
fact that decomposition trees typically have many automorphisms. This fact
implies that models that are built using such trees as skeletons have desirable
homogeneity properties (see Definition 4.3). Finally, we complete the proof of
Theorem 3.3 in Section 5.

3.1. Diverse and diffuse families of leaves. We begin by introducing some
convenient notation for prime models over independent trees of models. First
of all, suppose that N1 and N2 are two submodels of our fixed saturated model
which are independent over a common submodel N0. By N1 ⊕N0 N2 we will
mean a prime model over N1 ∪ N2; this exists because we are assuming our
theory has prime models over pairs. For our purposes, the exact model that
we fix will not matter because we are only interested in its isomorphism type.
In abstract algebraic terms, we want to think of this as an “internal” direct
sum.

Now suppose that M0 is any model and M0 ⊆ Mi for i = 1, 2, not nec-
essarily independent over M0. By M1 ⊕M0 M2 we will mean the “external”
direct sum i.e., we choose M ′i isomorphic to Mi over M0 and such that M ′1
is independent over M ′2 over M0 and form M ′1 ⊕M0 M

′
2 in the internal sense

defined above. We similarly define
⊕

M F for a family of models, each of which
contains a fixed model M .

Suppose that M = 〈Mζ : ζ ∈ I〉 is an independent family of models with
respect to a tree ordering 〈I,l〉 such that if η l ζ ∈ I then Mη ⊆Mζ . We say
that a family of elementary maps 〈fζ : ζ ∈ I〉 is compatible withM if whenever
ζ ∈ I we have dom(fζ) = Mζ and if η l ζ ∈ I then fζ |Mη = fη.

Definition 3.4. If M is an na-chain of length n, then the set of leaves
of M, Leaves(M), is a set containing one representative up to isomorphism
over M of all chains N of length (n + 1) extending M. If M is an na-chain
of length n and Y ⊆ Leaves(M), then an (M, Y )-tree is an independent tree
of models M = 〈Mζ : ζ ∈ I〉 where I has height at most n + 1 together with
a distinguished copy of M and a family of elementary maps 〈fζ : ζ ∈ I〉
compatible with M such that fζ maps Mζ onto Nlg(ζ) for some N ∈ Y .
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(In particular, note that if lg(ζ) ≤ n then fζ maps onto Mlg(ζ).) An
(M, Y )-model is a model which is prime over an (M, Y )-tree; the copy of M
in this tree will be distinguished as a chain of submodels of this (M, Y )-model.

We make an important convention: Suppose N1 and N2 are two
(M, Y )-models and we wish to form N1 ⊕Mk

N2 for some k < n. We de-
clare that this sum is an “external” sum as discussed above. If we wish to view
this new model as an (M, Y )-model, we need to specify which copy of M will
be distinguished in the sum. Our convention is that the distinguished copy in
the sum will be the distinguished copy from the left-most summand.

As notation, if Z is a set of M-leaves then

N∗(Z) =
⊕
Mn−1

{N : N ∈ Z where N (n) = N}.

We next isolate the two crucial properties of a set Y of leaves. In Section 5
we will show the effects on lower bound estimates for spectra given that there
are large families of leaves with these properties. Lemma 4.2 of Section 4 will
show that a diffuse family is diverse.

Definition 3.5. Let M be an na-chain of length n.

1. A set Y ⊆ Leaves(M) is diffuse if

N ⊕Mn−1 V 6∼=V N ′ ⊕Mn−1 V

for all distinct N,N ′ ∈ Y and any (M, Y )-model V .

2. A set Y ⊆ Leaves(M) is diverse if

N∗(Z1)⊕Mn−2 V 6∼= N∗(Z2)⊕Mn−2 V

over V and Mn−1 for all distinct Z1, Z2 ⊆ Y and any (M, Y )-model V .

If n = 1 we omit the model V and the condition becomes: for distinct
Z1, Z2 ⊆ Y ,

N∗(Z1) 6∼=M0 N
∗(Z2)

The following lemma provides us with an easy way of producing a diffuse
family of leaves.

Lemma 3.6. Suppose that {pi : i ∈ I} is a set of pairwise orthogonal
types in R(M), and that {Ni : i ∈ I} ⊆ Leaves(M) is a set of models such
that Ni is dominated by a realization of pi over Mn−1. Then {Ni : i ∈ I} is
diffuse.
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Proof. In fact, for any model V containing Mn−1, if Ni ⊕Mn−1 V
∼=V

Nj ⊕Mn−1 V then pi is not orthogonal to pj so i = j.

We conclude this subsection by introducing the notion of a special type,
showing that they are present in every nonorthogonality class of R(M), and
proving two technical lemmas that will be used in subsections 3.2 and 3.3 to
obtain diverse or diffuse families of leaves.

As notation for a regular strong type p, let [p] denote the collection of
strong types (over any base set) nonorthogonal to p. We let R∞([p]) =
min{R∞(q) : q ∈ [p]}. It is easy to see that R∞([p]) is the smallest ordi-
nal α such that p is nonorthogonal to some formula θ of R∞-rank α, which is
also the smallest ordinal β such that p is foreign to some formula ψ of R∞-rank
β. The following lemma is general and holds for any superstable theory.

Lemma 3.7. Let M− ⊆M be models of a superstable theory and suppose
that a regular type p ∈ S(M) is orthogonal to M− but is nonorthogonal to
some θ(x, b), where R∞(θ(x, b)) = R∞([p]). Then σ(p) is foreign to θ(x, b) for
any automorphism σ ∈ AutM−(C) satisfying σ(M) ^

M−
b.

Proof. Suppose that θ(c, b) holds and let X be any set. We claim that
tp(c/Xb) ⊥ σ(p). To see this, first note that σ(p) ⊥ M−b, since we assumed
σ(p) ⊥M− and σ(M) ^

M−
b. There are now two cases. If R∞(c/Xb) = R∞([p]),

then tp(c/Xb) does not fork over b, so σ(p) ⊥ tp(c/Xb) by the note above. On
the other hand, if

R∞(c/Xb) < R∞([p]) = R∞([σ(p)]),

then tp(c/Xb) ⊥ σ(p) as well.

We now turn our attention back to a particular chain M of length n.

Definition 3.8. 1. If p ∈ R(M) then q is a tree conjugate of p if for some
k < n − 1 there is an automorphism σ fixing Mk pointwise such that
σ(p) = q and σ(M) ^

Mk

Mn−1. (If n = 1 then p does not have any tree

conjugates.)

2. A type p ∈ R(M) is special via ϕ(x, e) if ϕ(x, e) is p-simple, ϕ(x, e) ∈ p,
and the tree conjugates of p are foreign to ϕ(x, e). A type p ∈ R(M) is
special if it is special via some formula.

As promised, we show that special types exist in every nonorthogonality
class of R(M). The proof of the following lemma is an adaptation of the proof
of Lemma 8.2.19 of [15], which in turn is adapted from arguments in [18].
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Lemma 3.9. Let a be any realization of a type p ∈ R(M), where M
is a chain of length n. There is an a′ ∈ acl(Mn−1a) rMn−1 such that p′ =
tp(a′/Mn−1) ∈ R(M) is special.

Proof. Choose a formula θ(x, b) nonorthogonal to p with R∞(θ(x, b)) =
R∞([p]) and choose a (regular) type q nonorthogonal to p containing θ(x, b).
Choose a set A ⊇ Mn−1 and a nonforking extension r ∈ S(A) of q such that
a ^
Mn−1

A, r is stationary and there is a realization c of r with a /̂
A
c. Now

choose a′ ∈ Cb(stp(bc/Aa)) r acl(A). Since tp(a/A) does not fork over Mn−1,
a′ ∈ acl(Mn−1a)rMn−1, hence p′ = tp(a′/Mn−1) is regular and nonorthogonal
to p. It remains to find an L(Mn−1)-formula witnessing that tp(a′/Mn−1) is
special. Choose a Morley sequence I = 〈bncn : n ∈ ω〉 in stp(bc/Aa) with
b0c0 = bc. Since a′ ∈ dcl(bc) for some initial segment of I, a′ = f(b, c) for
some ∅-definable function f . Note that a ^

Mn−1

Ab. Choose a finite A0 ⊆ A

on which everything is based, let w = tp(A0b/Mn−1) and let ϕ(x, e) be the
L(Mn−1)-formula

ϕ(x, e) := dwy ∃z
(∧

i

θ(zi, yi) ∧ x = f(y, z)

)
.

For notation, assume that w is based on e. Clearly ϕ(a′, e) holds and it follows
easily that ϕ(x, e) is p′-simple. Hence if n = 1 we are done. So suppose that
n > 1 and ϕ(a∗, e) holds. Fix k < n− 1 and an automorphism σ over Mk such
that σ(Mn−1) ^

Mk

Mn−1. Choose A∗b∗ realizing w|Mn−1σ(Mn−1) and choose c∗

such that a∗ = f(b∗, c∗) and θ(c∗i , b
∗
i ) holds for each i. Since p′ is not orthogonal

to p, θ(x, b∗i ) is nonorthogonal to p′ and has least R∞-rank among all formulas
nonorthogonal to p′. Thus, as b∗i ^

Mk

σ(Mn−1), it follows from Lemma 3.7 that

σ(p′) is foreign to θ(x, b∗i ) for all i. Hence tp(a∗/e) is hereditarily orthogonal
to σ(p′). That is, the tree conjugates of p′ are foreign to ϕ(x, e).

The following lemma is simply a restatement of Lemma 3.9 together with
an application of the Open Mapping Theorem.

Lemma 3.10. Suppose that M is a chain of length n > 1 and p ∈ R(M)
is special via ϕ. Further, suppose that a model N/Mn−1 ⊥ Mn−2, and U

is dominated over W by an independent set of conjugates of p. Then any
realization of ϕ in N ⊕Mn−2 U is contained in N ⊕Mn−2 W .

Proof. Suppose that a ∈ N ⊕Mn−2 U realizes ϕ. Then tp(a/NU) is iso-
lated. As the tree conjugates of p are foreign to ϕ,

a ^
NW

d
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for any d ∈ U realizing a conjugate of p. Thus a ^
NW

U , since U is domi-
nated over W by an independent set of realizations of conjugates of p. Hence
tp(a/NW ) is isolated, which implies that a ∈ N ⊕Mn−2 W .

If, in addition, our special type is trivial then we can say more. The lemma
that follows is one of the main reasons why we are able to build a diffuse family
instead of a diverse family when the ‘offending’ type is trivial.

Lemma 3.11. Suppose that M is a chain of length n, N ∈ Leaves(M),
p ∈ R(M) is any trivial, special type via ϕ such that some realization of p
dominates N over Mn−1. Suppose further that Mn−1 ⊆ W ⊆ U , where U

is dominated by W -independent realizations of nonforking extensions of tree
conjugates of p over W and regular types not orthogonal to p. Then if an
element a satisfies ϕ, a ∈ N ⊕Mn−1 U , tp(a/Mn−1) is regular and a ^

Mn−1

U

then tp(a/NW ) is isolated.

Proof. Note first that the assumptions imply that tp(a/Mn−1) is not or-
thogonal to p. Since p is trivial and a ^

Mn−1

U , it follows that a forks with N

over Mn−1. Since ϕ(a) holds, it follows that tp(a/N) (and any extension of this
type) is orthogonal to p and all tree conjugates of p. It follows that a ^

NW
U .

Since tp(a/NU) is isolated, it follows that tp(a/NW ) is isolated.

3.2. The existence of prime models. Throughout this section we assume
that there is some chain M of length n together with a type r ∈ R(M)
for which there is no prime model over Mn−1c, where c is a realization of r.
By choosing an extension M′ of M which is minimal in a certain sense, we
will construct a highly disparate family Y = {Nη : η ∈ ω2} of Leaves(M′)
and a family of types {sη(x, z)} over M ′n−1 that will witness this disparity.
Then, following the construction of the family in Proposition 3.14, we argue
in Corollary 3.17 that if the original type was special, then this set of leaves is
diverse. Further, if in addition the type r is trivial, we show that this family
is actually diffuse. We begin by specifying what we mean by a free extension
of a chain.

Definition 3.12. An na-chain M′ freely extends the chain M if both
chains have the same length (say n), M0 ⊆ M ′0, M ′i−1 ∪ Mi ⊆ M ′i , and
M ′i−1 ^

Mi−1

Mi for all 0 < i < n.

It is readily checked that if r ∈ R(M) is special, then for any free extension
M′ ofM, the nonforking extension of r to R(M′) will be special as well. The
bulk of this subsection is devoted to the proof of Proposition 3.14. In order to
state the proposition precisely, we require some notation.
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Suppose that Y is a family of Leaves(M) that is indexed by ω2. Fix an
(M, Y )-model V and a sequence η ∈ ω2. We can decompose V into two pieces,

V = Vη
⊕
WV

Vno η

where WV is the model prime over the tree truncated below level n,

Vη =
⊕
WV

{Ni : Ni conjugate to Nη}

and
Vno η =

⊕
WV

{Ni : Ni not conjugate to Nη}.

Definition 3.13. A formula θ is ψ-definable over A if θ(C) ⊆ dcl(A∪ψ(C)).

The following special case will be used in the proof of the proposition
below: If M ⊆ A, θ ∈ L(A), ψ ∈ L(M) and for every a realizing θ there
is b such that b^

M
Aa and a ∈ dcl(Ab ∪ ψ(C)), then it follows easily from

compactness and the finite satisfiability of nonforking over a model that θ is
ψ-definable over A.

Proposition 3.14. Assume thatM is a chain of length n and r ∈ R(M)
is a type such that there is no prime model over Mn−1c for c a realization of r.
Then there is a free extension M′ of M and a family Y = {Nη : η ∈ ω2} of
Leaves(M′), along with a family {sη(x, z) : η ∈ ω2} of types over M ′n−1 such
that each Nη realizes sη, yet for any (M′, Y )-model V , V omits sη(x, c∗) for
all c∗ ∈ Vno η where c∗ realizes r|M ′n−1.

