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Proof of the gradient conjecture
of R. Thom

By Krzysztof Kurdyka, Tadeusz Mostowski, and Adam Parusiński

Abstract

Let x(t) be a trajectory of the gradient of a real analytic function and
suppose that x0 is a limit point of x(t). We prove the gradient conjecture of
R. Thom which states that the secants of x(t) at x0 have a limit. Actually we
show a stronger statement: the radial projection of x(t) from x0 onto the unit
sphere has finite length.

0. Introduction

Let f be a real analytic function on an open set U ⊂ Rn and let ∇f be its
gradient in the Euclidean metric. We shall study the trajectories of ∇f , i.e.
the maximal curves x(t) satisfying

dx

dt
(t) = ∇f(x(t)), t ∈ [0, β).

In the sixties ÃLojasiewicz [Lo2] (see also [Lo4]) proved the following result.

ÃLojasiewicz’s Theorem. If x(t) has a limit point x0 ∈ U , i.e. x(tν)→x0

for some sequence tν → β, then the length of x(t) is finite; moreover, β =∞.
Therefore x(t)→ x0 as t→∞.

Note that ∇f(x0) = 0, since otherwise we could extend x(t) through x0.
The purpose of this paper is to prove the following statement, called “the
gradient conjecture of R. Thom” (see [Th], [Ar], [Lo3]):

Gradient Conjecture. Suppose that x(t) → x0. Then x(t) has a

tangent at x0, that is the limit of secants lim
t→∞

x(t)− x0

|x(t)− x0|
exists.
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This conjecture can be restated as follows. Let x̃(t) be the image of x(t)

under the radial projection Rn \{x0} 3 x −→
x− x0

|x− x0|
∈ Sn−1. The conjecture

claims that x̃(t) has a limit.
Actually we shall prove a stronger result: the length of x̃(t) can be uni-

formly bounded for trajectories starting sufficiently close to x0. In the last
chapter we prove that the conjecture holds in the Riemannian case. More pre-
cisely, let ∇gf be the gradient of f with respect to some analytic Riemannian
metric g on U , suppose that x(t) is a trajectory of ∇gf and x(t) → x0; then
x(t) has a tangent at x0.

The paper is organized as follows:
In Section 1 we recall the main argument in ÃLojasiewicz’s theorem, we

derive from it a notion of control function and we explain the crucial role it
plays in the proof of the conjecture.

In Section 2 we recall known results and basic ideas about the conjecture;
in particular we sketch the main idea of [KM], where the first proof of the
conjecture was given. This section contains also some heuristic arguments
which help to explain the construction of a control function. In the end we
state some stronger conjectures on the behavior of a trajectory x(t) near its
limit point x0.

Section 3 contains a detailed plan of the proof of the conjecture, i.e., the
construction of a control function.

The proof of the conjecture is given in Sections 4–7.
In Section 8 we show that actually there is a uniform bound: the radial

projections of all trajectories, having 0 as the limit point, have their lengths
bounded by a universal constant.

Let x̃0 denote the limit point of x̃(t). In the second part of Section 8
we compare the distance |x̃(t) − x̃0| and r = |x(t) − x0|. By the conjecture,
|x̃(t) − x̃0| → 0 as r → 0, but, as some examples show, it may go to 0 more
slowly than any positive power of r. Geometrically this means that there is
no “cuspidal neighborhood” of the tangent line P to x(t) at x0, of the form
{x ∈ Rn; dist(x, P ) ≤ rδ}, δ > 1, which captures the trajectory near the limit
point.

Finally in Section 9 we prove the gradient conjecture in the Riemannian
case by reducing it to the Euclidean case.

Notation and conventions. In the sequel we shall always assume x0 = 0
and f(0) = 0, so that in particular, f is negative on x(t). We often write r
instead of |x| which is the Euclidean norm of x. We use the standard notation
ϕ = o(ψ) or ϕ = O(ψ) to compare the asymptotic behavior of ϕ and ψ, usually
when we approach the origin. We write ϕ ∼ ψ if ϕ = O(ψ) and ψ = O(ϕ),
and ϕ ' ψ if ϕ

ψ tends to 1.
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1. ÃLojasiewicz’s argument and control functions

We shall usually parametrize x(t) by its arc-length s, starting from point
p0 = x(0), and

ẋ =
dx

ds
=
∇f
|∇f | .

By ÃLojasiewicz’s theorem the length of x(s) is finite. Denote it by s0. Then
x(s)→ 0 as s→ s0.

Our proof is modeled on ÃLojasiewicz’s idea [Lo2] so we recall first his
argument. The key point of this argument is the ÃLojasiewicz inequality for the
gradient [Lo1] which states that in a neighborhood U0 of the origin

(1.1) |∇f | ≥ c|f |ρ

for some ρ < 1 and c > 0. Thus in U0 we have on the trajectory x(s)

(1.2)
df

ds
= 〈∇f, ẋ〉 = |∇f | ≥ c|f |ρ.

In particular f(x(s)) is increasing and

d|f |1−ρ
ds

≤ −[c(1− ρ)] < 0,

the sign coming from the fact that |f | is decreasing on the trajectory. The
integration of |f |1−ρ yields the following: if x(s) lies in U0 for s ∈ [s1, s2], then
the length of the segment of the curve between s1 and s2 is bounded by

c1[|f(x(s1))|1−ρ − |f(x(s2))|1−ρ],

where c1 = [c(1 − ρ)]−1. Consequently, if the starting point p0 = x(0) is
sufficiently close to the origin, then:

1. The length of x(s) between p0 = x(0) and the origin is bounded by
c1|f(p0)|1−ρ.

2. The curve cannot leave U0.

3. |f(x(s))| ≥ c2r
N , where r = |x(s)|, N = 1/(1− ρ), c2 = c−N1 .

In this paper we shall often refer to the argument presented above as
ÃLojasiewicz ’s argument.

A control function, say g, for a trajectory x(s), is a function defined on a
set which contains the trajectory, such that g(x(s)) grows “fast enough.” In
ÃLojasiewicz’s proof, the function f itself is a control function; what “grows
fast enough” means is given by (1.2); it is this rate of growth, together with
boundedness of f , which implies that the length of x(s) is finite.
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To illustrate how a control function will be used, consider the radial pro-
jection x̃(s) of the trajectory. Let us parametrize x̃(s) by its arc-length s̃. We
use s̃ to parametrize the trajectory itself. Assume that we have a control func-
tion g, bounded on the trajectory, such that the function s̃ → g(x(s̃)) grows
sufficiently fast. Then the length of x̃(s) must be finite, as in ÃLojasiewicz’s
argument. As we show in Section 7, for a given trajectory x(t) there exists a
control function of the form

g = F − a− rα,

where a is a negative constant, α > 0 is small enough and F = f
rl

with some
rational l.

More precisely, g is bounded on the trajectory and satisfies dg
ds̃ ≥ |g|ξ, for

a ξ < 1. Hence the proof can be completed by the ÃLojasiewicz argument.

2. Geometric motivations and historical account

We shall discuss now some known cases of the gradient conjecture and
some ideas related to its proof.

Let us expand the function f in the polar coordinates (r, θ) in Rn, with
θ ∈ Sn−1:

(2.1) f = f0(r) + rmF0(θ) + . . . ,

F0 6= const. If m =∞, then all trajectories of ∇f are straight lines. Now the
equations dx

dt (t) = ∇f in polar coordinates are

(2.2)
dr

dt
=
∂f

∂r
,

dθ

dt
= r−2∂f

∂θ
.

The spherical part of f , i.e. F0(θ), can be considered as a function on
Sn−1 or as a function on Rn \ {0} 3 x 7→ F0

(
x
|x|

)
.

If the order d of f0(r) is smaller than or equal to m− 1, then the gradient
conjecture is easy since for some C > 0∣∣∣dθ(x(r))

dr

∣∣∣ < Crm−d−1 < C,

for r = |x(s)| < 1. Now the length of x̃(r) = θ(x(r)) is finite since the length
of r(x(s)) = |x(s)| is finite.

