
Annals of Mathematics, 153 (2001), 191–258

Period functions for Maass wave forms. I
By J. Lewis and D. Zagier
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Introduction

Recall that a Maass wave form1 on the full modular group Γ = PSL(2,Z) is
a smooth Γ-invariant function u from the upper half-planeH = {x+iy | y > 0}
to C which is small as y → ∞ and satisfies ∆u = λu for some λ ∈ C, where
∆ = −y2

(
∂2

∂x2 + ∂2

∂y2

)
is the hyperbolic Laplacian. These functions give a basis

for L2 on the modular surface Γ\H, in analogy with the usual trigonometric

1 We use the traditional term, but one should really specify “cusp form.” Also, the word “form”

should more properly be “function,” since u is simply invariant under Γ, with no automorphy factor.

We often abbreviate “Maass wave form” to “Maass form.”
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waveforms on the torus R2/Z2, which are also (for this surface) both the Fourier
building blocks for L2 and eigenfunctions of the Laplacian. Although therefore
very basic objects, Maass forms nevertheless still remain mysteriously elusive
fifty years after their discovery; in particular, no explicit construction exists
for any of these functions for the full modular group. The basic information
about them (e.g. their existence and the density of the eigenvalues) comes
mostly from the Selberg trace formula; the rest is conjectural with support
from extensive numerical computations.

Maass forms arise naturally in such diverse fields as number theory, dy-
namical systems and quantum chaos; hence concrete analytic information
about them would be of interest and have applications in a number of areas of
mathematics, and for this reason they are still under active investigation.

In [10], it was shown that there exists a one-to-one correspondence between
the space of even Maass wave forms (those with u(−x+ iy) = u(x+ iy)) with
eigenvalue λ = s(1 − s) and the space of holomorphic functions on the cut
plane C ′ = C r (−∞, 0] satisfying the functional equation

(0.1) ψ(z) = ψ(z + 1) + z−2s ψ
(z + 1

z

)
(z ∈ C ′)

together with a suitable growth condition. However, the passage from u to ψ
was given in [10] by an integral transform (eq. (2.2) below) from which the
functional equation (0.1) and other properties of ψ are not at all evident. In
the present paper we will:

(i) find a different and simpler description of the function ψ(z) and give a
more conceptual proof of the u ↔ ψ correspondence, for both even and
odd wave forms, in terms of L-series;

(ii) give a natural interpretation of the integral representation in [10] and of
some of the related functions introduced there;

(iii) study the general properties of the solutions of the functional equation
(0.1), and determine sufficient conditions for such a solution to correspond
to a Maass wave form;

(iv) show that the function ψ(z) associated to a Maass wave form is the ana-
logue of the classical Eichler-Shimura-Manin period polynomial of a holo-
morphic cusp form, and describe the relationship between the two theories;
and

(v) relate the theory to D. Mayer’s formula [13] expressing the Selberg zeta
function of Γ as the Fredholm determinant of a certain operator on a space
of holomorphic functions.

Because of the connection (iv), we call ψ the period function associated to the
wave form u and the mapping u↔ ψ the period correspondence.
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In this introduction, we state the correspondence in its simplest form (e.g.
by assuming that the spectral parameter s has real part 1

2 , which is true for
Maass forms anyway) and discuss some of its salient aspects. In the statement
below, the functional equation (0.1) has been modified in two ways. First,
the last term in the equation has been replaced by (z + 1)−2s ψ

( z

z + 1
)
; this

turns out to give the functional equation which corresponds to arbitrary, rather
than just even, Maass forms. Secondly, we consider solutions of the functional
equation on just the positive real axis, since it will turn out that under suitable
analytic conditions any such solution will automatically extend to C ′.

Theorem. Let s be a complex number with <(s) = 1
2 . Then there is an

isomorphism between the space of Maass cusp forms with eigenvalue s(1−s) on
Γ and the space of real -analytic solutions of the three-term functional equation

(0.2) ψ(x) = ψ(x+ 1) + (x+ 1)−2s ψ
( x

x+ 1
)

on R+ which satisfy the growth condition

(0.3) ψ(x) = o(1/x) (x→ 0), ψ(x) = o(1) (x→∞) .