Proof. The lack of a prime model over Mn−1c implies the lack of a prime
model over acl(Mn−1c). Look at all possible quadruples (M′, r′, θ, ψ) where
M′ is a free extension of M, r′ is the nonforking extension of r to M ′n−1, and
(fixing a realization c of r′ and letting C = acl(M ′n−1c)) θ(x) is a formula in
L(C) with no isolated extensions over C and ψ is a formula in L(M ′n−1) such
that θ(x) is ψ-definable over C. Among all such quadruples, fix one for which
R∞(ψ) is minimal. To ease notation in what follows, we denoteM′ byM and
r′ by r. As well, fix a realization c of r and let C = acl(Mn−1c).

Let L(C)∗ denote the set of consistent L(C)-formulas that areR∞-minimal
over C. (See Definition B.3 and the discussion following it for the utility of
restricting to this class of formulas.) It is easily seen that every consistent
L(C)-formula extends to an R∞-minimal formula over C and that every con-
sistent extension of such a formula remains R∞-minimal over C. In particular,
we may assume that θ is R∞-minimal over C.
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We will construct the families of leaves and types simultaneously by build-
ing successively better finite approximations. We adopt the notation of forcing
(i.e., partial orders and filters meeting collections of dense sets). However, as
we will only insist that our filters meet a countable collection of dense sets, a
‘generic object’ will already be present in the ground model and each of these
constructions could just as easily be considered as a Henkin construction. Our
set of forcing conditions P is the set of functions p that satisfy the following
conditions:

1. dom(p) = ≤m2 for some m ∈ ω;

2. p(η) ∈ L(C)∗ and has its free variables among {xηk : k ∈ ω};

3. If ν, η ∈ dom(p), ν l η, and ϕ ∈ L(C)∗, then p(ν) ` ϕ(xν0 , . . . , x
ν
k−1)

implies p(η) ` ϕ(xη0, . . . , x
η
k−1); and

4. p(〈〉) ` θ(x〈〉0 ).

We let m(p) be the m such that dom(p) = ≤m2. If p, q ∈ P we put p ≤ q if
and only if m(p) ≥ m(q) and p(η) ` q(η) for all η ∈ dom(q). If G ⊆ P is any
filter and η ∈ ω2, let

pη(G) = {θ ∈ L(C) : p(ν) ` θ(xν0 , . . . , xνk−1) for some p ∈ G and some ν l η}.

We first list a set of basic density conditions we want our filter to meet:

1. For each ϕ ∈ L(C) and each k ∈ ω,

Dϕ,k = {p ∈ P : m(p) ≥ k and ∀η ∈ m(p)2(p(η) ` ϕ or p(η) ` ¬ϕ)};

2. For each ψ(y, z) ∈ L(C) and each k ∈ ω, let Dψ,k be

{p ∈ P : m(p) ≥ k and ∀η ∈ m(p)2(p(η) ` ¬∃zψ(y, z) ∨ ψ(y, xηj ) for some j)}.

It is easy to see that every basic condition is dense in P. As well, if G is a
filter meeting all of the conditions mentioned above (i.e., G∩D 6= ∅ for each D)
then for each η ∈ ω2, pη(G) is a complete type (in an ω-sequence of variables)
over C and if 〈bk : k ∈ ω〉 is a realization of pη(G) then Nη = {bk : k ∈ ω}
is a leaf of M that contains C. (The fact that wt(Nη/Mn−1) = 1 and
Nη/Mn−1 ⊥ Mn−2 follows from our choice of L(C)∗ and Lemma B.4.) Addi-
tionally, Nη |= θ(b0, c). In what follows, we will take sη(x, z) to be tp(b0c/Mn−1).

Before stating the crucial density conditions that will ensure that the
families of leaves and types satisfy the conclusions of the proposition, we pause
to set notation. If I is a tree in which every branch has length n + 1, let
I+ = {ζ ∈ I : lg(ζ) = n}.



     

222 BRADD HART, EHUD HRUSHOVSKI, AND MICHAEL C. LASKOWSKI

Definition 3.15. A finite approximation F of height m consists of a finite
independent tree 〈Bζ : ζ ∈ I〉 of sets where every branch of I has length
n + 1, together with a distinguished copy of M, a family of elementary maps
〈fζ : ζ ∈ I〉 compatible with M, and a map π : I+ → m2. We require that fζ
maps Mlg(ζ) onto Bζ if lg(ζ) < n and fζ maps C onto Bζ if lg(ζ) = n.

As notation, B∗ =
⋃{Bζ : ζ ∈ I}, and Var(F) = {xnζ : n ∈ ω, ζ ∈ I+}.

We say that the finite approximation F ′ is a natural extension of F if the sets
I, 〈Bζ : ζ ∈ I〉, the choice of M, and the maps 〈fζ : ζ ∈ I〉 of F and F ′ are
identical; the height of F ′ is at least the height of F , and π′(ζ) l π(ζ) for all
ζ ∈ I+.

Suppose p ∈ P and F is a finite approximation of height m(p). Let

F(p) =
∧
ζ∈I+

fζ(p(π(ζ))).

The formula F(p), which is over B∗ and whose free variables are among Var(F),
should be thought of as an approximation to an (M, Y )-model V in the state-
ment of the proposition.

As notation, for a fixed finite approximation F of height m and η ∈ m2,
let I+

η = {ζ ∈ I+ : π(ζ) = η}, and let Varη(F) = {xnζ : n ∈ ω, ζ ∈ I+
η }. Let

Ino η = I \ I+
η , B∗no η =

⋃{Bζ : ζ ∈ Ino η} and Varno η(F) = Var(F) \Varη(F).
We now introduce the crucial set of density conditions.

Density condition 3.16. Fix a finite approximation F of height m and
an η ∈ m2. Choose an L(B∗no η)-formula χ(y, u) with u ⊆ Varno η(F) and an
L(B∗)-formula ϕ(x, y, v) such that u ⊆ v ⊆ Var(F). Let D = D(F , η, χ, ϕ)
consist of all p ∈ P such that m(p) ≥ m and for some natural extension F ′ of
F of height m(p),

1. F ′(p) ` ∀y¬χ(y, u) ∨ ∃y(χ(y, ū) ∧ ¬δ(y)) for some δ ∈ r or

2. F ′(p) ` ¬∃x∃y(χ(y, ū) ∧ ϕ(x, y, v̄)) or

3. F ′(p) ` ∃x∃y(χ(y, ū) ∧ ϕ(x, y, v̄) ∧ ¬δ(x, y)) for some L(Mn−1)-formula
δ satisfying p(η) ` δ(xη0, c).

We check that if G is a filter that meets the basic conditions and intersects
each of the sets D(F , η, χ, ϕ), then the sets of leaves Y = {Nη : η ∈ ω2} and
types {sη(x, z) : η ∈ ω2} satisfy the conclusion of the proposition.

Toward this end, fix an (M, Y )-tree, an η ∈ ω2 and suppose V (respec-
tively Vno η) is prime over this tree (respectively over the leaves not conjugate
to Nη). Further, suppose by way of contradiction that c∗ ∈ Vno η realizes r
and b ∈ V realizes sη(x, c∗). Now in fact c∗ and b are isolated over a finite



     

UNCOUNTABLE SPECTRA OF COUNTABLE THEORIES 223

part of the given (M, Y )-tree; c∗ is isolated over this tree by a formula χ(y)
and b is isolated over c∗ and the tree by a formula ϕ(x, c∗). We suppress the
parameters from the tree to ease notation.

Choose a number m such that if conjugates of Nν and Nµ appear in the
finite tree needed to isolate c∗ and b then if ν|m = µ|m then ν = µ. Now this
finite tree together with η, χ and ϕ lead naturally to a finite approximation
F of height m and a density condition D = D(F , η|m, χ, ϕ). We claim that
D cannot meet the filter G. Choose any p ∈ G. By replacing F by a natural
extension, we may assume m(p) = m. Now from the conditions for D, clearly
the first condition must have failed since χ(y) is consistent and implies r. The
second condition must also have failed because ϕ(x, y)∧χ(y) is consistent. But,
if the third condition held, then ϕ(x, c∗) would not even isolate tp(b/Mn−1c

∗).
Hence D ∩G = ∅.

Thus, to complete the proof, it remains to show that each of the sets
D = D(F , η, χ, ϕ) is dense in P. So fix D and choose p ∈ P. Without loss, F
has height m = m(p).

By an F-potential extension of p we mean a sequence of types q̄ =
〈qν : ν̄ ∈ m2〉 such that each qν ∈ S(C) extends p(ν), together with a re-
alization ā of

F(q̄) =
∧
ζ∈I+

fζ(qπ(ζ)).

As each qν is c-isolated, the set of elements of a are independent over B∗,
hence F(q̄) is a complete type over B∗. We concentrate on three cases which
correspond to the three conditions in Density Condition 3.16.

Case one. Does there exist an F-potential extension (q, a) of p such
that ¬∃yχ(y, a) ∨ ∃y(χ(y, ā) ∧ ¬δ(y)) holds for some δ ∈ r? If so, then by
Lemma B.4(3) we can find a sequence of L(C)-formulas 〈αν : ν ∈ m2〉 such
that each αν ∈ qν extends p(ν) so that if we define p′ ≤ p by

p′(ν) =
{
p(ν) if ν ∈ <m2;
αν if ν ∈ m2,

then F(p′) ` ¬∃yχ(y, u) ∨ ∃y(χ(y, ū) ∧ ¬δ(y)) for some δ ∈ r.

Case two. Does there exist an F-potential extension (q̄, ā) of p such
that ¬∃x∃y(χ(y, ā) ∧ ϕ(x, y, ā)) holds? If so, as in the first case we can use
Lemma B.4(3) to define p′ ≤ p such that F(p′) ` ¬∃x∃y(χ(y, ū) ∧ ϕ(x, y, v̄)).

Case three. Does there exist an F-potential extension (q̄, ā) of p such
that ∃x∃y(χ(y, ā)∧ϕ(x, y, ā)∧¬δ(x, y)) holds for some δ(x, y) ∈ L(Mn−1) such
that δ(x0, c) ∈ qη? If so, then using Lemma B.4(3) we can define p′ ≤ p so
that F(p′) ` ∃x∃y(χ(y, ū) ∧ ϕ(x, y, v̄) ∧ ¬δ(x, y)).
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We complete the proof that D is dense by showing that these three cases
are exhaustive. So, assume by way of contradiction that for any F-potential ex-
tension (q, a) of p, χ(y, ā) is consistent and implies r(y), and χ(y, ā)∧ϕ(x, y, ā)
is consistent and implies qη(x, y) ∈ L(Mn−1). We will show that this is an im-
possibility by constructing a quadruple (N , r∗, θ∗, ψ∗) with R∞(ψ∗) < R∞(ψ).

Let Mn be any countable model that contains C and is c-isolated over C.
Increase Bζ for ζ ∈ I+ and extend the maps fζ so that fζ : Mn → Bζ . In
particular, Bζ is now a model for all ζ ∈ I. Let Nno η be prime over B∗no η.
Under the conditions we are working we can find ĉ ∈ Nno η which realizes r
(it is a witness for χ with suitably chosen parameters). Let Ĉ = acl(Mn−1ĉ).

We pause to introduce some more notation that will be used below. Fix
an enumeration ζ1, . . . , ζk of I+

η .

• For any q ∈ S(C) extending p(η), let q∗(x, z) = tp(ac/Mn−1) for any
realization a of q.

• Let q∗i = fζi(q
∗). Formally, q∗i is over fζi(Mn−1), but in places we identify

it with its nonforking extension to Nno η.

• For 1 ≤ i ≤ k, let ci = fζi(c) and let Ci = acl(Nno ηci).

• If q1, . . . , qk ∈ S(C) each extend p(η), an η-sequence in q1, . . . , qk is a
sequence 〈a1, . . . , ak〉, where ai realizes fζi(qi). Note that since each
qi is c-isolated, it follows from Lemma B.4(1) that {a1c1, . . . , akck} is
independent over Nno η. In particular, tp(a1c1, . . . , akck/Nno η) depends
only on q1 . . . , qk.

• If q ∈ S(C) extends p(η), then an η-sequence in q is an η-sequence
〈a1, . . . , ak〉, where every ai realizes fζi(q).

By absorbing parameters from Nno η, ϕ has the form ϕ(x, y1z1, . . . , ykzk). Our
hypotheses imply that

(1) ϕ(x, a1c1, . . . , akck) is consistent and implies q∗(x, c∗)

for any q ∈ S(C) extending p(η) and any η-sequence 〈a1, . . . , ak〉 in q.
Fix a type q ∈ S(C) extending p(η) and an η-sequence 〈a1, . . . , ak〉 in q.

Let b be any realization of ϕ(x, a1c1, . . . , akck). Since θ(b, ĉ), we can choose
l least such that there is an Ĉ-definable function f(z) and a sequence d of
realizations of ψ such that b = f(d). By Lemma B.4(2) there is a model N̂ ⊇ Ĉb
such that N̂ is dominated by Ĉ over Mn−1. Choose a sequence d̄′ of realizations
of ψ from N̂ such that b = f(d̄′). Since θ(b, ĉ) holds, Ĉb is dominated by ĉ over
Mn−1, hence every d′j ∈ d̄′ satisfies d′j /̂

Mn−1

ĉ. Since Ĉ ⊆ Nno η, it follows that

there is ψ∗ ∈ L(Nno η) such that ψ∗(d′j) holds for all j, but R∞(ψ∗) < R∞(ψ).
In particular, b ∈ dcl(Nno η∪ψ∗(C)). As well, by shrinking ϕ as needed we may
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assume that every realization of ϕ(x, a1z1, . . . , akzk) is in dcl(Nno η ∪ ψ∗(C))
for every η-sequence 〈a1, . . . , ak〉 in any sequence of types q1, . . . , qk extending
p(η).