R. Thom, J. Martinet and N. Kuiper (see also F. Ichikawa [Ic]) proved
two cases of the gradient conjecture by using (2.2) and applying ÃLojasiewicz’s
argument to F0. They proved that:
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1. F0(x(s)) has a limit α ≤ 0,

2. if α < 0 or if {F0 = 0} ∩ {∇F0 = 0} has only isolated points, then the
limit of secants of x(s) exists.

The proofs are published in [Mu].

Attempts to construct a control function. Let us again use expansion (2.1).
Denote by ∇F0 the gradient F0 with respect to the Riemannian metric induced
on the sphere Sn−1 by the Euclidean metric on Rn.

Assume first that f is a homogeneous polynomial of degree m, that is
f = rmF0(θ), F0 6= 0. It was observed by R. Thom that x̃(s) is a trajectory
of ∇F0
|∇F0| ; hence the gradient conjecture holds in this case. Moreover, by the

ÃLojasiewicz inequality (1.1) for the function F0 : Sn−1 → R it can be easily
seen that F0 = f

rm as a function on Rn \ 0 is a control function for x(s̃).
In the general case it is easy to start to construct a control function. By the

above result of Thom and Martinet we may assume that α = lims→s0 F0(x(s))
= 0. Suppose that C > 0 is big enough; then F0 increases on x(s) outside the
set

Ω0 = {x = (r, θ) : |∇F0(θ)| < Cr}.
Thus, F0 may be considered as a control function, but only in Rn \ Ω0. Using
this fact we see that x(s) must fall into Ω0 and cannot leave it.

Now it is natural to replace Rn by Ω0 and to try to construct a control
function in Ω0 \Ω1, where Ω1 is a (proper) subset of Ω0, and to prove that x(s)
must fall into Ω1, etc. More precisely we want to obtain a sequence Ωi ⊂ Ωi+1

such that dimensions of tangent cones (at 0) are decreasing.
Already the second step is not easy. Attempts to realize it were undertaken

by N. Kuiper and Hu Xing Lin in the 3-dimensional case. Under an additional
assumption Hu [Hu] succeeded in proving the gradient conjecture along these
lines.

The first proof of the gradient conjecture in the general case was given
in [KM]. Its starting point was that one can guess the end of the story of
Ω0,Ω1, . . . . Indeed, let x(s) be a trajectory of ∇f tending to 0.

For any λ ∈ R we define

(2.3) D(λ) = {x : |∇f(x)| < rλ}
and we put k = sup{λ : γ intersects D(λ) in any nbd. of 0}. We fix a rational
λ < k sufficiently close to k and consider D(λ) as the “last” of Ωi.

A rather detailed analysis of the structure of D(λ) was done in the spirit
of L-regular decomposition into L-regular sets (called also pancakes) of [Pa1],
[Ku1], [Pa2]. As a result it was found that a function of the form

(2.4) F =
f + crk+1+δ

rk+1
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(for suitable constants c, δ) should be taken as a control function. Its behavior
was studied by different means inside D(λ) and outside D(λ). We didn’t suc-
ceed in proving that F increases always on x(s), but we proved that it increases
fast enough in most parts of x(s). The final result was that the limit of secants
exists.

Blowing-up and the finiteness conjecture. As far as we know the most
common method (suggested also by R. Thom [Th]) to solve the gradient con-
jecture was to blow-up. Consider p : M → Rn the blowing up of 0 in Rn. Let
x∗(s) be the lifting of x(s) via p; what one needs to prove the conjecture is
that x∗(s) has a limit as s→ s0. One may try to follow ÃLojasiewicz; x∗(s) is a
trajectory of the gradient of f ◦ p in the “metric” induced by p; however, this
“metric” degenerates on p−1(0) and the ÃLojasiewicz inequality (1.1) does not
hold.

One may generalize this approach as follows. Let V be any subvariety of
the singular locus of f (i.e. df = 0 on V ), let M be an analytic manifold and
p : M → Rn a proper analytic map such that p : M \ p−1(V ) → Rn \ V is a
diffeomorphism. For example, p may be a finite composition of blow-ups with
smooth centers. One may conjecture that the lifting of x(t) to M has a limit.
Actually this follows from a stronger statement called the finiteness conjecture
(proposed by R. Moussu and the first named author independently):

The finiteness conjecture for the gradient. Let A be a sub-
analytic subset of Rn, then the set {t ∈ [0,∞); x(t) ∈ A} has finitely many
connected components.

Actually we can also consider an apparently weaker conjecture with a
smaller class of sets, assuming that A is an analytic subset of Rn.

The analytic finiteness conjecture for the gradient. Let A
be an analytic subset of Rn; then either x(t) stays in A or it intersects A in a
finite number of points.

The analytic finiteness conjecture implies (cf. [Ku2]) that the limit of
tangents lims→s0

x′(s)
|x′(s)| exists, which is still an open question in general, and

which implies the gradient conjecture. Another consequence of the analytic
finiteness conjecture is the positive answer to a conjecture of R. Thom that
|x(t)| is strictly decreasing from a certain moment.

F. Sanz [Sa] proved the analytic finiteness conjecture for n = 3 under the
assumption that corankD2f(0) = 2. At the end of this section we propose a
simple proof of the finiteness conjecture for n = 2. Recall that in this case any
subanalytic set is actually semianalytic. Now, both finiteness conjectures are
equivalent.
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Proposition 2.1. If Γ is an analytic subset in a neighborhood of 0 ∈ R2

and x(t) → 0 is a trajectory of ∇f , then either x(t) lies entirely in Γ or it
intersects Γ in a finite number of points.

Proof. First we show that x(t) cannot spiral around the origin. For this
purpose we expand the function f in the polar coordinates (r, θ) in R2, so that
we have as in (2.1)

f = f0(r) + rmF0(θ) + . . . ,

where F0 6= const is a function of θ ∈ R. If m =∞, then all trajectories of ∇f
are straight lines. Assume that m <∞, then for some ε > 0 one of the sectors

A+(ε) = {x = (r, θ) : F ′0(θ) > ε}, A−(ε) = {x = (r, θ) : F ′0(θ) < −ε}

is not empty, and therefore, by periodicity of F0, so is the other one (maybe for
a smaller ε). It follows by (2.2) that, in a sufficiently small neighborhood of 0,
the trajectory x(t) crosses A+(ε) only anti-clockwise and A−(ε) clockwise. So
θ is bounded on x(t) and, in other words, the trajectory cannot spiral.

To end the proof of proposition take any semianalytic arc Γ1 ⊂ Γ \ {0},
0 ∈ Γ1. If ∇f is tangent to Γ1 and x(t) meets Γ1, then of course x(t) stays in
Γ1. In the other case, ∇f is nowhere tangent to Γ1, in a small neighborhood
of 0. So Γ1 can be crossed by x(t) only in one way. Since θ is bounded on x(t)
and Γ1 has tangent at 0, the trajectory meets Γ1 only in a finite number of
points.

3. The plan of the proof

The present proof is a simplified and modified version of the proof in [KM]
proposed by the third named author. We shall outline below its main points.
The proof is fairly elementary and is based on the theory of singularities.

First we replace the sets D(λ), see (2.3), by much simpler sets W ε =
{x; f(x) 6= 0, ε|∇′f | ≤ |∂rf |}, ε > 0, and then guess what the exponents
l = k+ 1 of the denominators of (2.4) are. The role of W ε can be explained as
follows. Decompose the gradient ∇f into its radial ∂rf ∂

∂r and spherical ∇′f
components, ∇f = ∂rf

∂
∂r + ∇′f , r stands for |x|. Then, most of the time

along the trajectory, the radial part must dominate; otherwise the trajectory
would spiral and never reach the origin. Thus the trajectory x(s) cannot stay
away from the sets W ε. On the contrary it has to pass through W ε in any
neighborhood of the origin; for ε > 0 sufficiently small, see Proposition 6.2
below. But the limits of r∂rf

f (x), as x→ 0, and x ∈W ε, are rational numbers
and so form a finite subset L of Q; see Proposition 4.2. We call L the set
of characteristic exponents of f . It can be understood as a generalization
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of the ÃLojasiewicz exponent; see Remark 4.4 below. Then, as we prove in
Proposition 6.2, for each trajectory x(s) there is an l ∈ L such that |f |

rl
(x(s))

stays bounded from 0 and∞. Thus F = f
rl

is a natural candidate for a control
function.