In particular, the dimension of the space of solutions of (0.2) satisfying
the growth condition (0.3) is finite for any s and is zero except for a discrete
set of values of s. This is especially striking since we will show in Chapter III
that if we relax the growth condition (0.3) minimally to

(0.4) ψ(x) = O(1/x) (x→ 0), ψ(x) = O(1) (x→∞) ,

then the space of all real-analytic solutions of (0.2) on R+ is infinite-dimen-
sional for any s. In the opposite direction, however, if we weaken the growth
condition further or even drop it entirely, then the space of solutions does not
get any bigger, since we will show later that any real-analytic solution of (0.2)
on the positive real axis satisfies (0.4). Conversely, if ψ does correspond to a
Maass form, then we will see that (0.3) can be strengthened to ψ(x) = O(1)
as x → 0 and ψ(x) = O(1/x) as x → ∞; moreover, ψ in this case extends
holomorphically to C ′ and these stronger asymptotic estimates hold uniformly
in wedges | arg(x)| < π − ε.

The theorem formulated above is a combination of two results, Theo-
rems 1 and 2, from the main body of the paper. The first of these, whose
statement and proof occupy Chapter I, gives a very simple way to go between
a Maass wave form u and a solution of (0.2) holomorphic in the whole cut plane
C ′. We first associate to u a periodic and holomorphic function f on C r R

whose Fourier expansion is the same as that of the Maass wave form u, but
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with the Bessel functions occurring there replaced by exponential functions.
Then we define ψ in C r R by the equation

(0.5) c(s)ψ(z) = f(z)− z−2s f
(−1
z

)
,

where c(s) is a nonzero normalizing constant. The three-term functional equa-
tion for ψ is then a purely algebraic consequence of the periodicity of f , while
the fact that f came from a Γ-invariant function u is reflected in the analytic
continuability of ψ across the positive real axis. In the converse direction, if
ψ(z) is any holomorphic function in C ′, then the function f defined by

(0.6) c?(s) f(z) = ψ(z) + z−2s ψ
(−1
z

)
(where c?(s) is another normalizing constant) is automatically periodic if ψ
satisfies the three-term functional equation, and corresponds to a Maass wave
form if ψ also satisfies certain growth conditions at infinity and near the cut.
The proof of the correspondence in both directions makes essential use of the
Hecke L-series of u and of Mellin transforms, the estimates on f and ψ per-
mitting us to prove the required identities by rotating the line of integration.
The key fact is that the same Hecke L-series can be represented as the Mellin
transform of either u on the positive imaginary axis or ψ on the positive real
axis, but with different gamma-factors in each case. The functional equation of
the L-series is then reflected both in the Γ-invariance of u and in the functional
equation (0.2) of ψ on the positive reals.

In Chapter II we study the alternative construction of ψ as an integral
transform of u (or, in the odd case, of its normal derivative) on the imaginary
axis. As already mentioned, this was the construction originally given in [10],
but here we present several different points of view which make its properties
more evident: we show that the function defined by the integral transform has
the same Mellin transform as the function constructed in Chapter I and hence
agrees with it; re-interpret the integral as the integral of a certain closed form in
the upper half-plane; give an expansion of the integral in terms of the Fourier
coefficients of u; construct an auxiliary entire function g(w) whose special
values at integer arguments are the Fourier coefficients of u and whose Taylor
coefficients at w = 0 are proportional to those of ψ(z) at z = 1; and finally
give a very intuitive description in terms of formal “automorphic boundary
distributions” defined by the limiting behavior of u(x+ iy) as y → 0.

In Chapter III we study the general properties of solutions of the three-
term functional equations (0.1) and (0.2). We start by giving a number of
examples of solutions of these equations which do not necessarily satisfy the
growth conditions and hence need not come from Maass wave forms. These
are constructed both by explicit formulas and by a process analogous to the
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use of fundamental domains in constructing functions invariant with respect
to a group action. Next, we study the properties of smooth solutions of (0.2)
on the real line and prove that they automatically satisfy the estimate (0.4).
The most amusing aspect (Theorem 2, stated and proved in §4) is a surprising
“bootstrapping” phenomenon which says that any analytic solution of (0.2)
on R+ satisfying the weak growth condition (0.3) (or a slight strengthening
of it if we do not assume that <(s) = 1

2) automatically extends to all of C ′

as a holomorphic function satisfying the growth conditions required to apply
Theorem 1. This provides the second key ingredient of the theorem formulated
above.