For each 1 ≤ i ≤ k, let ti denote the sequence of variables yizi and define
an equivalence relation Ei(y, y′) ∈ L(Ci) as follows. E1(y, y′) is given by

dq∗2 t2 . . . dq∗ktk∀x(ϕ(x, yc1, t2, . . . , tk)↔ ϕ(x, y′c1, t2, . . . , tk))

and the others are defined analogously. For example, Ek(y, y′) is given by

dq∗1 t1 . . . dq∗k−1
tk−1∀x(ϕ(x, t1, . . . , tk−1, yck)↔ ϕ(x, t1, . . . , tk−1, y

′ck)).

Ostensibly, each of the formulas Ei(y, y′) depend on our choice of q1, . . . , qk.
However, by iterating Lemma B.4(3) there is an L(C)-formula γ(x) ∈ q ex-
tending p(η) such that for each i, Ei(y, y′) does not depend on our choice of
q1, . . . , qk so long as each qj extends γ. So fix such a γ.

We claim that there is at least one i and a consistent L(C)-formula γ′ ` γ
such that the L(Ci)-formula

α(y) := ∃x(fζi(γ
′)(x) ∧ x/Ei = y)

has no isolated extensions over Ci. Indeed, if this were not the case, then there
would be a consistent L(C)-formula γ∗ ` γ such that

αi(y) := ∃x(fζi(γ
∗)(x) ∧ x/Ei = y)

is isolated for all 1 ≤ i ≤ k. In particular, there would be distinct types
p, q ∈ S(C) extending γ∗ and η-sequences 〈d1, . . . , dk〉, 〈e1, . . . , ek〉 of p and q

respectively such that Ei(di, ei) holds for each i. But then it would follow that

∀x(ϕ(x, d1c1, . . . , dkck)↔ ϕ(x, e1c1, . . . , ekck)).

However, this would contradict (1) above.
Fix such an i and a γ′ ` γ. Without loss, we may take i = 1 and we may

identifyM with its image under fζ1 . Let C∗ = C1 and let r∗ be the nonforking
extension of r to C∗. After this identification, we have a model Nno η ⊇M, a
formula ψ∗ over Nno η with R∞(ψ∗) < R∞(ψ), and a formula

θ∗(y) := ∃x(γ′(x) ∧ x/E1 = y)

over C∗ with no isolated extensions over C∗.
We can construe Nno η to be the universe of an n-chain N = 〈Nj : j < n〉

that freely extends M by choosing the models Nj to satisfy

1. N0 ⊆ N1 ⊆ . . . ⊆ Nno η and

2. Nj is prime over
⋃{Bζ : ζ ∈ Ino η, ζ 6≥ ζ1|j+1}.
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In order to demonstrate that the quadruple (N , r∗, θ∗, ψ∗) contradicts the
minimality of (M, r, θ, ψ), it remains to show that every realization of θ∗ is
ψ∗-definable over C∗. Choose a realization a∗ of θ∗ and choose a realization
a of γ′ with a/E1 = a∗. Let q = tp(a/C). Let s = tp(a2c2, . . . , akck/Nno η),
where 〈a1, . . . , ak〉 is any η-sequence in q. Let 〈dj : j ∈ ω〉 be a Morley sequence
in s over C∗ and let D =

⋃{dj : j ∈ ω}. To establish ψ∗-definabilty over C∗ it
suffices by the note following Definition 3.13 to show that any automorphism σ

of C that fixes C∗ ∪D∪ψ∗(C) pointwise also fixes a∗. Fix such a σ and choose
j such that dj^

C∗
aσ(a). However, since any realization of ϕ(x, ac1, dj) is in

dcl(Nno η ∪ ψ∗(C)), it is fixed by σ. Hence E1(a, σ(a)) holds, so σ(a∗) = a∗.
Thus, the quadruple (N , r∗, θ∗, ψ∗) contradicts the minimality of (M, r, θ, ψ),
so the three cases in the proof of the density of D are exhaustive. So D is
dense in P and our proof is complete.

We now show that if a special type fails to have a prime model over a chain,
then the set of leaves constructed in Proposition 3.14 is diverse. Further, if the
type is trivial as well, then the set is diffuse.

Corollary 3.17. 1. If there is a chainM of length n and a special type
r ∈ R(M), with no prime model over Mn−1c for a realization c of r, then
there is a free extension M′ of M with a diverse family of Leaves(M′)
of size continuum.

2. If there is a chain M of length n and a trivial, special type r ∈ R(M),
with no prime model over Mn−1c for a realization c of r, then there is
a free extension M′ of M with a diffuse family of Leaves(M′) of size
continuum.

Proof. (1) Fix any special type r ∈ R(M) such that there is no prime
model over Mn−1c for some realization c of r. Choose the free extension M′
of M and the family Y = {Nη : η ∈ ω2} constructed in Proposition 3.14. We
claim that Y is diverse. Indeed, let Z1, Z2 be distinct subsets of ω2. Without
loss, there is η ∈ Z1 r Z2. As sη(x, z) is realized in Nη, it is surely realized in
N∗(Z1) ⊕Mn−2 V for any (M, Y )-model V . However, it follows immediately
from Proposition 3.14 that sη is omitted in N∗(Z2). So, if n = 1, there is
nothing more to prove. On the other hand, if n > 1, then since the tree
conjugates of r are foreign to some ϕ ∈ r, Lemma 3.10 tells us that any
realization c∗ of r in N∗(Z2)⊕Mn−2 V is contained in N∗(Z2)⊕Mn−2 W where
W is the truncation of V . But Proposition 3.14 tells us that sη(x, c∗) is omitted
in N∗(Z2)⊕Mn−2 V for any such c∗. Hence Y is diverse.

(2) Here, fix a trivial, special type r ∈ R(M) such that there is no prime
model over Mn−1c for some realization c of r. Then as above, the family
Y = {Nη : η ∈ ω2} constructed in Proposition 3.14 is diffuse. To see this,
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choose η 6= ν and some (M, Y )-model V . In order to show that Nη⊕Mn−1V 6∼=V

Nµ ⊕Mn−1 V it suffices to show that s∗η(x, z) is omitted in Nµ ⊕Mn−1 V where
s∗η(x, z) is the nonforking extension of sη to V . By way of contradiction, assume
that d∗c∗ realizes s∗η in Nµ ⊕Mn−1 V . Then, by Lemma 3.11, c∗ would be in
Nµ ⊕Mn−1 W where W is the truncation of V , but as before Proposition 3.14
says that sη(x, c∗) is omitted in Nµ ⊕Mn−1 V , which yields our contradiction.

3.3. The existence of strongly regular types. We begin by describing a
general forcing construction that allows us to find a large subset of any perfect
set of types over any countable, algebraically closed set in a stable theory in
which no type in the set is isolated over any independent set of realizations of
the others.

Lemma 3.18. Assume that A ⊆ B, where A is countable and algebraically
closed, B realizes countably many complete types over A, and Q ⊆ S(A) is a
perfect subset. Then there is a subset R ⊆ Q of size 2ℵ0 such that for any
distinct r1, . . . , rn, s ∈ R, if {c1, . . . , cn} is independent over A, does not fork
with B over A, and each ci realizes ri, then s is not isolated over Bc1 . . . cn.

Proof. Call a formula θ(x) Q-perfect if {q ∈ Q : θ ∈ q} is perfect and let
Q be the set of Q-perfect formulas. Let P denote the set of all finite functions
p : <ω2 → Q such that p(µ) ` p(η) for all η l µ in dom(p). For p, q ∈ P , we
say p ≤ q if and only if dom(p) ⊇ dom(q) and p(η) ` q(η) for all η ∈ dom(q).

We describe two countable lists of dense subsets of P that we wish our
filter G to meet. The first list of dense sets will ensure that we build complete
types (hence elements of Q) in the limit. For each θ ∈ Q and η ∈ <ω2, let

Dθ,η = {p ∈ P : p(η) ` θ or p(η) ` ¬θ}.

Since p(η) is Q-perfect for every p ∈ P, each Dθ,η is dense in P.

Definition 3.19. Suppose that p ∈ P with dom(p) ⊆ ≤m2 and η1, . . . , ηk
are (not necessarily distinct) elements from m2. An L(A)-formula ϕ(x1, . . . , xk)
is decided positively by p at η1, . . . , ηk if ϕ(c1, . . . , ck) holds for allA-independent
sets {c1, . . . , ck} satisfying p(ηi) ∈ tp(ci/A) ∈ Q for each i. The formula ϕ is de-
cided by p at η1, . . . , ηk if either ϕ or ¬ϕ is decided positively by p at η1, . . . , ηk.

Fact. For every L(A)-formula ϕ(x1, . . . , xk), every p ∈ P with
dom(p) ⊆ ≤m2, and every collection η1, . . . , ηk from m2, there is q ≤ p that
decides ϕ at η1, . . . , ηk and satisfies dom(q) ⊆ ≤m2. In addition, q may be
chosen so that qµ = pµ for all µ ∈ m2 distinct from η1, . . . , ηk.



    

228 BRADD HART, EHUD HRUSHOVSKI, AND MICHAEL C. LASKOWSKI

Proof. By induction on k. Assume that the L(A)-formula ϕ(x0, . . . , xk), a
condition p satisfying dom(p) ⊆ ≤m2, and η0, . . . , ηk from m2 are given. Choose
a Q-perfect formula θ of least R(−, ϕ,ℵ0)-rank subject to

θ ` p(η0) and Mult(θ, ϕ(x0;x1, . . . , xk),ℵ0) = 1.

(Since A is algebraically closed and p(η0) is Q-perfect, such a θ exists.) It
follows that

drx0ϕ ≡ dsx0ϕ

for all r, s ∈ Q with θ ∈ r∩s. Let ψ(x1, . . . , xk) be the L(A)-formula drx0ϕ for
any such r and let p′ ≤ p be such that dom(p′) ⊆ ≤m2 and p′(η0) ` θ. Then,
by applying the inductive hypothesis to ψ, we get q ≤ p′ such that q decides
ψ at η1, . . . , ηk. It follows that q decides ϕ at η0, . . . , ηk.

As notation, for every pair of L(A)-formulas δ(x, y1, . . . , yk, z) and θ(x),
and every type r ∈ S(A) realized in B, let

Γδ,r,θ(y1, . . . , yk) := drz∀x(δ(x, y1, . . . , yk, z)→ θ(x)).

For every L(A)-formula δ and every type r ∈ S(A) realized in B, let

Dδ,r = {p ∈ P : there is m such that dom(p) ⊆ ≤m2 and for
all η1, . . . , ηk, µ from m2 satisfying µ 6= ηi for each i, there is an
L(A)-formula θ such that

¬ [Γδ,r,θ(c1, . . . , ck)↔ θ(d)]

for all d realizing p(µ) and all A-independent {c1, . . . , ck} satisfying
p(ηi) ∈ tp(c1/A) ∈ Q for each i}.

Claim. Each Dδ,r is dense in P.

Proof. Choose p ∈ P arbitrarily. Choose m such that dom(p) ⊆ ≤m2. It
suffices to handle each choice of η1, . . . , ηk, µ ∈ m2 separately. So fix some such
η1, . . . , ηk, µ. Since Q is perfect, there is a formula θ such that both p(µ) ∧ θ
and p(µ)∧¬θ are Q-perfect. From the Fact above, there is p′ ≤ p that decides
Γδ,r,θ at η1, . . . , ηk and satisfies dom(p′) ⊆ ≤m2 and p′(µ) = p(µ).

There are two cases. In either case, put q(ηi) = p′(ηi) for each i and put
q(γ) = p′(γ) for all γ 6∈ {η1, . . . , ηk, µ}. Put

q(µ) =

{
p(µ) ∧ ¬θ if Γδ,r,θ is decided positively by p at η1, . . . , ηk
p(µ) ∧ θ otherwise

Now q ≤ p and q meets our requirement for η1, . . . , ηk, µ. After repeating this
process for all sequences η1, . . . , ηk, µ ∈ m2 with µ 6= ηi for each i we obtain
some q∗ ≤ p with q∗ ∈ Dδ,r.
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Now fix any filter G such that G ∩ D 6= ∅ for each of the dense sets D
mentioned above. For each η ∈ ω2, let

pη(x) = {θ : p(ν) ` θ for some p ∈ G and some ν l η}.

The first collection of dense sets is used to guarantee that each pη is a complete
type. Also, as each p(η) consists of Q-perfect formulas, each p(η) ∈ Q. As any
type trivially isolates itself, the second collection of dense sets ensures us that
p(η) 6= p(µ) for all η 6= µ. Now suppose that η1, . . . , ηk, µ ∈ ω2 are distinct.
Pick {ci : 1 ≤ i ≤ k} to be independent over A, nonforking with B over A,
where each ci realizes p(ηi). Suppose that δ(x, c1, . . . , ck, b) isolates a type in
Q. We claim that this type is not p(µ). To see this, let r = tp(b/A) and
choose m such that η1|m, . . . , ηk|m, µ|m are distinct. Pick p ∈ G ∩Dδ,r and let
θ be the formula witnessing that p ∈ Dδ,r for η1|m, . . . , ηk|m, µ|m. If θ is in
the type isolated by δ(x, c1, . . . , ck, b) then Γδ,r,θ(c1, . . . , ck) holds, hence Γδ,r,θ
is decided positively by p at η1|m, . . . , ηk|m. So p(µ|m) ` ¬θ. On the other
hand, if θ is not in the type isolated by δ(x, c1, . . . , ck, b) then ¬Γδ,r,θ is decided
positively by p at η1|m, . . . , ηk|m, so p(µ|m) ` θ. In either case the type isolated
by δ(x, c1, . . . , cn, b) is not pµ.