Let us remark that the main difficulty in proving the gradient conjecture
comes from the movement of x(s) in the sets of the form {rδ|∇′f | ≤ |∂rf | ≤
r−η|∇′f |}, for δ > 0 and η > 0. If |∂rf | < rδ|∇′f |, then the spherical part
of the movement is dominant. Therefore not only F but even f itself can be
used as a control function to bound the length of x̃(s) (see, for instance, the
last part of the proof of Theorem 8.1). On the other hand, if r−η|∇′f | < |∂rf |,
then the movement in the radial direction dominates. The function −rα, for
any α > 0, can be chosen as a control function; see the proof of Theorem 7.1.

Let us come back to F = f
rl

. We observe that F (x(s)) has a limit a < 0
as x(s) → 0. This follows from the theory of asymptotic critical values of
F which we recall briefly in Section 5. Moreover, this limit has to be an
asymptotic critical value of F and the set of such values is finite. Finally,
we have a strong version of the ÃLojasiewicz inequality for F , r|∇F | ≥ |F |ρ,
0 < ρ < 1, not everywhere but at least on the sets where the main difficulty
arises, that is, on the set {|∂rf | ≤ r−η|∇′f |}; see Proposition 5.3 and Lemma
7.2 below. Now the proof of the gradient conjecture is fairly easy. As we show
in Section 7, g = F − a− rα, for α > 0 and sufficiently small, is a good control
function: it is bounded on the trajectory and satisfies dg

ds̃ ≥ |g|ξ, for a ξ < 1.
Hence the proof can be completed by the ÃLojasiewicz argument.

The main tools of the proof are the curve selection lemma and the clas-
sical ÃLojasiewicz inequalities. Only the proofs of Propositions 5.1 and 5.3 use
the existence of Whitney stratification (with the (b) or (w) condition) of real
analytic sets. For the existence of Whitney stratification see for instance [Lo1],
[V]. A short and relatively elementary proof was presented also in [LSW]. Un-
like the proof in [KM] our proof does not use L-regular sets, though it would
be right to say that the study of L-regular decompositions led us, to a great
extent, to the proof presented in this paper.

3.1. A short guide on constants and exponents. There are many equa-
tions and inequalities in the proof and each of them contains exponents and
constants. Let us explain briefly the role of the most important ones. The con-
stants are not important in general except for two of them: cf , ε. The other
constants just exist and usually we denote by c the positive constants that are
supposed to be sufficiently small and by C the ones which are supposed to be
sufficiently big. By cf we denote the constant of the Bochnak-ÃLojasiewicz in-
equality; see Lemma 4.3 below. For cf we may take any number smaller than
the multiplicity of f at the origin. For ε we may take any positive number
smaller than 1

2cf (1 − ρf ), where ρf is the ÃLojasiewcz exponent, the smallest
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number ρ satisfying (1.1). The set L of characteristic exponents of f is defined
in the following section. For each exponent l ∈ L there is an ω > 0 defined in
(6.4) (related to δ of Proposition 4.2). In general the letter δ may signify dif-
ferent exponents at different places of the proof, similarly to c and C, but the
exponent ω satisfying (6.4) is fixed (common for all l ∈ L for simplicity). The
other important exponent is α < ω, α > 0, which is used in the formula (7.3)
for the control function g. The exponent η of the proof of the main theorem
has auxiliary meaning, it allows us to decompose the set W ε

l into two pieces;
W−η,l and to W ε

l \W−η,l and use different arguments on each piece; η is chosen
so that α < η < ω.

4. Characteristic exponents

Fix an exponent ρ < 1 so that in a neighborhood of the origin we have
the ÃLojasiewicz inequality (1.1). The gradient ∇f of f splits into its radial
component ∂f

∂r
∂
∂r and the spherical one ∇′f = ∇f − ∂f

∂r
∂
∂r . We shall denote ∂f

∂r

by ∂rf for convenience.
For ε > 0 we denote W ε = {x; f(x) 6= 0, ε|∇′f | ≤ |∂rf |}. Note that

W ε ⊂W ε′ for ε′ < ε.

Lemma 4.1. For each ε > 0, there exists c > 0, such that

(4.1) |f | ≥ cr(1−ρ)−1
,

on W ε. In particular each W ε is closed in the complement of the origin.

Proof. Fix ε > 0. By the curve selection lemma it suffices to show that
|f |r−(1−ρ)−1

is bounded from zero along any real analytic curve γ(t) → 0 as
t→ 0, γ(t) ∈W ε for t 6= 0. Fix such a γ. In order to simplify the notation we
reparametrize γ by the distance to the origin, that is to say, |γ(t(r))| = r. In
the spherical coordinates we write γ(r) = rθ(r), |θ(r)| = 1. Then the tangent
vector to γ decomposes as the sum of its radial and spherical components as
follows:

γ′(r) = θ(r) + rθ′(r),

and rθ′(r) = o(1). We have a Puiseux expansion

(4.2) f(γ(r)) = alr
l + . . . , al 6= 0,

where l ∈ Q+, and

(4.3)
df

dr
(γ(r)) = ∂rf + 〈∇′f, rθ′(r)〉 = lalr

l−1 + . . . .
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By the assumption, |∂rf | ≥ ε|∇′f | on γ and hence ∂rf is dominant in the
middle term of (4.3). Consequently, along any real analytic curve γ(r) in W ε,

(4.4) r|∇f | ∼ r|∂rf | ∼ r|df/dr| ∼ rl ∼ |f |.

In particular, by (1.1), l−1
l ≤ ρ. This is equivalent to (1− ρ)−1 ≥ l, and hence

|f |r−(1−ρ)−1
is bounded from zero on γ as required.

Suppose we want to study the set of all possible limits of r∂rf
f (x), as

W ε 3 x→ 0. By the curve selection lemma it suffices to consider real analytic
curves γ(r) → 0 contained in W ε. For such a curve γ(r), by (4.2) and (4.3),
r∂rf
f → l, where l is a positive rational defined by (4.2). As we show below the

sets of such possible limits is a finite subset L ⊂ Q+. By abuse of notation we
shall write this property as r∂rf

f (x)→ L for W ε 3 x→ 0.

Proposition 4.2. There exists a finite subset of positive rationals L =
{l1, . . . , lk} ⊂ Q+ such that for any ε > 0

r∂rf

f
(x)→ L as W ε 3 x→ 0.

In particular, as a germ at the origin, each W ε is the disjoint union

W ε =
⋃
li∈L

W ε
li ,

where we may define W ε
li

= {x ∈ W ε; | r∂rff − li| ≤ rδ}, for δ > 0 sufficiently
small.

Moreover, there exist constants 0 < cε < Cε, which depend on ε, such that

(4.5) cε <
|f |
rli

< Cε on W ε
li .

Proof. First we show that the set of possible limits is finite and indepen-
dent of ε. Roughly speaking, the argument is the following. The set of limits
of r∂rf

f , as r → 0, is subanalytic, and hence, if contained in Q, finite. We
denote it by Lε. Clearly Lε ⊂ Lε′ for ε ≥ ε′. Moreover since Lε, ε ∈ R+, is
a subanalytic family of finite subanalytic subsets it has to stabilize, that is,
Lε = Lε′ for some ε > 0 and each 0 < ε′ ≤ ε.

We shall present this argument in more detail. Letting Ω = {(x, ε); x ∈
W ε, ε > 0}, we consider the map ψ : Ω → P1, where P1 = R ∪ {∞}, defined
by

ψ(x, ε) =
r∂rf

f
(x).