In Chapter IV we return to the modular world. We treat three topics.
The first is the extension of the theory to the noncuspidal case. We find that
the correspondence u ↔ ψ remains true if u is allowed to be a noncuspidal
Maass wave form and the growth condition on ψ at infinity is replaced by a
weaker asymptotic formula. The second topic is the relation to the classical
holomorphic theory. One of the consequences of the formulas from Chapter II
is that the Taylor coefficients of ψ(z) around z = 0 and z =∞ are proportional
to the values at integral arguments of the Hecke-Maass L-function associated
to u. This is just like the correspondence between cusp forms and their pe-
riod polynomials in the holomorphic case, where the coefficients of the period
polynomial are multiples of the values at integral arguments in the critical
strip of the associated Hecke L-functions. In fact, it turns out that the theory
developed in this paper and the classical theory of period polynomials are not
only analogous, but are closely related when s takes on an integral value.

Finally, the whole theory of period functions of Maass wave forms has
a completely different motivation and explanation coming from the work of
Mayer [13] expressing the Selberg zeta function of Γ as the Fredholm determi-
nant of a certain operator on a space of holomorphic functions: the numbers s
for which there is a Maass form with eigenvalue s(1−s) are zeros of the Selberg
zeta function, and the holomorphic functions which are fixed points of Mayer’s
operator satisfy the three-term functional equation (with shifted argument).
This point of view is described in the last section of Chapter IV and was also
discussed in detail in the expository paper [11].

This concludes the summary of the contents of the present paper. Several
of its main results were announced in [11], which is briefer and more expos-
itory than the present paper, so that the reader may wish to consult it for
an overview. In the planned second part of the present paper we will discuss
further aspects of the theory. In particular, we will describe various ways to
realize the period functions as cocycles, generalizing the classical interpretation
of period polynomials in terms of Eichler cohomology. (These results developed
partly from discussions with Joseph Bernstein.) We will also treat a number
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of supplementary topics such as Hecke operators, Petersson scalar product, ex-
tension to congruence subgroups of SL(2,Z), and numerical aspects, and will
discuss some arithmetic and nonarithmetic examples.

Acknowledgment. The first author would like to thank the Max-Planck-
Institut für Mathematik, Bonn, for its continued support and hospitality while
this paper was being written.

Chapter I. The period correspondence via L-series

In this chapter we state and prove the correspondence between Maass
forms and solutions of the three-term functional equation in the cut plane C ′.
The easier and more formal parts of the proof will be given in Sections 2 and 3.
The essential analytic step of the proof, which involves relating both the Maass
wave form u and its period function ψ to the L-series of u via Mellin transforms
and then moving the path of integration, will be described in Section 4.

1. The correspondences u↔ Lε ↔ f ↔ ψ

The following theorem gives four equivalent descriptions of Maass forms,
the first equivalence u↔ (L0, L1) being due to Maass.

Theorem 1. Let s be a complex number with σ := <(s) > 0. Then there
are canonical correspondences between objects of the following four types:

(a) a Maass cusp form u with eigenvalue s(1− s);
(b) a pair of Dirichlet L-series Lε(ρ) (ε = 0, 1), convergent in some

right half -plane, such that the functions L∗ε(ρ) = γs(ρ+ ε)Lε(ρ), where

γs(ρ) =
1

4πρ
Γ
(ρ− s+ 1

2

2
)

Γ
(ρ+ s− 1

2

2
)
,

are entire functions of finite order and satisfy

(1.1) L∗ε(1− ρ) = (−1)εL∗ε(ρ) ;

(c) a holomorphic function f(z) on C r R, invariant under z 7→ z + 1
and bounded by |=(z)|−A for some A > 0, such that the function
f(z) − z−2s f(−1/z) extends holomorphically across the positive real axis and
is bounded by a multiple of min{1, |z|−2σ} in the right half-plane;

(d) a holomorphic function ψ : C ′ → C satisfying the functional equation

(1.2) ψ(z) = ψ(z + 1) + (z + 1)−2s ψ
( z

z + 1
)

(z ∈ C ′)
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and the estimates

(1.3) ψ(z)¿


|=(z)|−A (1 + |z|2A−2σ) if <(z) ≤ 0 ,

1 if <(z) ≥ 0, |z| ≤ 1 ,

|z|−2σ if <(z) ≥ 0, |z| ≥ 1

for some A > 0.