Lemma 3.20. Suppose that we are given an na-chain M of length n, an
L(Mn−1)-formula ϕ, and a perfect set Q ⊆ R(M) such that every q ∈ Q is
special via ϕ.

1. There is a diverse family Y ⊆ Leaves(M) of size continuum.

2. If, in addition, every q ∈ Q is trivial, then there is a diffuse family
Y ⊆ Leaves(M) of size continuum.

Proof. (1) Suppose that M, ϕ, and Q are given. Choose R ⊆ Q as in
Lemma 3.18, taking Mn−1 for A and W for B. (Note that the isomorphism
type of W does not depend on the choice of Y .) We may assume that for any
r ∈ R, there is a prime model Nr over Mn−1c for any realization c of r, else
there would already be a diverse family of size continuum by Corollary 3.17(1).
We claim that Y = {Nr : r ∈ R} is diverse. To see this, suppose Z1, Z2 ⊆ R

with s ∈ Z1 r Z2. It suffices to show that s is omitted in N∗(Z2)⊕Mn−2 V for
any (M, Y )-model V . When n = 1 this follows immediately from Lemma 3.18,
while if n > 1, then Lemma 3.10 tells us that any potential realization of s
must lie in N∗(Z2)⊕Mn−2 WV , which it does not.

(2) Now suppose that the types are trivial as well. Arguing as above,
apply Lemma 3.18 to obtain a subset R ⊆ Q for Mn−1 and W . Further, by
Corollary 3.17(2) we may assume that there is a prime model Nr over any
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realization of r. In this case, the family Y = {Nr : r ∈ R} will be diffuse. To
see this, choose s 6= r and let s∗ be the nonforking extension of s to V , some
(M, Y )-model. We claim that s∗ is omitted in Nr ⊕Mn−1 V . If it were realized
by an element a, then Lemma 3.11 would imply that a ∈ Nr⊕Mn−1 WV , which
would contradict Lemma 3.18.

Proposition 3.21. Fix a chain M of length n.

1. If some free extension M′ of M has no diverse family of Leaves(M′)
of size continuum, then for every p ∈ R(M) there is a strongly regular
q ∈ R(M) nonorthogonal to p with a prime model over Mn−1c for any
realization c of q.

2. If some free extension M′ of M has no diffuse family of Leaves(M′)
of size continuum, then for every trivial p ∈ R(M) there is a strongly
regular q ∈ R(M) nonorthogonal to p with a prime model over Mn−1c

for any realization c of q.

Proof. We first prove (2). Suppose that the na-chainM′ is a free extension
ofM that has no diffuse family of Leaves(M′) of size continuum. Fix a trivial
type p in R(M). Choose a formula ϕ ∈ L(Mn−1) of least R∞-rank among all
special formulas nonorthogonal to p and let

X = {q ∈ S(Mn−1) : q trivial, weight-1, ϕ ∈ q, and q ⊥Mn−2}.
If n = 1 we delete this last condition. By Lemmas C.2 and C.5, X is a
nonempty Gδ subset of S(Mn−1).

Claim. There are only countably many nonorthogonality classes repre-
sented in X.

Proof. If not, then since nonorthogonality is a Borel equivalence relation,
Lemma C.1(1) implies that X would contain a pairwise orthogonal family
{qi : i ∈ 2ℵ0}. Let Z be the set of nonforking extensions of each qi to M ′n−1.
For each i, choose a regular type ri domination-equivalent to qi. Since M ′n−1

is an na-substructure of the universe, there is a regular type si over M ′n−1

nonorthogonal to qi. Clearly, each si ∈ R(M′), so we have a pairwise orthogo-
nal family of regular types in R(M′) of size continuum, hence there is a diffuse
family of Leaves(M′) by Lemma 3.6, which is a contradiction.

Let {ri : i ∈ j ≤ ω} be a maximal pairwise orthogonal subset of X in
which every ri ⊥ p and let

Xp = {q ∈ X : q 6⊥ p}.
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Since q ∈ Xp if and only if q ∈ X and q ⊥ ri for all i ≤ j, it follows from
Lemma C.4 that Xp is a Gδ subset of S(Mn−1) as well. Since ϕ was chosen to
be special of least R∞-rank, it follows from the proof of Proposition 8.3.5 of
[15] that every element of Xp is regular as well. So, if Xp were uncountable,
then again by Lemma C.1(1) it would contain a perfect subset. By taking
nonforking extension of each of these to M ′n−1, we would obtain a perfect
subset of R(M′), where each element is special via ϕ. But this contradicts
Lemma 3.20(2). Thus, we may assume that Xp is a nonempty, countable Gδ
subset of S(Mn−1). Hence, by Lemma C.1(2) there is an L(Mn−1)-formula
ψ ` ϕ isolating some q ∈ Xp. By Proposition D.15 of [13], this q is a strongly
regular type via ψ. As well, since q is special, if there were no prime model
over Mn−1c for a realization c of q, then Corollary 3.17(2) would give us a
diffuse family of Leaves(M) of size continuum.

We now prove (1). Again, assume that M′ is a na-chain freely extending
M with no diverse subset of Leaves(M′) of size continuum. Fix a type p

in R(M). If p is trivial, then as we will see in Lemma 4.2 that every diffuse
family is diverse, we are done by (2). Thus, we may assume that p is nontrivial.
Hence, by Lemma 8.2.20 of [15], there is a type p′ ∈ R(M) nonorthogonal to p
and a formula θ ∈ p′ witnessing that p′ is special and, in addition, the p-weight
of θ is 1, and p-weight is definable inside θ. Without loss, assume that p = p′.
Let

X = {q ∈ S(Mn−1) : θ ∈ q, wp(q) = 1}.

Since wp(θ) = 1 and p-weight is definable inside θ, X is a closed subset of
S(Mn−1). Now fix a q ∈ X. Since wp(q) = 1, q 6⊥ p. As well, since q is
p-simple, q is regular. Hence, if n > 1 then q ⊥Mn−2. That is,

X = {q ∈ R(M) : q regular, θ ∈ q, and q 6⊥ p}

is closed, hence a Gδ. The proof is now analogous to (1). If X were uncount-
able, then by Lemma C.1(1) it would contain a perfect subset, so by taking
nonforking extensions to M ′n−1 there would be a diverse family of Leaves(M′)
of size continuum by Lemma 3.20. So, we may assume that X is a nonempty,
countable, Gδ subset of S(Mn−1) and hence there is an L(Mn−1)-formula ψ ` θ
isolating some q ∈ X. Again by Proposition D.15 of [13], this q is a strongly
regular type via ψ. As well, since q is special, if there were no prime model
over Mn−1c for a realization c of q, then Corollary 3.17(1) would yield a diverse
family of Leaves(M′) of size continuum.

3.4. Structure theorems for locally t.t. theories. In this subsection we
analyze some of the positive consequences of a theory being locally t.t. over an
n-chain M.
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The following three lemmas are true for any superstable theory. There
is nothing novel about their statements or proofs, as they are central in the
analysis of models of a totally transcendental theory. They are given here
simply to indicate that the assumption of being totally transcendental can be
weakened to include our context.

Lemma 3.22. Suppose that p, q ∈ S(M) where p is regular and q is
strongly regular. Then p and q are orthogonal if and only if they are almost
orthogonal over M .

Proof. Suppose that q is strongly regular via ψ and that p 6⊥ q. Choose a
finite e and realizations a of p|Me and b of q|Me respectively such that a /̂

M
eb.

Choose a formula ϕ(x; y, z) over M such that ϕ(a; e, b) holds and ϕ(a; y, z)
forks over M . Thus

∃z[ϕ(a; e, z) ∧ ψ(z)].

Since M is a model and a^
M
e, there is e′ ∈M such that ∃z[ϕ(a; e′, z) ∧ ψ(z)].

Let b′ be any witness to this formula. As b′ forks with a over M , tp(b′/M) 6⊥ p,
hence tp(b′/M) = q since q is strongly regular via ψ. Thus p and q are not
almost orthogonal over M .

Lemma 3.23. Suppose that p, q ∈ S(M) are nonorthogonal, where p is
regular and q is strongly regular. Then any model containing a realization of p
contains a realization of q.

Proof. Let a realize p and let N ⊇Ma. Again suppose that q is strongly
regular via ψ. Since p and q are not almost orthogonal over M , there is a
formula ϕ(x, y) over M such that ϕ(a, y) forks over M and ϕ(a, b) holds for
some b realizing q. So ∃y[ϕ(a, y)∧ψ(y)] holds in the monster model, hence by
elementarity, N contains a witness b′ to ϕ(a, y) ∧ ψ(y). As before, it follows
from the strong regularity of q and the fact that ϕ(a, y) forks over M that
tp(b′/M) = q.

Notation. Suppose that p ∈ S(M). We adopt the notation M(p) for the
prime model over M and any realization of p, if this prime model exists.

Lemma 3.24. Suppose q ∈ S(M) is strongly regular and M(q) exists.
Then M(q) is atomic over M and any a ∈M(q) such that tp(a/M) is regular.

Proof. Suppose that M(q) is atomic over Mb, where b realizes q, and that
q is strongly regular via ψ(y). Choose a ∈ M(q) \M arbitrarily such that
tp(a/M) is regular. It suffices to show that tp(b/Ma) is isolated. Let θ(x, b)
isolate tp(a/Mb). Since a 6∈ M , it follows from the Open Mapping Theorem
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that a forks with b over M , so let ϕ(a, y) ∈ tp(b/Ma) fork over M . Then the
formula

α(a, y) := θ(a, y) ∧ ϕ(a, y) ∧ ψ(y)

isolates tp(b/Ma). To see this, it is evident that α(a, b) holds. So suppose that
α(a, c) holds for some element c. We will show that tp(b/Ma) = tp(c/Ma).
Since ϕ(a, y) forks over M , tp(a/M) is regular and q is strongly regular via ψ,
it must be that tp(c/M) = q. Hence, θ(x, c) isolates a complete type over Mc.
That is, tp(ab/M) = tp(ac/M), so tp(b/Ma) = tp(c/Ma) as desired.

When we combine the three lemmas above with the existence of prime
models over independent trees of models, we obtain a reasonable structure
theory for the class of models of models extending a fixed chain. We illustrate
this by continuing our analogy with the analysis of totally transcendental the-
ories. The proofs of the following two corollaries follow immediately from the
lemmas above.

Corollary 3.25. If M is countable and p, q ∈ S(M) are both strongly
regular and are nonorthogonal, then if M(q) exists then M(p) exists as well.
Further, M(p) and M(q) are isomorphic over M .

Definition 3.26. I is a strongly regular sequence overM if I is independent
over M and every a ∈ I realizes a strongly regular type in R(M).

Corollary 3.27. If T is locally t.t. over a chain M of length n and
I is a strongly regular sequence over M, then there is a prime model N over
Mn−1 ∪ I. Further, if p and q are nonorthogonal, strongly regular types from
R(M), then dim(p,N) = dim(q,N).

The following lemma will be used in conjunction with the previous corol-
lary to obtain good upper bounds.

Lemma 3.28. Suppose that M is a d-chain, where d is the depth of T .
If T is locally t.t. over M, then any model N ⊇ Md−1 with N/Md−1 ⊥ Md−2

(when d > 1) is prime over Md−1 and any maximal strongly regular sequence
over Md−1.

Proof. Let I be any maximal strongly regular sequence over M inside
N and, from the previous corollary, let N ′ ⊆ N be prime over Md−1 ∪ I.
Suppose, by way of contradiction, that N ′ 6= N . Choose a ∈ N \N ′ such that
p = tp(a/N ′) is regular. Since T has depth d, p is not orthogonal to Md−1, so
choose a regular type q over Md−1 nonorthogonal to p. Since T is locally t.t.
over M, we may assume that q is strongly regular. Let q′ be the nonforking
extension of q to N ′. It follows from Lemma 3.23 that q′ is realized in N , but
this contradicts the maximality of I.
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We conclude this subsection by giving a general lemma that will be used to
aid our counting in some cases when the depth of the theory is small (typically
d = 1 or 2). As notation, note that any countable model M can be viewed as a
chain of length 1. In this case, we let R(M) be the set of regular types over M
and we say that T is locally t.t. over M if it is locally t.t. over the associated
chain of length 1.

Lemma 3.29. Suppose that T is countable and superstable, and that T is
locally t.t. over any countable model M , and that R(M) contains only countably
many nonorthogonality classes. Then T is ω-stable.

Proof. To show that T is ω-stable, for every countable model M0, we will
find a countable model Mω realizing every type over M0. So fix a countable
model M0. We construct Mω to be a union of a chain of models Mn, where
M0 is given and for each n, Mn+1 is chosen to be prime over Mn ∪ In, where
In is a strongly regular sequence over Mn where each nonorthogonality class
of R(Mn) has dimension ℵ0. (Such a sequence In exists since T is locally t.t.
over Mn and is countable since R(Mn) is.)

We claim that Mω realizes every type over M0; in fact, it realizes every
type over Mn for all n. If not, then choose p ∈ S(Mn) of least rank such that
p is omitted in Mω. Let a be a realization of p and let N ⊇ Mna be any
countable model that is dominated by a over Mn. (For instance, N could be
taken to be l-isolated over Mna.) Let q ∈ S(Mn) be any regular type realized
in N \Mn. Since T is locally t.t. over Mn there is a strongly regular type
r ∈ R(Mn) nonorthogonal to q, which by Lemma 3.23 is also realized in N ,
say by b. Since N is dominated by a over Mn, a forks with b over Mn, so
R∞(a/Mnb) < R∞(p). However, we can easily assume that b ∈ Mn+1 and so
R∞(a/Mn+1) < R∞(p) and certainly tp(a/Mn+1) is not realized in Mω which
is a contradiction.