For any fixed ε > 0 the set Lε, of limits of ψ(x, ε) as W ε 3 x → 0, is a sub-
analytic set in P1 (in different terminology Lε ⊂ R is subanalytic at infinity).
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But by (4.4) and the curve selection lemma Lε ⊂ Q+, hence Lε is finite. By a
standard argument of subanalytic geometry the set

P = {(ε, l); l ∈ Lε, ε > 0}

is subanalytic in P1 × P1. Indeed, P is obtained by taking limits at 0 ∈ Rn,
with respect to x variable, of a subanalytic function ψ. Since every Lε is
finite there exists a finite partition 0 = ε0 < ε1 < . . . < εN = +∞ such
that P ∩ ((εi, εi+1)× R) is a finite union of graphs of continuous functions on
(εi, εi+1). But these functions take only rational (and positive) values; hence
they are constant on (εi, εi+1). So P ⊂ R× L for some finite subset L of Q+,
and we take L to be the smallest with this property.

Remark. Actually in the sequel we shall work with ε→ 0, so we may take
L = Lε′ , where ε′ ∈ (0, ε1).

As soon as we know that the set L of possible limits of r∂rf
f on W ε at 0

is finite the second part of the proposition follows easily from the standard
ÃLojasiewicz inequality [Lo1].

To show (4.5), it suffices to check that |f |
rl

is bounded from 0 at ∞ on
each real analytic curve in W ε. This follows easily from (4.3). The proof of
Proposition 4.2 is now complete.

We shall need later on the following well-known result.

Lemma 4.3. There is a constant cf > 0 such that in a neighborhood of
the origin

(4.6) r|∇f | ≥ cf |f |.

Proof. (4.6) is well-known as the Bochnak-ÃLojasiewicz inequality; see [BL].
It results immediately from the curve selection lemma since f

r|∇f | is bounded
on each real analytic curve, as again follows easily from (4.3).

Remark 4.4. It seems that the set of characteristic exponents L ⊂ Q+

given by Proposition 4.2 is an important invariant of the singularity of f .
Recall that the ÃLojasiewicz exponent ρf of f is the smallest ρ satisfying (1.1).
By Lemma 4.1 and Proposition 4.2, l ≤ (1 − ρf )−1 for l ∈ L. It would
be interesting to know whether (1 − ρf )−1 always belongs to L, equivalently
whether the ÃLojasiewicz exponent of f equals maxli∈L

li−1
li

.

The idea of considering the characteristic exponents L as generalizations
of the ÃLojasiewicz exponent will appear, maybe in a more transparent way, in
Corollary 6.5 below.
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5. Asymptotic critical values

Consider an arbitrary subanalytic C1 function F defined on an open sub-
analytic set U such that 0 ∈ U . We say that a ∈ R is an asymptotic critical
value of F at the origin if there exists a sequence x→ 0, x ∈ U , such that

(a) |x||∇F (x)| → 0 ,

(b) F (x)→ a .

Equivalently we can replace (a) above by

(aa) |∇θF (x)| = |x||∇′F (x)| → 0 ,

where ∇θF denotes the gradient of F with respect to spherical coordinates.
Indeed, ∇θF = r∇′F , so that (a) implies (aa). Suppose that F (x) → a,
|∇θF (x)| → 0. We have to prove r∂rF → 0. If not then there exists a curve,
x = γ(r), such that on γ, |∇′F | = o(|∂rF |) and |∂rF | ≥ cr−1, c > 0. In
particular, by (4.3),

dF

dr
≥ 1

2
cr−1

on γ, so that F (γ(r)) cannot have a finite limit as r → 0.

Proposition 5.1. The set of asymptotic critical values is finite.

Proof. Let X = {(x, t);F (x) − t = 0} be the graph of F . Consider X
and T = {0} × R as a pair of strata in Rn × R. Then the (w)-condition of
Kuo-Verdier at (0, a) ∈ T reads

1 = |∂/∂t(F (x)− t)| ≤ C|x||∂/∂x(F (x)− t)| = C|x||∇F |.
In particular, a ∈ R is an asymptotic critical value if and only if the condition
(w) fails at (0, a). The set of such a’s is finite by the genericity of (w) condition;
see [V] and [LSW].

Remark 5.2. The terminology -an asymptotic critical value- is motivated
by the analogous notion for polynomials P : Rn → R or P : Cn → C. We say
that a is not an asymptotic critical value of P , or equivalently that P satisfies
Malgrange’s condition at a, if there is no sequence x→∞ such that

(a) r|∇P (x)| → 0 ,

(b) P (x)→ a .

For polynomials the set of such values (a’s) for which Malgrange’s condition
fails is finite [Pa3], [KOS]. The proofs there can be easily adapted to the local
situation and give alternative proofs of Proposition 5.1. For more on asymp-
totic critical values see [KOS].
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One may ask whether we have an analogue of ÃLojasiewicz’ inequality (1.1)
for asymptotic critical values; for instance, whether for an asymptotic critical
value a there exist an exponent ρa < 1, and a constant c, such that

(5.1) r|∇F | ≥ c|F − a|ρa .

This is not the case in general, but it holds if we approach the singularity
“sufficiently slowly.”

Proposition 5.3. Let F be as above and let a ∈ R. Then for any η > 0
there exist an exponent ρa < 1 and constants c, ca > 0, such that (5.1) holds
on the set

Z = Zη = {x ∈ U ; |∂rF | ≤ rη|∇F |, |F (x)− a| ≤ ca}.

Moreover, there exist constants δ, δ′ > 0 such that

Z ′ = Z ′δ = {x ∈ U ; rδ ≤ |F (x)− a| ≤ ca} ⊂ Zδ′ .

In particular (5.1) holds on Z ′.

Proof. For simplicity of notation we suppose a = 0. Fix c0 so that
{|t| ≤ c0} does not contain other asymptotic critical values than 0.

By definition of Z

(5.2)
〈∇F (x), x〉
|∇F (x)||x| =

∂rF

|∇F (x)| → 0, as Z 3 x→ 0.

First we show that

(5.3)
F (x)

|∇F (x)||x| → 0, as Z 3 x→ 0 and F (x)→ 0.

It is sufficient to show this on any real analytic curve γ(t), such that γ(t)→ 0
and F (γ(t))→ 0 as t→ 0. The case F (γ(t)) ≡ 0 is obvious so we may suppose
F (γ(t)) 6≡ 0. Note that dγ/dt

|dγ/dt| and γ
|γ| have the same limit, so that (5.2) implies

〈∇F (γ(t)), dγ/dt〉
|∇F (γ(t))||dγ/dt| → 0,

as t→ 0. Hence, dF/dt = 〈∇F, dγ/dt〉 = o(|∇F ||dγ/dt|), which gives finally

F (x) = o(|∇F ||x|)

along γ as required. This demonstrates (5.3) which implies

(5.4)
F (x)

|∇F (x)||x| → 0, as x ∈ Z and F (x)→ 0.

Indeed, this again has to be checked on any real analytic curve γ(t) → x0 ∈
F−1(0), γ(t) ∈ Z for t 6= 0. For x0 = 0, it was checked already in (5.3). For
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x0 6= 0, |γ| has a nonzero limit and (5.4) follows easily by Lemma 4.3 for F
at x0.

Finally, (5.4) reads, F (x)
|∇F ||x| → 0 on Z, if F (x)→ 0. Hence, by the standard

ÃLojasiewicz inequality [Lo1],

|F (x)|
|∇F (x)||x| ≤ |F |

α, on Z,

for α > 0 and sufficiently small. This ends the proof of the first part of
Proposition 5.3.

To show the second part we use again the construction from the proof of
Proposition 5.1 and the genericity of the Whitney condition (b) for the pair
strata X and T . Since the Whitney condition (b) is a consequence of the Kuo-
Verdier condition (w) for a subanalytic stratification, [V], there is no need to
substratify. In particular, for a′ not an asymptotic critical value, the Whitney
condition (b) implies

(5.5)
∂rF

|∇F (x)| =
〈∇F (x), x〉
|∇F (x)||x| → 0, as (x, F (x))→ (0, a′).

Let D = {t ∈ T ||t| ≤ c0} so that D∗ = D \ {0} does not contain asymptotic
critical values. Then, there is a subanalytic neighborhood V of {0} × D∗ in
Rn×R, D∗ = D \{0}, such that (5.5) holds for V ∩X 3 (x, t)→ T . Of course,
V can be chosen of the form V = Vδ = {(x, t); |x|δ ≤ |t|, t ∈ D∗}, δ > 0. Now,
we may take Z ′ = {x; (x, F (x)) ∈ V}. Then (5.2) holds as well for Z ′ 3 x→ 0
which implies the existence of δ′ > 0 such that Z ′ ⊂ Zδ′ .