The correspondences u 7→ Lε and f 7→ Lε are given by the Mellin transforms

(1.4) L∗ε(ρ) =
∫ ∞

0
uε(y) yρ−1 dy

and

(1.5) (2π)−ρ Γ(ρ)Lε(ρ− s+ 1
2) =

∫ ∞
0

(
f(iy)− (−1)εf(−iy)

)
yρ−1 dy ,

where

(1.6) u0(y) =
1√
y
u(iy) , u1(y) =

√
y

2πi
ux(iy)

(
ux =

∂u

∂x

)
.

The correspondence f 7→ ψ is given by formula (0.5), for some fixed c(s) 6= 0.

Remark. In the last two lines of (1.3), we wrote the estimates on ψ which
we will actually obtain for the period functions ψ attached to Maass wave forms
(for which in fact σ = 1/2), but for the proof of the implication (d)⇒ (a) we
will in fact only need to assume a weaker estimate in the right half-plane;
namely

(1.7) ψ(z) =
{

O
(
|z|−σ+δ

)
(<(z) ≥ 0, |z| ≤ 1),

O
(
|z|−σ−δ

)
(<(z) ≥ 0, |z| ≥ 1)

for some δ > 0. Combining the two implications, we see that a Maass period
function ψ satisfying (1.7) for any positive δ automatically satisfies it with
δ = σ. This is another instance of the “bootstrapping” phenomenon mentioned
in the introduction and studied in Chapter III. In fact, we will see in Chapter III
that such a ψ actually has asymptotic expansions in the right half-plane (or
even in any wedge | arg z| < π − ε) of the form

(1.8)
ψ(z) ∼ C∗0 + C∗1z + C∗2z

2 + · · · as |z| → 0 ,

ψ(z) ∼ −C∗0z−2s + C∗1z
−2s−1 − C∗2z−2s−2 + · · · as |z| → ∞ .

Notice, too, that the “(a)⇒ (d)” direction of Theorem 1 gives one part of
the Theorem stated in the introduction, since if we start with a Maass wave
form then we get a holomorphic function ψ satisfying (1.2) and (1.3), and its
restriction to R+ is a real-analytic function satisfying (0.2) and (0.3) (or even
a strengthening of (0.3), namely ψ(x) = O(1) as x → 0, ψ(x) = O(1/x) as
x→∞).
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2. Periodicity, L-series, and the three-term functional equation

The modular group Γ is generated by the two transformations z 7→ z + 1
and z 7→ −1/z. The content of Theorem 1 can then be broken down corre-
spondingly into two main parts. The first part will be treated now: we will
show that the periodicity of u is equivalent to the periodicity of f (here and in
future, “periodic” means “1-periodic,” i.e. invariant under z 7→ z + 1), to the
property that L0 and L1 are (ordinary) Dirichlet series, and to the fact that
ψ(z) satisfies the three-term functional equation. The second (and harder)
part, which will be done in Section 4, says that under suitable growth assump-
tions the following three conditions are equivalent: the invariance of u under
z 7→ −1/z, the functional equations of L0 and L1, and the continuability of ψ
from C r R to C ′.

Proposition 1. Let s be a complex number, σ = <(s). Then equations
(1.4)–(1.6) give one-to-one correspondences between the following three classes
of functions:

(a) a periodic solution u of ∆u = s(1−s)u in H satisfying the growth condition
u(x+ iy) = O(yA) for some A < min{σ, 1− σ};

(b) a pair of Dirichlet L-series Lε(ρ) (ε = 0, 1), convergent in some half -
plane;

(c) a periodic holomorphic function f(z) on C r R satisfying

f(z) = O
(
|=(z)|−A

)
for some A > 0.

Proof. As is well-known, the equation ∆u = s(1 − s)u together with the
periodicity of u and the growth estimate given in (a) are jointly equivalent to
the representability of u by a Fourier series of the form

(1.9) u(z) =
√
y
∑
n6=0

AnK
s−1

2
(2π|n|y) e2πinx (z = x+ iy, y > 0)

with coefficients An ∈ C of polynomial growth. (We need the growth condition
to eliminate exponentially large terms

√
y I

s−1
2
(2π|n|y) e2πinx and “constant”

terms αys + βy1−s in the Fourier expansion of u.) To such a u we associate
the two Dirichlet series L0 and L1 defined by

(1.10) Lε(ρ) =
∞∑
n=1

An,ε
nρ

(ε = 0 or 1, An,ε = An + (−1)εA−n)
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and the periodic holomorphic function f in C r R defined by

(1.11) f(z) =

{ ∑
n>0 n

s−1
2 An e

2πinz if =(z) > 0,

−
∑

n<0 |n|s−
1
2 An e

2πinz if =(z) < 0.