4. Unique decompositions and iteration

Before we can state one of the key theorems of this section, we introduce
a very useful model U . Fix an na-chainM of length n and a set Y of leaves of
M. For every uncountable cardinal λ, we define an (M, Y )-model Uλ which
can be thought of as a ‘λ-saturated (M, Y )-model’ of size λ + 2ℵ0 . That is,
we take Uλ to be prime over an (M, Y )-tree M = 〈Mζ : ζ ∈ I〉. We require
that I is λ-branching above every η ∈ I with lg(η) < n, i.e., {ν : ν− = η}
has cardinality λ. Moreover, if 〈fζ : ζ ∈ I〉 is the family of elementary maps
compatible with M demonstrating that it is an (M, Y )-tree, then for every
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ζ ∈ I with lg(ζ) = n and every N̄ ∈ Y , there are λ-many ν ∈ I with ν− = ζ

such that fν maps onto Nn. For brevity, we denote Uℵ1 by U . The importance
of this (M, Y )-model is given by the following theorem, whose proof follows
from the main theorem of [7].

Theorem 4.1 (Unique Decomposition Theorem). If Q =
⊕

Mk
{Pi : i ∈ I}

and Q′ =
⊕

Mk
{P ′i : i ∈ I ′} where each Pi, P ′i is an (M, Y )-model with weight

one over Mk and Q⊕Mk
V ∼=V Q′⊕Mk

V for some (M, Y )-model V then there
is a bijection f : I → I ′ such that Pi ⊕Mk

U ∼=U P
′
f(i) ⊕Mk

U for all i ∈ I.

Proof. There is no loss in assuming that in fact N = Q⊕Mk
V = Q′⊕Mk

V

so in the terminology of [7] {Pi : i ∈ I} and {P ′i : i ∈ I ′} are sets of independent
Mk-components of N . There is a bijection f : I → I ′ so that for any i ∈ I,
{Pi} ∪ {P ′i : i ∈ I ′} \ {P ′f(i)} is a set of independent Mk-components of N .

So if we fix i ∈ I and let V̂ = (
⊕

Mk
{P ′i : i ∈ I ′} \ {P ′f(i)}) ⊕Mk

V then

N = Pi⊕Mk
V̂ = P ′f(i)⊕Mk

V̂ . Now choose λ large enough so that V̂ embeds into

Uλ. By freely joining Uλ with N over V̂ we obtain Pi ⊕Mk
Uλ = P ′f(i) ⊕Mk

Uλ.
As well, note that U ⊆Pℵ1

Uλ in the notation of [7]. Thus, by Theorem 2.9 of
[7], Pi ⊕Mk

U ∼=U P
′
f(i) ⊕Mk

U which is the conclusion of the theorem.

Our first application of this theorem gives the promised implication be-
tween the two central notions of this section.

Lemma 4.2. If Y is diffuse then Y is diverse.

Proof. Assume that Y is not diverse, i.e., there are distinct Z1, Z2 ⊆ Y

with N∗(Z1)⊕Mn−2 V
∼= N∗(Z2)⊕Mn−2 V over Mn−1 and V for some (M, Y )-

model V . Let V ′ be the (M, Y )-model formed by taking the prime model over
Mn−1 and V . We can assume that N∗(Z1) ⊕Mn−1 V

′ ∼=V ′ N
∗(Z2) ⊕Mn−1 V

′.
Since Z1 6= Z2 it follows from the Unique Decomposition Theorem that there
are distinct N,N ′ ∈ Y such that N ⊕Mn−1 U

∼=U N ′ ⊕Mn−1 U , which implies
that Y is not diffuse.

The following definition captures a notion of homogeneity that our models
will possess.

Definition 4.3. If W ⊆ Q, a set H reflects Q over W if W ⊆ H ⊆ Q

and for every countable A ⊆ Q there is an automorphism σ of Q over W with
σ(A) ⊆ H.

The utility of this notion is given by the lemma below, which will be used
in many different contexts in what follows.
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Lemma 4.4. Suppose that F = {Pi : i ∈ θ} is a family of models,
pairwise nonisomorphic over V ∪ W , where V is countable, and there is a
cardinal λ ≥ |W | such that λℵ0 < θ and every Pi has a reflecting subset over
W of size at most λ. Then there is a subfamily F ′ ⊆ F of size θ such that
P 6∼=W P ′ for distinct P, P ′ ∈ F ′.

Proof. Say i ∼ j if and only if Pi ∼=W Pj . It suffices to show that every
∼-class has size at most λℵ0 . By way of contradiction, assume that some
∼-class C ⊆ θ has size greater than λℵ0 . Without loss, assume 0 ∈ C. Let
H ⊆ P0 be reflecting over W . For each i ∈ C, let fi : Pi → Pj be an
isomorphism over W . By composing each fi with an automorphism over W if
needed, the fact that H is reflecting allows us to assume that fi(V ) ⊆ H for
all i ∈ C. Since |C| > λℵ0 , there are distinct i, j ∈ C such that fi(v) = fj(v)
for each v ∈ V . Thus, f−1

j ◦ fi : Pi → Pj is an isomorphism over V ∪W , which
is a contradiction.

The following definition is arranged to allow us us to ‘step down’ trees
and to achieve a lower bound on I(T,ℵα). The reader should observe that the
hypotheses on κ, λ imply that the existence of an iterable family of models
implies that each model has size greater than continuum.

Definition 4.5. A family F = {Pi : i ∈ θ} of (M, Y )-models is k-iterable
if there are cardinals κ, λ ≥ ℵ0 such that:

1. λℵ0 < κ and λℵ0 < θ;

2. each Pi has size κ and has a reflecting subset Hi over Mk of size λ; and

3. Pi ⊕Mk
U 6∼=U Pj ⊕Mk

U for all distinct i, j ∈ θ.

Lemma 4.6. If there is a k-iterable family of θ models, each of size ℵα,
then I(T,ℵα) ≥ θ.

Proof. Let F be such a family. It follows immediately from the definition
that the models are pairwise nonisomorphic over Mk and there is a cardinal
λ satisfying λℵ0 < ℵα such that every P ∈ F has a reflecting subset of size
λ over Mk. Thus, I(T,ℵα) ≥ θ follows immediately from Lemma 4.4 (taking
W = ∅).

The intuition is that if a family is k-iterable, then we can use the lemma
below to ‘step down’ the tree k times, roughly exponentiating the number of
models at each step.
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Lemma 4.7. If F = {Pi : i ∈ θ} is a k-iterable family of models each
of size ℵα such that k > 0, θ ≤ ℵα, and θℵ0 < |α + ω|θ, then there is a
(k − 1)-iterable family of |α+ ω|θ models, each of size ℵα.

Proof. Fix a cardinal λ ≥ ℵ0 such that λℵ0 < ℵα and, for each i ∈ θ choose
a subset Hi reflecting Pi over Mk. By enlarging each Hi slightly we may take
it to be the prime model over a subtree of a decomposition tree of Pi.

We first claim that there is a subfamily F ′ of F of size θ such that
P ⊕Mk−1

U 6∼=U P
′ ⊕Mk−1

U

for all distinct P, P ′ ∈ F ′. For, if this were not the case, there would be a
set X ⊆ θ of size θ such that Pi ⊕Mk−1

U ∼=U Pj ⊕Mk−1
U for all i, j ∈ X. It

is easily checked that H ′i = Hi ⊕Mk−1
U is of size at most λ · 2ℵ0 and reflects

Pi ⊕Mk−1
U over U . So, by applying Lemma 4.4 to the subfamily there would

be i 6= j such that Pi ⊕Mk−1
U ∼=UMk

Pj ⊕Mk−1
U . If we let V be the prime

model over Mk and U , we can arrange that
Pi ⊕Mk

V ∼=V Pj ⊕Mk
V.

But this would imply Pi ⊕Mk
U ∼=U Pj ⊕Mk

U by the Unique Decomposition
Theorem, which would contradict the k-iterability of F . Thus, by reindexing
we may assume that our original family F satisfies Pi⊕Mk−1

U 6∼=U Pj⊕Mk−1
U

for all distinct i, j ∈ θ.
Let S be an independent (over Mk−1) family of ℵα copies of Pi for each

i ∈ θ. For each P ∈ S choose a submodel HP prime over a subtree of a decom-
position tree of P of size at most λ. Let J denote the set of all cardinal-valued
functions f : θ → ℵ+

α such that f(0) = ℵα. For each f ∈ J , let Sf ⊆ S

consist of f(i) copies of each Pi, and let S∗f ⊆ Sf consist of min{f(i),ℵ0}
copies of each Pi. Let Qf =

⊕
Mk−1

Sf . Each Qf has size ℵα. Let Kf =⊕
Mk−1

{HP : P ∈ S∗f}. As any collection of automorphisms of distinct com-
ponents of Qf extends to an automorphism of Qf over Mk−1, it follows that
each Kf reflects Qf over Mk−1. As well, |Kf | ≤ θ · λ and it follows from our
cardinality assumptions that both λℵ0 and θℵ0 are strictly less than |α+ ω|θ.

Finally, suppose that Qf ⊕Mk−1
U ∼=U Qg ⊕Mk−1

U for some distinct
f, g ∈ J . Then, by the Unique Decomposition Theorem there are distinct
i, j ∈ θ such that Pi ⊕Mk−1

U ∼=U Pj ⊕Mk−1
U , which is contrary to our addi-

tional hypothesis on F mentioned above.

By iterating Lemma 4.7 we obtain the following:

Lemma 4.8. If for some m ≥ 1 there is an m-iterable family of θ models,
each of size ℵα, where θℵ0 = θ, then I(T,ℵα) ≥ min{2ℵα ,im−1(|α+ ω|θ)}.

Proof. Define a sequence of cardinals θ0 < θ1 < . . . < θm by letting
θ0 = θ and θk+1 = |α + ω|θk . Note that θℵ0

k = θk for each k. There are
now two cases. First, if θm−1 ≤ ℵα, then by applying Lemma 4.7 m times,
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one gets a family of θm = im−1(|α + ω|θ) 0-iterable models over M0. Hence,
I(T,ℵα) ≥ im−1(|α+ ω|θ).

For the second case, assume that ℵα < θm−1. Choose k least such that
ℵα < θk (k may be zero). By applying Lemma 4.7 k times, we obtain an
(m− k)-iterable family G of θk models, each of size ℵα. Now if 2ℵα ≤ θk, then
I(T,ℵα) = 2ℵα by applying Lemma 4.6 to this family. However, if θk < 2ℵα ,
then as ℵℵ0

α ≤ θℵ0
k = θk < 2ℵα , we can apply Lemma 4.7 one more time to a

subfamily of G of size ℵα. This produces an (m− k− 1)-iterable family of size
2ℵα , hence I(T,ℵα) = 2ℵα by Lemma 4.6.

5. The counting

In this section, we combine the dichotomies from Section 2 with the ma-
chinery in Section 3 to obtain lower and upper bounds in many situations. Our
results will be strong enough to compute the uncountable spectra in all cases.
As noted in the introduction, we need only concern ourselves with (countable)
classifiable theories of finite depth. For notation, assume that such a theory T
has depth d. We recall the nomenclature of [8].

Definition 5.1. Suppose 1 ≤ n ≤ d.

• TT (n) holds if T is locally t.t. over every chain M of length n.

• TF (n) holds if T admits a trivial failure over some chain of length n (i.e.,
some trivial p ∈ R(M) is not t.t. overM for some chainM of length n.)

• NTF (n) holds (read: nontrivial failure) if there is a chain M of length
n and a nontrivial type p ∈ R(M) that is not totally transcendental over
M.

• We write #RD(n) = 2ℵ0 if there is some chain M of length n where
R(M) contains a family of continuum pairwise nonorthogonal types.

• We write #RD(n) = ℵ0 if there is some chain M of length n for which
R(M) contains infinitely many nonorthogonal types, yet there is no chain
N of length n with continuum many nonorthogonality classes represented
in R(N ).

• We say #RD(n) is finite if only finitely many nonorthogonality classes
are represented in R(M) for every chain M of length n.

• We write #RD(n) = 1 if all types in R(M) are nonorthogonal for all
chains M of length n.
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The notation #RD stands for the number of relevant dimensions. Since
for any n-chainM, S(Mn−1) is a Polish space and the relation of nonorthogo-
nality is a Borel equivalence relation, the number of nonorthogonality classes
represented in R(M) is either countable or of size 2ℵ0 ; hence at least one of
the last four conditions hold for each n.

In the first subsection we use the machinery established earlier to obtain a
number of lower bounds. Then, in the subsections that follow, we put on more
and more conditions on our theory to obtain better and better upper bounds.

5.1. Lower bounds. The goal of this subsection is to obtain good lower
bounds from instances of ‘nonstructure’ of the theory. The first of these is
due to Shelah and has been known for some time. It will be used in two
places, both where the depth of the theory is quite low. For a proof, see either
Theorem 1.20 of Chapter IX of [18] or Theorem C of [2].

Lemma 5.2. If T is superstable but not ω-stable then I(T,ℵα) ≥
min{2ℵα ,i2} for all α > 0.

The next result is the ‘General lower bound’ mentioned in the Introduc-
tion. It is proved by the method of quasi-isomorphisms. (See either Theo-
rem 5.10(a) of [16] or the discussion on page 396 of [1] for a proof.)

Lemma 5.3. If T is classifiable of depth d > 1 then

I(T,ℵα) ≥ min{2ℵα ,id−2(|α+ ω||α+1|)}
for all α > 0.

For each of the next five lemmas and propositions, assume that M is an
na-chain of length n. We begin by considering the effect of a diffuse family of
leaves.

Lemma 5.4. If there is a diffuse family of Leaves(M) of size µ ≥ ℵ0,
then for any ordinal α satisfying ℵα > 2ℵ0 and µℵ0 < |α + ω|µ, there is an
(n− 1)-iterable family of |α+ ω|µ models, each of size ℵα.