Next we consider F of the form F = f
rl

, l > 0, and U the complement of
the origin.

Proposition 5.4. The real number a 6= 0 is an asymptotic critical value
of F = f

rl
if and only if there exists a sequence x→ 0, x 6= 0, such that

(a′) |∇′f(x)|
|∂rf(x)| → 0,

(b) F (x)→ a.

Proof. Let x→ 0 be a sequence in the set {x; |∂rf | < ε|∇′f |}, ε > 0, and
such that F (x)→ a 6= 0. Then by Lemma 4.3

r|∇′F | = r
|∇′f |
rl
≥ c |f |

rl
≥ 1

2
c|a| > 0.

In particular, for such a sequence neither |x||∇F (x)| → 0 nor (a′) is satisfied.
Thus we may suppose that the sequence x → 0, F (x) → a 6= 0, is in

W ε = {x; |∂rf | ≥ ε|∇′f |}. Then, by Proposition 4.2, we may suppose that
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|f(x)|
rli

is bounded from zero and infinity for an exponent li ∈ L. Consequently
l = li. Furthermore, by Proposition 4.2, |∂rf | ∼ rl−1 and

∂rF =
∂rf

rl

(
1− lf

r∂rf

)
= o(r−1), ∇′F =

∇′f
rl

= O(r−1).

Consequently a is an asymptotic critical value of F if there is a sequence x→ 0,
F (x)→ a, on which

(5.6) r|∇′F (x)| = |∇
′f(x)|
rl−1

→ 0.

Since |∂rf | ∼ rl−1 on W ε
l , (5.6) is equivalent to (a′). This ends the proof.

6. Estimates on a trajectory

Let x(s) be a trajectory of ∇f|∇f | defined for 0 ≤ s < s0, x(s)→ 0 as s→ s0.
In particular, f(x(s)) is negative for s < s0. Let L = {l1, . . . , lk} denote the
set of characteristic exponents of f defined in Proposition 4.2.

Fix l > 0, not necessarily in L, and consider F = f
rl

. Then

dF (x(s))
ds

= 〈 ∇f|∇f | ,
∇′f
rl

+
(∂rf
rl
− lf

rl+1

)
∂r〉(6.1)

=
1

|∇f |rl
(
|∇′f |2 + |∂rf |2 −

lf

r
∂rf

)
=

1
|∇f |rl

(
|∇′f |2 + |∂rf |2

(
1− lf

r∂rf

))
.

Proposition 6.1. For each l > 0 there exist ε, ω > 0, such that for any
trajectory x(s), F (x(s)) = f

rl
(x(s)) is strictly increasing in the complement of⋃

li∈L,li<l
W ε
li , if l /∈ L,

or in the complement of

W−ω,l ∪
⋃

li∈L,li<l
W ε
li , if l ∈ L,

where in the last case W−ω,li = {x ∈W ε
li

; r−ω|∇′f | ≤ |∂rf |}.

Proof. If F is not increasing then by (6.1)

r|∇f |2 ≤ lf∂rf.

Consequently, by (4.6),

lf∂rf ≥ r|∇f |2 ≥ cf |f ||∇f |,
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where cf is the constant of the Bochnak-ÃLojasiewicz inequality (4.6). In par-
ticular, f∂rf is positive and

(6.2) |∂rf | ≥ (cf/l)|∇f |.

Hence if F is not increasing we are in W ε for ε = cf/l. Recall that W ε =
⋃
W ε
li

and r∂rf
f → li on W ε

li
. Thus we have three different cases:

• l < li. Then (
1− lf

r∂rf

)
→ (1− l/li) > 0.

That is to say, F (x(s)) is actually increasing in this case.

• l = li. Then (
1− lf

r∂rf

)
→ 0

on W ε
li

and hence is bounded by 1
2r

2ω, for a constant ω > 0. This means
that if dF

ds is negative then |∂rf | ≥ r−ω|∇′f | as claimed.

• l > li. Then F (x(s)) can be decreasing in W ε
li

.

This completes the proof of Proposition 6.1.

Proposition 6.2. There exist a unique l = li ∈ L and constants: ε > 0
and 0 < c < C <∞, such that x(s) passes through W ε

l in any neighborhood of
the origin and

x(s) ∈ Ul = {x; c <
|f(x)|
rl

< C}

for s close to s0.

Proof. First we show that the trajectory x(s) passes through W ε in any
neighborhood of the origin, provided ε > 0 is sufficiently small. Actually any
ε < cf (1 − ρf ) would do. Suppose this is not the case. Then, by the proof
of Proposition 6.1, F = f

rl
is increasing on the trajectory, for any l > cf/ε >

(1− ρf )−1. Taking into account that f(x(s)) is negative we have

(6.3) |f(x(s))| ≤ Clrl,

for a Cl > 0 which may depend on l.
But (6.3) is not possible for l > (1 − ρf )−1. Indeed, by ÃLojasiewicz’s

argument the length of the trajectory between x(s) and the origin is bounded
by

|s− s0| ≤ c1|f(x(s))|1−ρf .
In particular (6.3) would imply

|s− s0| ≤ c1Clr
l(1−ρf ),
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which is not possible for the arc-length parameter s if l(1 − ρf ) > 1. Hence
the trajectory x(s) passes through W ε in any neighborhood of the origin.

By Proposition 4.2, W ε is the finite union of sets W ε
li

, li ∈ L, and each of

the W ε
li

is contained in a set of the form Uli = {x; c < |f |
rli

< C}. We fix c and
C common for all li. The Uli ’s are mutually disjoint as germs at the origin.

Fix one of the li’s and consider F = f
rli

. By Proposition 6.1, F (x(s)) is
strictly increasing on the boundary of Uli , that is to say if

x(s) ∈ ∂+Ui = {x; f(x) = −Crli},

then the trajectory enters Uli and if

x(s) ∈ ∂−Uli = {x; f(x) = −crli},

then the trajectory leaves Uli , of course definitely. This ends the proof.

Remark 6.3. Note that the constants ε and c, C of Proposition 6.2 can
be chosen independent of the trajectory. Indeed, by the proof of Proposition
6.1, we may choose, for instance, ε ≤ 1

2cf (1 − ρf ). Then, by Remark 4.4,
ε ≤ 1

2cf/l for any l ∈ L. Now the constants c and C are given by (4.5) and we
fix as ω > 0 any exponent which satisfies

(6.4) |1− lf

r∂rf
| ≤ 1

2
r2ω

on W ε
l for each l ∈ L.

Let us list below some of the bounds satisfied on W ε
l and Ul. Recall that,

by construction, Ul ⊃ W ε
l . If ε ≤ 1

2(cf/l), as we have assumed, then by (6.2),
we have, away from W ε

l ,

(6.5) r|∇f |2 ≥ 2lf∂rf,

which gives
dF (x(s))

ds
≥ |∇f |

2rl
≥ cf |f |

2rl+1
.

Hence on Ul \W ε
l

(6.6)
dF (x(s))

ds
≥ cf |f |

2rl+1
≥ c′r−1

for a universal constant c′ > 0. Also by Section 4 we have easily

|∇f | ≥ c1r
l−1 on Ul, for c1 > 0,

|∇f | ∼ ∂rf ∼ rl−1 on W ε
l .

From now on we shall assume ε and ω fixed.

We shall show in the proposition below that F = f(x(s))
rl

has a limit as
s→ s0. For this we use an auxiliary function F − rα.
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Proposition 6.4. For α < 2ω, the function g = F − rα is strictly
increasing on the trajectory x(s). In particular F (x(s)) has a nonzero limit

F (x(s))→ a0 < 0, as s→ s0.

Furthermore, a0 must be an asymptotic critical value of F at the origin.