(The minus sign in front of the second sum will be important later.) The
polynomial growth of the An implies that L0 and L1 converge in a half-plane
and that f(x + iy) is bounded by a power of |y| as |y| → 0. Conversely,
if we start either with two Dirichlet series L0 and L1 which are convergent
somewhere, or with a periodic and holomorphic function f(z) in C r R which
is O

(
|=(z)|−A

)
for some A > 0, then the expansion (1.10) or (1.11) defines

coefficients {An}n6=0 which are of polynomial growth in n (evidently so in the
former case, and by the standard Hecke argument in the latter case). Then if
we define u by (1.9), we find that the functions uε defined by (1.6) have the
Bessel expansions

uε(y) =
∞∑
n=1

(ny)εAn,εK
s−1

2
(2πny) (y > 0, ε = 0 or 1) ;

this in conjunction with the standard Mellin transform formulas

∫ ∞
0

e−2πy yρ−1 dy = (2π)−ρ Γ(ρ) ,
∫ ∞

0
K
s−1

2
(2πy) yρ−1 dy = γs(ρ)

shows that the functions Lε, f and u are indeed related to each other by
formulas (1.4) and (1.5).

We have now described the passage from a periodic solution of ∆u =
s(1 − s)u to a holomorphic periodic function f . The passage from f to ψ is
given by the following purely algebraic result.

Proposition 2. Let ψ(z) be a function in the complex upper half -plane
and s a complex number, s /∈ Z. Then ψ(z) satisfies the functional equation
(1.2) if and only if the function ψ(z) + z−2sψ(−1/z) is periodic.

More precisely, formulas (0.5) and (0.6), for any two constants c(s) and
c?(s) satisfying c(s) c?(s) = 1 − e−2πis, define a one-to-one correspondence
between solutions ψ of (1.2) and periodic functions f in H. The same holds
true in the lower half -plane, but with the condition on c(s) and c?(s) now being
c(s) c?(s) = 1− e2πis.
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Proof. If ψ satisfies (1.2), then

0 =
[
ψ(z + 1)− ψ(z) +

( 1
z + 1

)2s
ψ
( z

z + 1
)]

− (z + 1)−2s

[
ψ
( z

z + 1
)
− ψ

( −1
z + 1

)
+
(z + 1

z

)2s
ψ
(−1
z

)]
=
[
ψ(z + 1) + (z + 1)−2sψ

( −1
z + 1

)]
−
[
ψ(z) + z−2sψ

(−1
z

)]
,

so ψ(z) + z−2sψ(−1/z), and hence also the function f(z) defined by (0.6),
is periodic. Conversely, if f is periodic and we substitute for ψ from (0.5),
then we find that the difference of the left- and right-hand sides of (1.2) is a
linear combination of three expressions of the form f(w+ 1)− f(w) and hence
vanishes. It is easy to check that (0.5) and (0.6) are inverse to each other if
the product of c(s) and c?(s) has the value given in the proposition.

Remarks. 1. The choice of the normalizing constants c(s) is not impor-
tant, but to have a well-defined correspondence we must make it explicit. We
choose

(1.12) c(s) =
i π−s

Γ(1− s) , c?(s) = ± 2πs+1

Γ(s)
e∓iπs .

In the second formula, in which c?(s) should more properly be denoted c?±(s),
the upper sign is to be chosen in the upper half-plane and the lower one in
the lower half-plane. We have chosen to split the product 1− e∓2πis into two
(reciprocals of) gamma functions because when we discuss the degeneration of
our story at integral values of s (which we will do in Chapter IV) it will be
convenient to have c(s) nonzero for negative integral s and c?(s) nonzero for
positive integral s.