Proof. Let F = {Pi : i ∈ 2ℵ0} be diffuse. Let J be the set of all cardinal-
valued functions f : 2ℵ0 → ℵ+

α such that f(0) = ℵα. It follows immediately
from the Unique Decomposition Theorem that the family G = {Qf : f ∈ J},
where

Qf =
⊕
Mn−1

{P (f(i))
i : i ∈ 2ℵ0}

satisfies Qf ⊕Mn−1 U 6∼=U Qg ⊕Mn−1 U for distinct f, g ∈ J . As well, the

substructure Hf =
⊕

Mn−1
{P (f̂(i))

i : i ∈ 2ℵ0}, where f̂(i) = min{f(i),ℵ0},
reflects Qf over Mn−1 and has size continuum.
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The following lemma is routine.

Lemma 5.5. If there is a diverse family of Leaves(M) of size µ ≥ ℵ0,
then for any cardinal κ ≥ µ there is a family of 2µ pairwise nonisomorphic
models over Mn−1, each of size κ.

Proposition 5.6. If there is a diffuse family of Leaves(M) of size con-
tinuum then I(T,ℵα) ≥ min{2ℵα ,in−1(|α + ω|2ℵ0 )} for all ordinals α > 0.

Proof. Fix α > 0. There are three cases. First, assume 2ℵα = 2ℵ0 .
The existence of a diffuse family of size continuum clearly implies that the
theory T is not ℵ0-stable, hence I(T,ℵα) ≥ 2ℵ0 = 2ℵα by Lemma 5.2. Second,
assume ℵα ≤ 2ℵ0 < 2ℵα . Then by Lemma 5.5 there is a family of 2ℵα models
over Mn−1, each of size ℵα, that are pairwise nonisomorphic over Mn−1. Our
cardinal assumptions imply that ℵℵ0

α < 2ℵα , so I(T,ℵα) = 2ℵα .
Finally, if ℵα > 2ℵ0 , then by Lemma 5.4 there is an (n−1)-iterable family

of |α + ω|2ℵ0 models, each of size ℵα. If n = 1, then I(T,ℵα) ≥ |α + ω|2ℵ0 by
Lemma 4.6. However, if n > 1, then by Lemma 4.8

I(T,ℵα) ≥ in−2

(
|α+ ω||α+ω|2ℵ0

)
= in−1(|α+ ω|2ℵ0 ).

We now turn our attention to the existence of a diverse family of leaves.

Lemma 5.7. If there is a diverse family of size µ ≥ ℵ0 and n > 1, then
for any ℵα > 2ℵ0 there is an (n−2)-iterable family of size min{2ℵα , |α+ω|2µ},
where each model has size ℵα.

Proof. Choose a cardinal θ ≤ min{ℵα, 2µ} such that

|α+ ω|θ = min{2ℵα , |α+ ω|2µ}, θℵ0 < ℵα, and θℵ0 < |α+ ω|θ.

(Such a θ can be chosen from {2ℵ0 ,i2,ℵα}.) It follows directly from the diver-
sity of the family of leaves that there is a collection F = {Pi : i ∈ θ} of models
over Mn−1, each of size at most ℵα, that satisfies Pi ⊕Mn−2 U 6∼=U Pj ⊕Mn−2 U

for all distinct i, j ∈ θ.
Let S be an independent (over Mn−2) family of ℵα copies of Pi for each

i ∈ θ. Let J denote the set of all cardinal-valued functions f : θ → ℵ+
α such that

f(0) = ℵα. For each f ∈ J , let Sf ⊆ S consist of f(i) copies of each Pi, and let
S∗f ⊆ Sf consist of min{f(i),ℵ0} copies of each Pi. Let Qf =

⊕
Mn−2

Sf . Each
Qf has size ℵα. Let Kf =

⊕
Mn−2

{P : P ∈ S∗f}. Again, as any collection of
automorphisms of distinct components of Qf extends to an automorphism of
Qf over Mn−2, it follows that each Kf reflects Qf over Mn−2. Since |Kf | = θ

our hypotheses on θ ensure that this family satisfies the cardinal hypotheses
of iterability.
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So, suppose that Qf ⊕Mn−2 U
∼=U Qg ⊕Mn−2 U for some distinct f, g ∈ J .

Then, by the Unique Decomposition Theorem there are distinct i, j ∈ θ such
that Pi ⊕Mn−2 U

∼=U Pj ⊕Mn−2 U , which is impossible.

Proposition 5.8. If there is a diverse family of Leaves(M) of size
continuum then

I(T,ℵα) ≥
{

min{2ℵα ,i2} if n = 1
min{2ℵα ,in−2(|α+ ω|i2)} if n > 1

for all ordinals α > 0.

Proof. First, if ℵα ≤ 2ℵ0 then I(T,ℵα) = 2ℵα by splitting into the same
two cases as in the proof of Proposition 5.6. As well, if ℵα ≥ 2ℵ0 and n = 1,
then Lemma 5.5 implies I(T,ℵα) ≥ i2.

So assume ℵα > 2ℵ0 and n > 1. Then by Lemma 5.7 there is an
(n − 2)-iterable family of min{2ℵα , |α + ω|i2} models, each of size ℵα. Thus,
the proposition follows from Lemma 4.6 if n = 2, and from Lemma 4.8 if n > 2.

We finish this section by obtaining lower bounds that arise from having
suitably large collections of pairwise orthogonal types.

Proposition 5.9. If R(M) contains an infinite family of pairwise or-
thogonal types for some na-chain M of length n, then

I(T,ℵα) ≥ min{2ℵα ,in−1(|α+ ω|ℵ0)}

for all ordinals α > 0.

Proof. First, we claim that I(T,ℵα) ≥ 2ℵ0 for all α > 0. To see this we
split into cases: If T is not ω-stable, this follows from Lemma 5.2. If T is
ω-stable it can be verified by examining the spectra given by Saffe [16].

Next, fix an na-chain M of length n for which R(M) contains infinitely
many pairwise orthogonal types. By Lemma 3.6 there is a diffuse family of
Leaves(M) of size ℵ0. We split into two cases.

If |α + ω|ℵ0 > 2ℵ0 , then α > 2ℵ0 , hence ℵα > 2ℵ0 . Thus, Lemma 5.4
provides us with an (n−1)-iterable family of |α+ω|ℵ0 models over Mn−1, each
of size ℵα. So, we obtain our lower bound via Lemma 4.6 or Lemma 4.8.

On the other hand, assume that |α + ω|ℵ0 = 2ℵ0 . If n = 1, then I(T,ℵα)
≥ 2ℵ0 as noted above, so we assume that n > 2. There are now three subcases.

• If ℵα > 2ℵ0 , then there is an (n−2)-iterable family of size i3, where each
model has size ℵα. As before, the bound follows from Lemmas 4.6 and
Lemma 4.8.
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• If ℵα ≤ 2ℵ0 , but 2ℵα > 2ℵ0 , then the existence of a diverse family of
size ℵ0 implies that there is a family F = {Pi : i ∈ ℵα} of countable
models over Mn−1 such that Pi ⊕Mn−2 U 6∼=U Pj ⊕Mn−2 U for distinct
i, j ∈ ℵα. Varying the dimensions of each of these yields a family of 2ℵα

models, pairwise nonisomorphic over Mn−2, each of of size ℵα. However,
as ℵℵ0

α = 2ℵ0 in this case, we obtain I(T,ℵα) = 2ℵα .

• Finally, if 2ℵα = 2ℵ0 then I(T,ℵα) = 2ℵ0 as in the first paragraph.

Using the notation given at the beginning of this section, we can easily
summarize our lower bound results.

Theorem 5.10. Let T be a countable, classifiable theory of depth d ≥ n.

1. If #RD(n) = 2ℵ0 then I(T,ℵα) ≥ min{2ℵα ,in−1(|α + ω|2ℵ0 )} for all
ordinals α > 0.

2. If #RD(n) = ℵ0 then I(T,ℵα) ≥ min{2ℵα ,in−1(|α+ω|ℵ0)} for all ordi-
nals α > 0.

3. If TF (n) holds then I(T,ℵα) ≥ min{2ℵα ,in−1(|α + ω|2ℵ0 )} for all ordi-
nals α > 0.

4. If NTF (n) holds then

I(T,ℵα) ≥
{

min{2ℵα ,i2} if n = 1
min{2ℵα ,in−2(|α+ ω|i2)} if n > 1

for all ordinals α > 0.

Proof. (1) Choose a chain M of length n such that R(M) contains a
pairwise orthogonal family of types. By passing to a free extension of M, we
may assume that M is an na-chain. Thus, it follows from Lemma 3.6 that
there is a diffuse family of Leaves(M) of size continuum, so the lower bound
follows immediately from Proposition 5.6.

(2) If some chainM has an infinite family of pairwise orthogonal types in
R(M), then this property will be inherited by any na-chain that freely extends
M, so the result follows immediately from Proposition 5.9.

(3) Suppose that some chain M of length n supports a trivial type
p ∈ R(M) that is not totally transcendental above M. By Lemma 3.9 we
may assume that p is special. Since p is not totally transcendental, it follows
from Corollary 3.17(2) and Proposition 3.21(2) that there is a free extension
M′ ofM with a diffuse family of Leaves(M′) of size continuum. So the bound
follows from Proposition 5.6.
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(4) This is analogous to (3). If p ∈ R(M) is not totally transcendental
over M, then, again using Lemma 3.9, it follows from Corollary 3.17(1) and
Proposition 3.21(1) that there is a free extension M′ of M with a diverse
family of Leaves(M′) of size continuum. Thus, the lower bound is given by
Proposition 5.8.

5.2. Upper bounds. In this short subsection we state some definitions and
recall a very useful theorem for obtaining upper bounds.

Definition 5.11. Suppose that M is an n-chain.

• An M-component is any model N such that Mn−1 ⊆na N and
wt(N/Mn−1) = 1.

• We write #CαM for the number ofM-components of size at most ℵα, up
to isomorphism over Mn−1 and

• write #Cαn = sup{#CαM :M is a (d−n)-chain} unless n = 0 and #CαM
is finite for all d-chains. In this case, put #Cα0 = 1.

Proposition 5.12. 1. #Cα0 ≤ 2ℵ0 for all α.

2. If TT (d) holds then #Cα0 = #RD(d) unless the latter is finite, in which
case #Cα0 = 1.

The second part of the above Proposition follows directly from the defini-
tion of TT (d) and Corollary 3.25.

The following theorem is proved by inductively counting the number of
components as we step down a decomposition tree.

Theorem 5.13. If T is a countable, classifiable theory with finite depth
d then

#Cαi+1 ≤ |α+ ω|#Cαi + 2ℵ0

and
I(T,ℵα) ≤ id−i−1(|α+ ω|#Cαi + 2ℵ0)

Proof. By downward induction on i, using the fact that every model is
prime over a normal tree of countable, na-substructures.

As a corollary, we obtain the naive upper bound given in the Introduction.
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Corollary 5.14. If T is countable, classifiable and has finite depth d

then
I(T,ℵα) ≤ id−1(|α+ ω|2ℵ0 )

Combining this upper bound with Theorem 5.10 yields the following spec-
trum:

Corollary 5.15. If TF (d) holds or #RD(d) = 2ℵ0 then

I(T,ℵα) = min{2ℵα ,id−1(|α+ ω|2ℵ0 )}.

In what follows, the assumptions of the given subsection are indicated
in the subsection heading. Under these assumptions, a general upper bound
will be derived and at the end of each subsection, we will indicate under what
conditions this upper bound is met.

5.3. TF (d) fails, #RD(d) ≤ ℵ0 and d > 1. The hypotheses imply that we
have control of the trivial components at level d. In order to get a better upper
bound, we recall a theorem of Shelah that allows us to control the number of
nontrivial components as well. The following lemma is Lemma 4.5 of Chapter
XIII of [18].

Lemma 5.16. Suppose that T is countable and classifiable. If M0 ⊆ℵ1 Mi

and tp(Mi/M0) has weight one and is nontrivial for i = 1, 2 and tp(M1/M0)
and tp(M2/M0) are not orthogonal then M1

∼= M2 over M0.

Fix a (d − 1)-chain M and N , an M-component of size at most ℵα. We
wish to find a set of invariants which determines the isomorphism type of N
over Md−2.

Choose Md−1 ⊆na N so that Md−1 is countable and properly contains
Md−2. Now let I be a maximal Md−1-independent collection of countable
models contained in N , where each is a weight one, na-extension of Md−1.
Since T has depth d, N is prime over I. Since TF (d) fails, eachN ′ ∈ I for which
tp(N ′/Md−1) is not orthogonal to a trivial regular type, is actually determined,
up to isomorphism over Md−1 by this information alone (see Corollary 3.27).
However, we do not have such control over the nontrivial types. In order to
remedy this, we do the following.

Choose I0 ⊆ I, |I0| ≤ 2ℵ0 such that M ′, the prime model over I0, is an
ℵ1-substructure of N . By Fact 5.16, the isomorphism types of the nontrivial
components are determined, up to isomorphism over M ′, by their nonorthog-
onality class. Since the nontrivial (and trivial) components present in I are all
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based on Md−1, there are |α+ ω|#RD(d) possibilities for the isomorphism type
of N over M ′. We did have to fix a countable model Md−1 over Md−2 and a
model M ′ of size at most 2ℵ0 . Clearly, there are at most i2 many possibilities
for these choices, up to isomorphism over Md−2.

In summary, if TF (d) fails and d > 1 then #Cα1 ≤ |α + ω|#RD(d) + i2.
Thus, by Theorem 5.13, we have the following:

I(T,ℵα) ≤ id−2(|α+ ω||α+ω|#RD(d)+i2 + 2ℵ0) = id−1(|α+ ω|#RD(d) + i2).

Combining these upper bounds with the lower bounds of Theorem 5.10 yields
the following corollaries.