Proof. By Proposition 6.1, F is increasing on |∂rf | ≤ r−ω|∇′f |. On the
other hand

d(−rα)
ds

= −αrα−1 ∂rf

|∇f | ,

and hence −rα is increasing if ∂rf is negative which is the case on W ε
l (on W ε

l ,
f∂rf > 0 and f < 0 on the trajectory). We consider three different cases:

Case 1. r−ω|∇′f | ≤ |∂rf |. That is, we are in W−ω,l of Proposition 6.2.
Then, in particular, we are in W ε

l and (6.4) holds. Moreover |∂rf | ∼
|∇f | ∼ rl−1 (see Remark 6.3) and ∂rf is negative . Consequently

|dF (x(s))
ds

| ≤ 1
|∇f |rl

(
|∇′f |2 + |∂rf |2r2ω

)
≤ C1(r2ω−1),

d(−rα)
ds

= −αrα−1 ∂rf

|∇f | ≥ (α/2)rα−1.

Thus d(−rα)
ds is dominant and g is increasing on the trajectory.

Case 2. ε|∇′f | ≤ |∂rf | < r−ω|∇′f |. That is, we are in W ε
l \W−ω,l.

Then both F and −rα are increasing.

Case 3. |∂rf | < ε|∇′f |. That is, we are in Ul \W ε
l .

By Remark 6.3,
dF (x(s))

ds
≥ c′r−1.

On the other hand

|dr
α

ds
| = |αrα−1 ∂rf

|∇f | | ≤ r
α−1,

so that g is increasing.
Finally, since g(x(s)) is increasing, negative and bounded from zero on Ul,

it has the limit a0 < 0. We shall show that a0 is an asymptotic critical value
of F .

Suppose that, contrary to our claim, F (x(s)) → a0 and a0 is not an
asymptotic critical value of F at the origin. Then, by Proposition 5.4, there is
c̃ > 0 such that

|∇′f(x(s))| ≥ c̃|∂rf(x(s))|,
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for s close to s0. Hence on W ε
l

dF

ds
=
|∇′f |2
rl|∇f | +

|∂rf |2
rl|∇f |

(
1− lf

r∂rf

)
≥ c′ 1

r
.(6.7)

A similar bound holds on Ul \W ε
l by (6.6).

But (6.7) is not possible since r ≤ s0 − s. Indeed, the inequality (6.7)
implies dF

ds ≥ c 1
s0−s with the right-hand side not integrable which contradicts

the fact that F is bounded on the trajectory (Proposition 6.1). This ends the
proof.

Corollary 6.5. Let σ(s) denote the length of the trajectory between
x(s) and the origin. Then

σ(s)
|x(s)| → 1 as s→ s0.

Proof. We show that if x(s) is entirely contained in Ul,c̃,C̃ = {x| 0 < c̃ <
|f |
rl
< C̃ <∞} then

(6.8) σ(s) ≤ [C̃/c̃]1/lr + o(r),

where r denotes |x(s)|. Then the corollary follows directly from the existence
of the limit of F (x(s)) as s→ s0.

In order to establish (6.8) we follow in detail the computation of the
ÃLojasiewicz argument. First we note that on Ul,c̃,C̃ ,

r|∇f | ≥ l|f | − o(rl),

which can be checked on any real analytic curve as in (4.3). Then

df

ds
= |∇f | ≥ l|f |

r
− o(rl−1) ≥ lc̃1/l|f |ρl − o(rl−1),

where ρl = l−1
l . Hence, by the ÃLojasiewicz argument

σ(s) ≤ [lc̃1/l(1− ρl)]−1|f |1−ρl ≤ [C̃/c̃]1/lr + o(r),

as required.

7. Proof of main theorem

Theorem 7.1. Let x(s) be a trajectory of ∇f
|∇f | , x(s) → 0 as s → s0.

Denote by x̃(s) the radial projection of x(s) onto the unit sphere, x̃(s) = x(s)
|x(s)| .

Then x̃(s) is of finite length.
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Proof. By Section 6 there exists a unique l ∈ L, L given by Proposition
4.2, and a unique asymptotic critical value a < 0 of F = f

rl
, such that

F (x(s))→ a, as s→ s0.

Thus we may suppose that x(s) is entirely included in

Ul,a = {x ∈ Ul; |F (x)− a| ≤ ca},

where ca is as given by Proposition 5.3.
We use the arc-length parametrization s̃ of x̃(s) given by

ds

ds̃
=
r|∇f |
|∇′f | .

Reparametrize x(s) using s̃ as parameter. Then

dF

ds̃
=
r|∇f |
|∇′f |

dF

ds
=

1
|∇′f |rl−1

(
|∇′f |2 + |∂rf |2

(
1− lf

r∂rf

))
,

d(−rα)
ds̃

= −αrα ∂rf

|∇′f | .

Let ω be the exponent given by (6.4) and let ρ1 = ρa be the exponent
given by Proposition 5.3 for η < ω.

Lemma 7.2.

(7.1)
d(F (x(s))− a)

ds̃
≥ c|F (x(s))− a|ρ1

on {x; |∂rf | ≤ r−η|∇′f |} and for c > 0.

Proof. If |∂rf | < ε|∇′f | (Case 3 of the proof of Proposition 6.4), then

(7.2)
dF

ds̃
≥ c′r−1 r|∇f |

|∇′f | ≥ c
′ > 0,

and (7.1) follows trivially.
So suppose ε|∇′f | ≤ |∂rf | ≤ r−η|∇′f |. Recall that after Remark 6.3,

|∇f | ∼ |∂rf | ∼ rl−1. Hence, by η < ω and (6.4),

r|∇′F | = |∇
′f |

rl−1
≥ c1r

η À r2ω−η ∼ r−η| ∂rf
rl−1

(
1− lf

r∂rf

)
| = r1−η|∂rF |.

Consequently,

dF

ds̃
≥ |∇

′f |
rl−1

+
|∂rf |2

rl−1|∇′f |
(
1− lf

r∂rf

)
≥ 1

2
r|∇F |

and the statement follows from Proposition 5.3.
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Thus, in the complement of W−η,l = {x ∈W ε
l | r−η|∇′f | ≤ |∂rf |}, (F − a)

can be used as a control function in the sense of ÃLojasiewicz. To get a control
function which works everywhere on Ul we consider

(7.3) g = (F − a)− rα

for any 0 < α < ω. Our aim is to show the existence of ξ, ξ < 1, such that

(7.4)
dg

ds̃
≥ c|g|ξ for c > 0

on Ul,a. Note that −rα is itself a good control function on W−δ,l =
{x ∈W ε

l ; r−δ|∇′f | ≤ |∂rf |}, where we may chose δ > 0 arbitrarily. Indeed, on
W−δ,l

d(−rα)
ds̃

= −αrα ∂rf

|∇′f | ≥ αr
α−δ ≥ α(rα)ρ,

for ρ ≥ 1− δ
α .

First we show that replacing F by g does not destroy the property of being
a control function in the complement of W−η,l.

Lemma 7.3. For any α > 0, g = (F − a) − rα is a control function on
Ul,a \W−η,l.

Proof. By (7.2) there is no problem on Ul \W ε
l . Of course, there is no

problem in the area where both summands are good control functions. Thus
it suffices to consider W ε

l \W−δ,l, where we may choose δ > 0 arbitrarily small.
But on this set dF

ds̃ ≥ 1
2r|∇F | ≥ crδ and hence

dg

ds̃
=
d(F − a)

ds̃
− drα

ds̃
≥ c(rδ + rα) ≥ crδ ≥ c(rα)ρ, c > 0,

if we set, for example: δ < α and ρ ≥ 1− δ
α which proves the lemma.