Corollary 5.17. 1. If TF (d) fails, NTF (d) holds, #RD(d) = ℵ0, and
d > 1 then

I(T,ℵα) = min{2ℵα ,id−1(|α+ ω|ℵ0 + i2)}.
2. If TF (d) fails, NTF (d) holds, #RD(d) is finite, and d > 1 then

I(T,ℵα) = min{2ℵα ,id−1(|α+ ω|+ i2)}.

Proof. For both cases, note that I(T,ℵα) ≥ min{2ℵα ,id+1} since NTF (d)
holds. If #RD(d) = ℵ0 then the bound I(T,ℵα) ≥ min{2ℵα ,id−1(|α+ ω|ℵ0)}
follows from Theorem 5.10(2), Combining these lower bounds with the upper
bound mentioned above yields the spectrum in (1).

On the other hand, if #RD(d) is finite, then by combining the lower
bound of the preceding paragraph with the general lower bound (Lemma 5.3),
we match the upper bound mentioned above.

Thus, except for the case when d = 1, which we handle in Subsection 5.8,
we have computed the spectra of all (classifiable of finite depth d) theories for
which TT (d) fails or #RD(d) = 2ℵ0 .

5.4. TT (d) holds and #RD(d) ≤ ℵ0. Since TT (d) holds, the positive
results from Subsection 3.4 come into play and yield substantially better upper
bounds. In particular, Proposition 5.12 implies #Cα0 = ℵ0 if #RD(d) = ℵ0

and 1 if #RD(d) is finite.

Corollary 5.18. If TT (d) holds and #RD(d) = ℵ0 then

I(T,ℵα) = min{2ℵα ,id−1(|α+ ω|ℵ0)}.

Proof. Since #Cα0 = ℵ0, it follows from Theorem 5.13 that an upper
bound is

id−1(|α+ ω|ℵ0 + 2ℵ0) = id−1(|α+ ω|ℵ0).

However, the matching lower bound is immediate from Theorem 5.10(2).
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Suppose that #RD(d) is finite. Then Theorem 5.13 yields an upper bound
of

id−1(|α+ ω|+ 2ℵ0).

Note that if d > 1 then we can obtain a matching lower bound if either
TT (d− 1) fails or #RD(d− 1) = 2ℵ0 .

Corollary 5.19. If TT (d) holds, #RD(d) is finite, d > 1, and either
TT (d− 1) fails or #RD(d− 1) = 2ℵ0 , then

I(T,ℵα) = min{2ℵα ,id−1(|α+ ω|+ 2ℵ0)}.

Proof. If either TF (d − 1) holds or #RD(d − 1) = 2ℵ0 , then the lower
bound follows immediately from Theorem 5.10. If NTF (d − 1) holds, then
the lower bound is obtained by combining the lower bound of Theorem 5.10(4)
with the general lower bound of Lemma 5.3.

5.5. Obtaining na-inclusion. Before continuing, we give a technical lemma
and a construction that are needed to establish the more fussy upper bounds.

Lemma 5.20. Suppose that M is a chain of length n > 1 and TT (n)
holds. If Mn−1 ⊆ N such that tp(N/Mn−1) is orthogonal to Mn−2, and every
strongly regular type over Mn−1 which is realized in N \ Mn−1 has infinite
dimension in Mn−1, then Mn−1 ⊆na N .

Proof. Suppose that ϕ(x, ā) has a solution in N \Mn−1 where ā ∈Mn−1.
By relativizing the proof that some regular type is realized between any pair of
models of a superstable theory, there is an element d ∈ dcl(ϕ(N)) \Mn−1 such
that q = tp(d/Mn−1) is regular. Since TT (n) holds, there is a strongly regular
type p ∈ R(M) nonorthogonal to q. Without loss, we may assume that p is
based on a. So, by Lemma 3.23 there a realization c of p in N \Mn−1 that
depends on d over Mn−1. Choose b ∈ ϕ(N) \Mn−1 that depends on c over
Mn−1 and choose e ⊇ a from Mn−1 such that b and c are dependent over ē.
Let the formula χ(b, c, ē) witness this dependence. Let I be an infinite Morley
sequence in the type of p|ā inside Mn−1. Choose c′ ∈ I so that c′ and ē are
independent over a. We have

∃χ(x, c, ē) ∧ ϕ(x, ā)

which is also true when c′ replaces c. So pick b′ so that

χ(b′, c′, ē) ∧ ϕ(b′, ā)

holds. Since b′ and c′ are dependent over ē, b′ cannot be in the algebraic closure
of ā and so we finish.
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We next describe a construction that will be used in the next subsections.

Construction 5.21. Fix a chainM of length (n−1) and anM-component
N . Suppose that n > 1, TT (n − 1) and TT (n) hold and #RD(n) is finite.
Since TT (n − 1) holds, we can find a ∈ N \Mn−2 such that tp(a/Mn−2) is
strongly regular. Let N0 be contained in N and prime over Mn−2a; again,
N0 exists because we are assuming TT (n− 1). Let N 0 be the chain of length
n obtained by concatenating N0 to M. We will define, by induction on i,
countable models Ni ⊆ N , numbers ni and strongly regular types pil ∈ R(Ni)
for l < ni that are pairwise orthogonal.

So suppose that Ni has been defined. Let N i be the chain of length n

obtained by concatenating Ni toM. Let ni be the number of nonorthogonality
classes inR(N i) that are realized inN and that are orthogonal to pjl for all j < i

and l < nj . Since TT (n) holds, we can find strongly regular representatives pil
for l < ni of these classes.

Now, for l < ni, let Iil be a maximal Morley sequence in N for pil if
the dimension of this type in N is countable and otherwise, let Iil be any
countable, infinite Morley sequence in N for pil. Let Ii be the concatenation
of the sequences Iil and finally, let Ni+1 be prime over NiI

i.
We next argue that this process must stop after finitely many steps. To see

this, notice that if not, then if Nω =
⋃
iNi, N ω together with all the pil’s

exemplifies that #RD(n) is not finite. What have we achieved? If Ni is the
last element of this chain then by Lemma 5.20, Ni ⊆na N . To see this, suppose
that b ∈ N \Ni such that q = tp(b/Ni) is strongly regular. Then for some j and
l, q is not orthogonal to pjl and the dimension of this latter type in Ni is infinite.

5.6. TT (d) and TT (d − 1) hold, #RD(d) is finite, d > 1, and
#RD(d− 1) ≤ ℵ0. Our first goal is to obtain an upper bound for theories sat-
isfying these hypotheses. This is accomplished by analyzing Construction 5.21
in detail.

Fix a chainM of length d−1 and anM-component N of size at most ℵα.
Pick a ∈ N such that tp(a/Md−2) is strongly regular.

Let N ′ be the model described in Construction 5.21. N ′ ⊆na N and so
by Lemma 3.28, N is prime over N ′ and I, a strongly regular sequence over
N ′. By the construction of N ′ there are |α+ 1|#RD(d) possibilities for I up to
isomorphism over N ′. Now the construction of N ′ was accomplished in finitely
many steps. We see that at each step i, there were at most countably many
choices for Ii and at the first stage, since #RD(d− 1) ≤ ℵ0, countably many
choices for N0 so there are at most countably many choices for N ′.

In summary, there are at most |α+ω| many isomorphism types of N over
Md−2, i.e., #Cα1 ≤ |α + ω|. Hence, under the assumptions of this subsection,
we get an upper bound of

id−2(|α+ ω||α+ω| + 2ℵ0) = id−1(|α+ ω|).
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Note that this upper bound matches the general lower bound (Lemma 5.3)
whenever α is infinite. So, in the computation of the spectra that follow, we
are only interested in computing I(T,ℵα) when α is finite. We can dispense
with a number of cases at this point.

Corollary 5.22. Suppose that TT (d) and TT (d − 1) hold, d > 1 and
#RD(d) is finite. If any of the following three conditions hold

• d > 1 and #RD(d− 1) = ℵ0;

• d > 2 and TT (d− 2) fails; or

• d > 2 and #RD(d− 2) = 2ℵ0

then I(T,ℵα) = min{2ℵα ,id−1(|α+ ω|)}.

Proof. All three cases follow immediately by combining lower bounds from
Theorem 5.10 with the general lower bound (Lemma 5.3) and matching the
upper bound mentioned above.

To distinguish between the spectra id−1(|α+ω|) and id−2(|α+ω||α+1|)},
we need one further dichotomy.

Definition 5.23. Suppose that T is a countable, classifiable theory with
finite depth d > 1 and moreover, both TT (d) and TT (d−1) hold and #RD(d)
is finite. We say that T has the final property if for every chainM of length d,
there are only finitely many isomorphism types of models N over Md−2 of the
form Pr(Md−1 ∪ J), where J is a countable, strongly regular sequence from
RD(M).

We remark that in the case where T is ω-stable (and satisfies the other
properties) T has the final property if and only if all types of depth d− 2 are
abnormal (of Type V ) in the sense of Baldwin [1].

Corollary 5.24. Suppose that d > 1, TT (d) and TT (d − 1) hold, and
#RD(d) is finite. If T does not have the final property, then

I(T,ℵα) = min{2ℵα ,id−1(|α+ ω|)}.

Proof. First, if T is totally transcendental, then this is proved in Saffe [16]
or Baldwin [1], so we assume that T is not totally transcendental. Hence,
by Lemma 3.29, we may assume that d > 2. So, by the previous corollary,
we may further assume that #RD(d− 1) is finite, TT (d− 2) holds, and that
#RD(d − 2) ≤ ℵ0. As well, if ℵα ≤ 2ℵ0 , then we are done by Lemma 5.2, so
choose α such that ℵα > 2ℵ0 . As noted above, we may assume α is finite (else
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the upper bound already matches the general lower bound). We need to show
that

I(T,ℵα) ≥ min{2ℵα ,id−1}.

It is easily checked that if the final property fails for some chain, then it fails
for some na-chain, so choose M an na-chain of length d for which the final
property fails. Then, by using the method presented in the proof of Lemma 5.6
of Chapter XVIII of [1] one obtains a family {Pi : i ∈ 2ℵ0} of countable models
over Md−2 such that Pi⊕Md−3

U 6∼=U Pj⊕Md−3
U for distinct i, j. Then, arguing

as in the last two paragraphs of Lemma 5.7, we obtain a (d−3)-iterable family
of models of size i2, each of which is of size ℵα. Hence, we obtain our lower
bound from Lemmas 4.6 and 4.8.

5.7. The final case. The assumptions of this case are too many to put in
the subsection heading. We will assume that d > 2, TT (d), TT (d − 1) and
TT (d− 2) hold, #RD(d) and #RD(d− 1) are finite, #RD(d− 2) ≤ ℵ0, and
assume that the final property holds. The case when d = 2 is handled in the
next subsection.

In order to compute the best general upper bound in this case, we will
compute #Cα2 . Toward this end, fix a chain M of length d − 2 and an M-
component N of size at most ℵα. Now fix a ∈ N such that tp(a/Md−3) is
strongly regular and let N0 be the prime model over Md−3a. Since we are
assuming that TT (d − 2) holds and #RD(d − 2) ≤ ℵ0, there are at most
countably many choices for N0 up to isomorphism over Md−3. Now by using
Construction 5.21, we can find Md−2 ⊆na N and by using the argument from
the previous subsection, there are at most countably many choices for Md−2

over N0. Let M′ be the chain of length d− 1 formed by concatenating Md−2

toM. Now in order to understand N over Md−2, it suffices to understand the
isomorphism types ofM′-components inside N . Let N ′ be the model described
in Construction 5.21, now working overM′. Again, N ′ ⊆na N and N is prime
over N ′ and a strongly regular sequence I over N ′. As before, there are only
|α+ 1|#RD(d) possibilities for I over N ′. However, since #RD(d− 1) is finite,
there are only finitely many choices for the first model in the construction of
N ′. In addition, since the final property holds, then at each stage there are only
finitely many choices for the ith model. And, as we noted, the construction of
N ′ is accomplished in finitely many steps and so by König’s Lemma, there are
only finitely many choices for N ′ in all.

In summary, there are at most |α+ω| choices for Md−2 and |α+ l| choices
for N over Md−2. Hence, over Md−2, there are at most |α+ω||α+1| many such
N up to isomorphism. We conclude then that

#Cα2 ≤ |α+ ω||α+1| + ℵ0 = |α+ ω||α+1|
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and the upper bound in this case is

id−3(|α+ ω||α+ω||α+1|
+ 2ℵ0) = id−2(|α+ ω||α+1|).

As this agrees with the general lower bound, it is the spectrum in this case.

5.8. The case of d = 1 or 2. In this section we would like to take care of
the case when d = 1 and finish the previous subsection in the case when d = 2.

To improve the upper bounds in the case d = 1 we make several remarks.
If TF (1) fails and #RD(1) = 1 (this case was handled in subsection 5.3),
we actually obtain the upper bound i2. This can be seen even in the proof
presented in that subsection. After fixing a model of size 2ℵ0 , there is only one
dimension possible. Of course, the spectrum min{2ℵα ,i2} is achieved when T
is unidimensional and not ω-stable.

Next, we improve the upper bounds when TT (1) holds and #RD(1) is
finite. It follows directly from Lemma 3.29 that such theories are totally tran-
scendental, so we could quote Saffe [16]. However, we include a brief discussion
for completeness. The upper bound then, from subsection 5.3 is

|α+ ω|.

If #RD(1) is not 1 then in [11] and [12], Lachlan shows that this spectrum
is correct under these assumptions unless T is ω-categorical. In those pa-
pers, he shows that if T is ω-categorical then for some number m and some
G ≤ Sym(m),

I(T,ℵα) = |(α+ 1)m/G| − |(α)m/G|

Of course, the case when TT (1) holds and #RD(1) = 1 is when T is
ℵ1-categorical and the upper bound is 1.

The case d = 2 only has to be distinguished in the previous subsection.
There we were assuming TT (d − 1) and #RD(d − 1) is finite so again T is
totally transcendental. To obtain an upper bound in this case, we look to
subsection 5.6 and so compute only #Cα1 which in this case (assuming the
final property) would be |α+ l| for some finite number l. So the upper bound
becomes

|α+ ω||α+1|

which agrees with the general lower bound in this case.

6. The spectra

Collecting together all the spectra from Section 4 with the spectra men-
tioned in the introduction, we obtain the following theorem. This theorem was
announced in [8], where examples of theories with each of these spectra were
given.
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Theorem 6.1. For any countable, complete theory T with an infinite
model, the uncountable spectrum ℵα 7→ I(T,ℵα) (α > 0) is the minimum of
the map ℵα 7→ 2ℵα and one of the following maps:

1. 2ℵα ;
2. id+1(|α+ ω|), for some d, ω ≤ d < ω1;

3. id−1(|α+ ω|2ℵ0 ), for some d, 0 < d < ω;

4. id−1(|α+ ω|ℵ0 + i2), for some d, 0 < d < ω;

5. id−1(|α+ ω|+ i2), for some d, 0 < d < ω;

6. id−1(|α+ ω|ℵ0), for some d, 0 < d < ω;

7. id−1(|α+ ω|+ 2ℵ0), for some d, 1 < d < ω;

8. id−1(|α+ ω|), for some d, 0 < d < ω;

9. id−2(|α+ ω||α+1|), for some d, 1 < d < ω;

10. identically i2;

11.

{
|(α+ 1)n/∼G| − |αn/∼G| α < ω, for some 1 < n < ω and

|α| α ≥ ω, some group G ≤ Sym(n);
12. identically 1.

A. Appendix: On na-inclusions

In this first appendix we establish two facts about na-inclusions that
are used in the text. To simplify the proofs, we extend the definition of an
na-extension to arbitrary sets. (This more general definition is only used in
this appendix.)

Definition A.1. If A ⊆ B then A ⊆na B if whenever ϕ(x) ∈ L(A) such
that ϕ(B) \ A is nonempty and F ⊆ A is any finite set then ϕ(A) \ acl(F ) is
nonempty.

The following lemma follows immediately from a union of chains argument.

Lemma A.2. For any set B and any A ⊆ B, there is A′ ⊆na B such that
A ⊆ A′ and |A′| ≤ |A|+ |L|.

Lemma A.3. If B is independent from C over A and A ⊆na B then
C ⊆na BC.
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Proof. Suppose that we fix c ∈ C and b ∈ B so that θ(b, c) holds and
b 6∈ acl(C). It suffices to find b′ ∈ C (in fact we will find it in A) so that θ(b′, c)
holds and b′ 6∈ acl(c). Let p = stp(c/B). Then p is based on some a ∈ A and b
satisfies dpyθ(x, y) that is a formula almost over a. Choose b′ ∈ A\acl(a) which
satisfies the same formula. Then immediately θ(b′, c) holds and b′ 6∈ acl(c).

Lemma A.4. If M ⊆na A and A dominates B over M then M ⊆na B.

Proof. Suppose we fix m ∈M and b ∈ B \M so that θ(b) holds for some
θ ∈ L(M). Let c = Cb(stp(b/A). c ∈ acl(A) \M since b 6∈ M . Moreover,
c ∈ dcl(d̄) for a finite sequence of realizations of θ, d̄. Choose c′ ∈M \ acl(m)
and d̄′ ∈ θ(M) so that c′ ∈ dcl(d̄′). Since c′ 6∈ acl(m), one of these realizations
must also not be in acl(m).

Corollary A.5. If M1 and M2 are independent over M0, M0 ⊆na M1

and N = M1 ⊕M0 M2 then M2 ⊆na N .

B. Appendix: On c- and d-isolation
In this appendix we relate two notions of isolation (the first of which is

due to Shelah) and give a technical lemma that is used primarily in the proof
of Proposition 3.14.

Definition B.1 (T stable).

• A type p ∈ S(A) is c-isolated over A if there is a formula ϕ(x, b) ∈ p such
that no q ∈ S(A) extending ϕ(x, b) forks over b.

• A type p ∈ S(A) is d-isolated (definitionally isolated) over A if for every
ϕ there is a formula ψ ∈ p such that if for any q ∈ S(C) which does not
fork over A , if ψ ∈ q then p|C and q have the same ϕ-definition.

Lemma B.2 (T stable).

1. If A is algebraically closed and p ∈ S(A) is c-isolated, then p is d-isolated
as well.

2. Suppose that A is algebraically closed and ϕ(a1, . . . , ak) holds, where
a1, . . . , ak are independent over A and tp(ai/A) is d-isolated for each i.
Then for any sequence θ1, . . . , θk with θi ∈ tp(ai/A) for each i, there are
θ′i ∈ tp(ai/A) that extend θi such that ϕ(b1, . . . , bk) holds for any sequence
b1, . . . , bk that are independent over A and satisfy θ′i(bi) for each i.
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Proof. (1) Let ψ ∈ p demonstrate that p is c-isolated over A and let
ϕ(x, y) be any L-formula. Since A is algebraically closed we can choose ψ ∈ p
extending ψ such that Mult(ψ′, ϕ,ℵ0) = 1. Now choose q ∈ S(C) that contains
ψ′ and does not fork over A. Since no forking occurs between ψ and q|A we
have

R(q, ϕ,ℵ0) = R(q|A,ϕ,ℵ0) = R(ψ,ϕ,ℵ0) = R(ψ′, ϕ,ℵ0).

Since Mult(ψ′, ϕ,ℵ0) = 1 and ψ′ ∈ p∩q, the ϕ-types of q and p|C are the same,
hence they have the same ϕ-definition.

The proof of (2) is by induction on k. The case k = 1 is clear, so suppose
that k is greater than 1. Suppose that ψ(y1, . . . , yk−1) is the ϕ-definition of
tp(ak/A). Since tp(ak/A) is stationary, ψ(a1, . . . , ak−1) holds. Now suppose
that θ∗k(x) is a formula in tp(ak/A) which is stronger than θk and such that
any other type which contains θ∗k has the same ϕ-definition as tp(ak/A). Now
by induction there are θ∗1, . . . , θ

∗
k−1 which hold for a1, . . . , ak−1 respectively,

and are such that if b1, . . . , bk−1 are independent over A and θ∗i (bi) holds for
all i then ψ(b1, . . . , bk−1) holds. Now suppose that b1, . . . , bk are independent
over A and θ∗i (bi) holds for all i. By the choice of θ∗k, ψ is the ϕ-definition for
tp(bk/Ab1, . . . , bk−1). By assumption, ψ(b1, . . . , bk−1) holds and bk is indepen-
dent from b1, . . . , bk−1 over A so ϕ(b1, . . . , bk) holds.

It is easy to characterize the c-isolated types in a superstable theory. To
see this, we make the following definition.

Definition B.3 (T superstable). A consistent L(A)-formula ϕ(x) is
R∞-minimal over A if R∞(ϕ) = R∞(ϕ′) for all consistent L(A)-formulas ϕ′(x)
(with the same free variables) that extend ϕ.

If T is superstable then it is readily seen that a type p ∈ S(A) is c-isolated
if and only if it contains a formula that is R∞-minimal over A. The following
lemma records three technical results that are used in the text.

Lemma B.4. Let T be superstable and let M ⊆na C.

1. If M ⊆ A and b realizes an R∞-minimal formula over A, then Ab is
dominated by A over M .

2. If M ⊆ A then there is a model N such that M ⊆ A ⊆ N and N is
dominated by A over M .

3. Suppose that A1, . . . , Ak are independent over M , each Ai is algebraically
closed, and M ⊆ Ai for each i. If ai realizes an R∞-minimal formula
ψi over Ai for each i and ϕ(a1, . . . , ak), then there are ψ′i ∈ tp(ai/Ai)
extending ψi for each i such that ϕ(b1, . . . , bk) holds for all b1, . . . , bk such
that ψ′i(bi) holds for each i.
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Proof. (1) This is implicit in the proof of Lemma 5.3 of [19].

(2) Since any consistent L(A)-formula can be extended to an R∞-minimal
formula over A, a model N can be constructed as a sequence of realizations of
c-isolated types, so the result follows from (1).

(3) Since tp(ai/Ai) is c-isolated over Ai and Ai is algebraically closed,
tp(ai/Ai) is d-isolated over Ai for each i. Further, if b1, . . . , bk are chosen so
that ψi(bi) holds for each i, then it follows from (1) that biAi is dominated by
Ai over M . However, since A1, . . . , Ak are independent over M , this implies
that b1A1, . . . , bkAk are independent over M as well. Thus, the result follows
from Lemma B.2(2).

C. Appendix: Gδ subsets of Stone spaces

In this appendix we note two facts from descriptive set theory and then
establish that several subsets of the Stone space S(A) are Gδ with respect to
the usual topology when A is algebraically closed. These results are used in
the proof of Proposition 3.21.

Lemma C.1. Let X be any Polish space, i.e., separable, complete metric
space.

1. Let E be a Borel equivalence relation on X. Either E has countably many
classes or there is a perfect set of pairwise E-inequivalent elements of X.

2. Any nonempty subset of a countable, Gδ subset of X has an isolated
point.

Proof of 2. Suppose A =
⋂
n∈ω Un is nonempty and countable, where each

Un is open in X. Since every subset of A is also a Gδ, it suffices to show that
A has an isolated point. Let Ā denote the topological closure of A in X. As
Ā is Polish, it is a Baire space. However, every Un ∩ Ā is dense in Ā and⋂

n∈ω
(Un ∩ Ā) ∩

⋂
a∈A

Ā r {a} = ∅,

so it follows that Ā r {a} is not dense in Ā for some a ∈ A. That is, this a is
isolated in A.

Fix A countable and algebraically closed. Then the space of types S(A)
(with the usual topology) is a Polish space.

Lemma C.2. {p ∈ S(A) : p is trivial and wt(p) = 1} is a Gδ subset of
S(A).
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Proof. We use the following characterization, which is implicit in Theo-
rem 1.8 of [3].

A type p is trivial of weight 1 if and only if

1. For all countable B ⊇ A, all weight 1 types q and r over B,
and all realizations 〈b, c〉 of q⊗ r, if a realizes p|B, a^

B
b, and

a^
B
c, then a^

B
bc;

2. p has weight at least 1, i.e., for all B ⊇ A, for all types q, r
over B, and all realizations 〈b, c〉 of q⊗ r, if a realizes p|B and
a /̂
B
b, then a^

B
c; and

3. p is not algebraic.

Now, for all three of these conditions, a specific instance of its negation
is witnessed by a formula. Hence, a type p is not trivial, weight 1 if and only
if it is not contained in one of the ‘bad’ formulas. At first glance, it appears
like there are continuum constraints, but since the language is countable there
really are only countably many. Hence the negation of our set is an Fσ, so we
finish.

Lemma C.3. XB = {p : p determines a complete type over B} is a Gδ
subset of S(A) for every countable B ⊇ A. Hence, {p : p ⊥a

A
q} is Gδ in S(A)

for every strong type q that is based on A.

Proof. The second sentence follows immediately from the first. Fix a
countable B ⊇ A. For every L(B)-formula δ(x) we say that the L(A)-formula
decides δ if

ϕ(x) ∧ ϕ(y) implies δ(x)↔ δ(y).

Let D(δ) = {p : there is some ϕ ∈ p that decides δ}. Clearly, each set D(δ)
is open. Thus, it suffices to show that p ∈ XB if and only if p ∈ D(δ) for all
δ(x) ∈ L(B). However, if p ∈ XB, then

p(x) ∧ p(y) implies tp(x/B) = tp(y/B),

so it follows by compactness that some ϕ ∈ p decides δ for every δ ∈ L(B).
Conversely, suppose p ∈ D(δ) for all δ ∈ L(B). Then, given a, b each

realizing p, δ(a)↔ δ(b) for all δ ∈ L(B), hence tp(a/B) = tp(b/B).

Corollary C.4. {p : p is trivial, wt(p) = 1 and p ⊥ q} is a Gδ for
every such q.

Proof. Recall that if p is trivial and wt(p) = 1, then p ⊥ q if and only if
p ⊥a
A
q(ω).
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Lemma C.5. {p ∈ S(A) : p ⊥a
A
A′} is a Gδ subset of S(A) for any

algebraically closed A′ ⊆ A. In particular,

{p : p is trivial, wt(p) = 1 and p ⊥ A′}
is a Gδ for any such A′.

Proof. Since p ⊥a
A
A′ implies p ⊥ A′ among trivial, weight 1 types, the

second sentence follows from the first. To conclude the first, say that the
L(A)-formula ψ(x) decides δ(x, y) ∈ L(A) if

∀x1∀x2∀y
(
ψ(x1) ∧ ψ(x2) ∧ y^

A′
A→ [δ(x1, y)↔ δ(x2, y)]

)
and let D(δ) = {p ∈ S(A) : some ψ ∈ p decides δ(x, y)}. Clearly, each D(δ) is
an open subset of S(A). Thus, it suffices to prove that p ⊥a

A
A′ if and only if

p ∈ D(δ) for all δ(x, y) ∈ L(A).
To see this, first assume that p ⊥a

A
A′. Then c^

A
d for any c realizing p and

any d^
A′
A. That is,

∀x1∀x2∀y
(
p(x1) ∧ p(x2) ∧ y^

A′
A→ [tp(x1y/A) = tp(x2y/A)]

)
,

so by compactness, for every δ(x, y) ∈ L(A) there is a ψ(x) ∈ p deciding δ.
Conversely, suppose p ∈ D(δ) for every δ(x, y) ∈ L(A). Take c realizing p

and d freely joined from A over A′. Choose c∗ realizing p|Ad. Since p ∈ D(δ)
for each δ(x, y), it follows that tp(cd/A) = tp(c∗d/A), so c^

A
d as required.
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