Thus it remains to consider W−η,l = {x ∈ W ε
l ; r−η|∇′f | ≤ |∂rf |}. On

W−η,l the radial part of the gradient is much bigger than the spherical one
and therefore −rα can be taken as a control function. Moreover, as we show
below, the derivative of −rα, α ≤ η, dominates the derivative of F − a along
the trajectory. On W−η,l

dF

ds̃
=
|∇′f |
rl−1

+
|∂rf |
rl−1

|∂rf |
|∇′f |O(r2ω) = O(rη) +O(r2ω−η)

and
d(−rα)
ds̃

= αrα
|∂rf |
|∇′f | ≥ αr

α−η ≥ const > 0

and consequently dg
ds̃ ≥ const > 0. Together with Lemma 7.3 this implies that

g is a control function everywhere on Ul,a, in the sense that there exists ξ < 1
such that (7.4) holds on Ul,a.
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Now the theorem follows directly by ÃLojasiewicz’s argument, recalled be-
low for completeness. We proved that (7.4) holds on Ul,a = {x ∈ Ul; |F (x) −
a| ≤ ca}. Hence, there is c0 such that

d|g|1−ξ
ds̃

≤ c0 < 0

on Ul,a. Let s1 < s0 be such that x(s) ∈ Ul,a for s1 ≤ s < s0. Recall that
g(x(s))→ 0 as s→ s0 and g < 0 on the trajectory. Hence, by integration,

(7.5) length{x̃(s); s1 ≤ s ≤ s0} ≤ c−1
0 |g(x(s1))|1−ξ

which is finite. This ends the proof.

8. Miscellaneous

In the first part of this section we show that there exists a uniform bound
on the length of the spherical part of the trajectory.

In the second part we derive more information on the way the trajectory
x(s) of the gradient approaches its limit point x0 = lims→s0 x(s). Theorem 7.1
gives the existence of a tangent line to x(s) at x0. Denote this line by P . One
may expect that, for s close to s0, x(s) stays in a cuspidal (horn) neighborhood
of P , in other words that the distance from x(s) to P can be bounded by a
positive power of r = |x(s) − x0|. As shown in an example below, in general
this is not the case. On the other hand one may show that this distance is
bounded by a continuous function α(r) → 0 which can be expressed in terms
of real exponential and logarithmic functions (i.e. ϕ belongs to the o-minimal
structure defined by polynomials and the exponential function).

Theorem 8.1. There exist M > 0 and r0 > 0 such that for any trajectory
x(s), 0 ≤ s < s0, of ∇f

|∇f | , which tends to the origin, and which is contained
entirely in the ball B(0, r0) = {x; |x| ≤ r0},

(8.1) length{x̃(s)} ≤M.

Proof. It is easy to check that the proof of Theorem 7.1 gives such a
universal bound as long as x(s) is contained in Ul,a. But, in general, the
moment when the trajectory falls into Ul,a depends on the trajectory. On the
other hand, it is not difficult to generalize the arguments of Section 7 to show
that the control function g = F − rα, for α > 0 sufficiently small, gives a
universal bound on the length of the part of x̃(s) which is contained in Ul. We
have an even stronger statement.
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Lemma 8.2. There are δ > 0 and a constant M1 such that for any l ∈ L,
if

(8.2) x(s) ∈ U δl = {x;−r−δ ≤ f

rl
≤ −rδ},

for s1 ≤ s < s2, then length{x̃(s); s1 ≤ s < s2} ≤M1.

Proof. We shall always assume that the U δl ’s, for l ∈ L, are mutually
disjoint, which of course we may do in a small neighborhood of the origin and
for δ sufficiently small. In particular, this implies that that W ε

li
∩ U δlj = ∅ for

li 6= lj .
First we show the statement on Ul = {x; c < |f(x)|

rl
< C}. Note that

F = f
rl

satisfies (5.1) on Ul \
⋃
a∈Al Ul,a, where Al denotes the set of all negative

asymptotic critical values of F . Hence, by the proof of Theorem 7.1, g = f
rl
−rα,

α > 0 sufficiently small, satisfies

(8.3)
dg

ds̃
≥

∏
ai∈Al

c|g − ai|ξ,

for ξ < 1 and c > 0.
In particular, g(x(s)) is increasing in Ul. Consider

h(x) =
∑
ai∈Al

(g(x)− ai)1−ξ′ ,

where ξ′ < 1 is chosen so that ξ ≤ ξ′ < 1 and 1− ξ′ is the quotient of two odd
integers. Then each summand of h is increasing on the trajectory and (8.3)
implies

dh

ds̃
≥ c0 > 0,

which gives by integration the required bound on the length of the part of the
trajectory which is in Ul:

length{x̃(s);x(s) ∈ Ul} ≤ c−1
0 [max{h(x);x ∈ Ul} −min{h(x);x ∈ Ul}]

(recall that x(s) may cross Ul only once; see the proof of Proposition 6.2).
Secondly, we consider U δ,+l = {x;−c ≤ f

rl
≤ −rδ}, δ > 0 to be specified

below. For this we use Proposition 5.3 for a = 0 which implies the existence
of δ > 0 and ρ0 < 1 such that

r|∇F | ≥ c1|F |ρ0

on |F | ≥ rδ. Note that, since we are away from W ε, (6.5) holds, and hence

dF

ds̃
=

1
|∇′f |rl−1

(
|∇′f |2 + |∂rf |2

(
1− lf

r∂rf

))
≥ 1

2
r|∇F | ≥ 1

2
c2|F |ρ0 .
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Thus we may use ÃLojasiewicz’s argument. Consequently the length of x̃(s),
corresponding to the part of x(s) contained in U δ,+l , can be bounded by a
universal constant.

Finally, we consider U δ,−l = {x;−r−δ ≤ f
rl
≤ −C}. Now g = −F−1

can be used as a control function. Note that ∇g = F−2∇F so in the set
{x; rδ ≤ g ≤ C−1}, g has no asymptotic critical values except maybe zero. We
use again Proposition 5.3 for g and a = 0

(8.4)
dg

ds̃
= g−2dF

ds̃
≥ 1

2
rg−2|∇F | ≥ 1

2
r|∇g| ≥ c3g

ρ∞ ,

on the set |g| ≥ rδ and for ρ∞ < 1, c3 > 0. Again by ÃLojasiewicz’s argument
we get a required bound on U δ,−l . This ends the proof of the lemma.

Note that the trajectory x(s) may cross each of the sets U δ,−l , Ul, and
U δ,+l only once. Indeed, for Ul we proved it previously, in Proposition 6.2. A
similar argument works for U δ,−l and U δ,+l . For instance, by Proposition 6.1,
f

rl−δ is strictly increasing on the boundary of U δ,−l . Hence the trajectory may
enter U δ,−l only once.

Now we consider the complement U0 of
⋃
l∈L U

δ
l . On this set the length

of x̃(s) is easy to bound since, as we prove below, the spherical component of
the movement of x(s) dominates the radial one and we may use f as a control
function. More precisely we have the following lemmas.

Lemma 8.3. There exists an exponent δ1 > 0 such that in the complement
U0 of

⋃
l∈L U

δ
l

|∇′f | ≥ r−δ1 |∂rf |.

Proof. Let γ(t) be an analytic curve in U0 ∪ {0}, such that γ(t) → 0 as
t→ 0. Then

∂rf

|∇′f |(γ(t))→ 0 as t→ 0.

Indeed, if this is not the case then γ(t) ∈W ε′ , for ε′ sufficiently small. But, by
Proposition 4.2, W ε′ is contained in

⋃
l∈L U

δ
l at least in a neighborhood of the

origin, which contradicts the assumptions. Hence ∂rf
|∇′f |(x)→ 0 as U0 3 x→ 0.

This implies, by the standard ÃLojasiewicz inequality, the existence of δ1 > 0
such that

∂rf

|∇′f | ≤ r
δ1 ,

as required.

The following lemma, which we will prove directly, is a version of Propo-
sition 5.3 applied to f and zero as the (only) critical value of f .
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Lemma 8.4. For each δ1 > 0 there exists ρ̃ < 1 such that on the set
Vδ1 = {x; |∇′f | ≥ r−δ1 |∂rf |},

r|∇f | ≥ |f |ρ̃.

Proof. The lemma follows again by direct application of the standard
ÃLojasiewicz inequality and the curve selection lemma. The quotient f

r|∇f |(x)
→ 0 as Vδ1 3 x → x0 ∈ f−1(0), as can be checked on any real analytic curve.
Hence this quotient is bounded by a power of f , as required.

Now we are in a position to complete the proof of Theorem 8.1. By
Lemmas 8.3 and 8.4, we have in U0

df

ds̃
=
r|∇f |2
|∇′f | ≥ r|∇f | ≥ |f |

ρ̃.

So each segment of x(s), s ∈ [s1, s2], included in U0, has the length of its radial
projection bounded by (1− ρ̃)−1[|f(x(s1))|1−ρ̃−|f(x(s2))|1−ρ̃]. Hence the total
length of the radial projection of the part of x(s) which is in U0 is bounded
by (1− ρ̃)−1|f(x(0))|1−ρ̃.

This ends the proof.

Note that we cannot require that the constant M of the theorem above
tends to 0 as r0 → 0. Indeed, consider f : R2 → R given by f(x, y) =
−1

2(x2 + ay2), a > 0, a 6= 1. Then the best possible uniform bound on the
length of x̃(s), even for r0 arbitrarily small, is π/2.

Example 8.5. Consider the trajectories of

f(x, y) = −1
4

(x2 + y2)2 − 1
3
xy3.

In polar coordinates f(r, θ) = −1
4r

4(1 + 4
3 cos θ sin3 θ),

∂f

∂r
= −r3(1 +

4
3

cos θ sin3 θ), r−2∂f

∂θ
= r2(

1
3

sin4 θ − cos2 θ sin2 θ).

Therefore, by (2.2), the trajectories of the gradient in polar coordinates satisfy

dθ

dr
=
θ2(1 + σ(θ))

r
,

where σ is an analytic function at 0 and σ(θ) = O(θ2). By integration we get
a solution θ(r) of the form

θ(r) ' (− ln r)−1.

In particular θ(r)→ 0 slower than any positive power of r.
Note also that in this example the control function of the proof of the

main theorem F − a, which as we proved tends to 0 along the trajectory, goes
to 0 more slowly than any positive power of r.
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Proposition 8.6. Under the hypotheses of Theorem 7.1 there exists a
continuous function ϕ(r) : (R, 0) → (R, 0), (which depends on the trajectory),
of the form ϕ(r) = (− ln r)−δ, δ > 0, such that

(8.5) length{x̃(s), s1 ≤ s < s0} ≤ ϕ(|x(s1)|).

Proof. We follow the notation of previous sections. Let g = (F − a)− rα
be the control function of the proof of Theorem 7.1.

Lemma 8.7. There is an exponent µ such that

(8.6) r
dg

ds
≥ |g|µ

on the trajectory.

Proof. We follow the cases of the proof of Proposition 6.4.
In Case 3, that is, in the complement of W ε

l ,

r
dg

ds
≥ cdg

ds̃
≥ const > 0;

see (7.2), and the lemma follows.
On W ε

l , ∂rf is negative and consequently

r
d(−rα)
ds

= −αrα ∂rf|∇f | ≥ cr
α,

where c > 0. That is (8.6) holds for −rα. Therefore, in both Cases 1 and 2 of
the proof of Proposition 6.4,

r
dg

ds
≥ −(α/2)rα

∂rf

|∇f | ≥ c
′rα

with c′ > 0. Therefore the lemma certainly holds on the sets defined by
(F − a) ≤ rδ, δ > 0.

We suppose that (F − a) ≥ rδ with δ > 0 sufficiently small. We observe
that in Proposition 5.3, for each δ′ > 0 there is δ > 0 such that Z ′δ ⊂ Zδ′ (we
suppose ca of the proposition small). Indeed, it follows from the fact that the
sets Vδ, δ > 0 (see the last paragraph of the proof of Proposition 5.3) form a
base of subanalytic neighborhoods of D∗. Hence for both δ > 0 and δ′ > 0
sufficiently small, by (6.1) and (5.1),

r
dF

ds
≥ c|∇′f |2

r2(l−1)
≥ c1

(dF
ds̃

)2
≥ c2|F − a|2ρa ,

c, c1, c2 > 0. Thus both summands of g, F−a and −rα have positive derivatives
and for both of them the inequality of type (8.6) holds. Hence it holds for g.
This ends the proof of Lemma 8.7.
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We shall use as parameter τ = s0 − s. Also we replace g by its absolute
value h. Now the Lemma 8.7 reads: there is an exponent µ such that

τ
dh

dτ
≥ hµ.

Without loss of generality we may suppose µ > 1. By integration we get on
the trajectory

(8.7) hµ−1 ≤ (C − (µ− 1) ln τ)−1.

A similar bound holds if we replace τ by r, r ' τ by Corollary 6.5. Now the
proposition follow easily from (7.5).

9. The Riemannian case

Let (M, g) will be an analytic manifold equipped with an analytic rieman-
nian metric g. Letting f : M → R be an analytic function, we denote by ∇gf
the gradient of f with respect to g. Let x : [0, s0) → M be a trajectory of
∇gf , i.e., a maximal solution of

x′ =
∇gf
|∇gf |

, x(0) = p0

for some p0 ∈ M . Suppose that s → s0; then either x(s) escapes from M

or has a limit point x0 in M (this means that the trajectory passes by any
neighborhood of x0). Suppose that we are in the second case and assume that
f(x0) = 0.

It is easily seen that the ÃLojasiewicz inequality |∇gf | ≥ c|f |ρ, ρ < 1,
holds in a neighborhood of x0. Thus we deduce (as in the introduction) that:
x0 = lim

s→s0
x(s); moreover s0 <∞ and x0 is a critical point of f . Now it makes

sense to ask if the curve x(s) has a tangent at the limit point x0; this is exactly
the formulation of the gradient conjecture in the Riemannian case. We can
put it also in the following way: let ϕ : U → Rn, ϕ(x0) = 0 be a chart around
point x0. Does the limit of secants

lim
s→s0

ϕ(x(s))
|ϕ(x(s))|

exist?
Here | | stands for the Euclidean norm, but of course it can be any norm

on Rn. By the definition of a manifold (compatibility of charts) the answer
does not depend on the choice of the chart ϕ. Equivalently we can state it as in
[Mu], assuming that M = Rn is equipped with some Riemannian metric g and
ϕ is simply the identity on Rn. So the gradient conjecture asks if lims→s0

x(s)
|x(s)|

exists, where x(s) is a trajectory of ∇gf , x(s)→ 0 as s→ s0. We prove below
that actually:
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Theorem 9.1. The gradient conjecture holds in the Riemannian case.

To prove it we first embed isometrically and analytically (M, g) into RN

equipped with the Euclidean metric. Next, we prove that the gradient con-
jecture (existence of the limit of secants) holds for analytic submanifolds with
the metric induced by the Euclidean metric. In fact, by using analytic tubu-
lar neighborhoods we reduce the problem to the main Theorem 7.1 in the
Euclidean case for an open set in RN .

We shall need a local version of the isometric embedding theorem in the
analytic case due to M. Janet [Ja] and E. Cartan [Ca].

Theorem 9.2 (Janet-Cartan). Let (M, g) be an analytic Riemannian
manifold. Then, for any x0 ∈M there exist a neighborhood U and an analytic
embedding σ : U → RN such that σ(U) is a submanifold of RN and σ is an
isometry between Riemannian manifolds (U, g) and (σ(U), e), where e is the
Riemannian metric on σ(U) induced by the Euclidean metric on RN .

So we may assume that M is a an analytic submanifold of RN and g is
induced by the Euclidean metric on RN .

Proposition 9.3. Suppose that f : M → R is an analytic function and
x(s) ∈ M is a trajectory of ∇gf|∇gf | , x(s) → 0 as s → s0; then x̃(s) = x(s)

|x(s)| is of
finite length.

Proof. Let π : U → M be an analytic tubular neighborhood of M in RN

with respect to the Euclidean metric. So in particular for any x ∈M the fiber
π−1(x) can be seen as an open subset of the normal space to M at x. Let us
put h = f ◦ π. Take ∇h(x), the gradient of h with respect to the Euclidean
metric; then

∇h(x) = ∇gf(x) for anyx ∈M.

Hence our trajectory x(s) is also a trajectory of ∇h|∇h| , so the proposition
follows from Theorem 7.1. This also proves Theorem 9.1; indeed we can take
as chart ϕ the orthogonal projection of M on the tangent space to M at 0.
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