2. We would have liked to add a part “(d)” to Proposition 1 giving a fourth
class of functions ψ(z) equivalent to the other three. Unfortunately, in the non-
Maass case the growth conditions cannot be made to match
up exactly as they do in Theorem 1. The condition f(z) ¿ |=(z)|−A
implies that z−2sf(−1/z), and hence ψ(z), is bounded by a multiple of
|=(z)|−A(1 + |z|2A−2σ) in C r R, but in the converse direction, imposing this
growth condition on ψ(z) only permits us to deduce that the function f(z) de-
fined by (0.6) satisfies the same estimate. Since f is periodic this is equivalent
to saying that f(z) is O(|=(z)|−A) as |=(z)| → 0 and has at most polynomial
growth as |=(z)| → ∞, and since f is also holomorphic and hence has an ex-
pansion in powers of e2πiz, this implies that f(z) in each half-plane is the sum
of a constant a± and an exponentially small remainder term O(e−2π|=(z)|) as
=(z)→ ±∞. Because of these two constants this class of functions f(z) is not
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exactly the one occurring in Proposition 1(c), but contains it as a subspace of
codimension 2. (These extra two constants correspond to the possible terms ys

and y1−s in a solution of ∆u = s(1− s)u in the upper half-plane.) This point
is related to the existence of Eisenstein series and the corresponding modifica-
tions to the theory when noncuspidal wave forms are allowed, as discussed in
Section 1 of Chapter IV.

3. Even and odd

As mentioned in the introduction, a Maass wave form u(z) is called even or
odd if u(−z̄) = ±u(z). Since u(−z̄) for any Maass wave form u is another wave
form, it is clear that we can decompose the space Maasss of Maass wave forms
with eigenvalue s(1−s) into the direct sum of the spaces Maass±s of even and odd
forms. (In all known cases, and conjecturally for all s, dim(Maasss) = 0 or 1,
so one of Maass±s is always 0.) If we restrict to even or odd forms, then the
description of the correspondences u ↔ {An} ↔ L ↔ f becomes somewhat
simpler: we need only the coefficients An for n ≥ 1 (since A−n = ±An),
we have only one L-series L(ρ) =

∑∞
n=1Ann

−ρ (since either u0(y) or u1(y) is
identically zero), and the function f(z) need only be specified in the upper half-
plane (since f in the lower half-plane is then determined by f(−z) = ∓f(z)).

On the period side we have a similar decomposition. Let FEs denote
the space of solutions of the three-term functional equation (1.2) in C r R

(holomorphic or continuous, with or without growth conditions, and defined
in C rR, H, H−, C ′ or R+), and denote by FE±s the space of functions of the
same type satisfying the functional equation

(1.13) ψ(z) = ψ(z + 1)± z−2s ψ
(z + 1

z

)
.

Proposition. FEs = FE+
s ⊕ FE−s .

Proof. If ψ(z) satisfies (1.2), then one checks directly that the function

(1.14) ψτ (z) := z−2sψ(1/z)

also does. The involution τ therefore splits FEs into a (+1)- and a (−1)-eigen-
space. We claim that these are just the spaces FE+

s and FE−s . Indeed, if ψ satis-
fies (1.13) then ψ is (±1)-invariant under τ (since the right-hand side of (1.13)
is) and then the last term of (1.13) can be replaced by +z−2sψτ (z−1 + 1) =
(z+ 1)−2sψ(z/(z+ 1)), so ψ ∈ FEs; and conversely, if ψ ∈ FEs is (±1)-invariant
under τ then we can replace the last term in (1.2) by ±(z+ 1)−2sψτ (z/(z+ 1))
to get (1.13).
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There are then even and odd versions of Theorems 1, giving isomorphisms
between Maass±s and the subspaces of FE±s consisting of solutions of (1.13) in
C ′ or R+ satisfying appropriate growth conditions. The even version reads:

Theorem. Let {An}n≥1 be a sequence of complex numbers of polynomial
growth. Then the following are equivalent :

(a) the function
√
y
∞∑
n=1

AnK
s−1

2
(2πny) cos 2πnx is invariant under z 7→

−1/z (and hence is an even Maass wave form);

(b) the function γs(ρ)
∞∑
n=1

Ann
−ρ is entire of finite order and is invariant un-

der ρ 7→ 1− ρ;

(c) the function defined by

±
∞∑
n=1

ns−1/2An(e±2πinz − z−2se∓2πin/z)

for =(z) ? 0 extends holomorphically to C ′ and is bounded in the right
half -plane.

The odd version is similar except that we must replace “cos” by “sin”
(and “even” by “odd”) in part (a), replace γs(ρ) by γs(ρ+ 1) and “invariant”
by “anti-invariant” in part (b), and omit the ± sign before the summation in
part (c). The direct proof of either the odd or even version is slightly simpler
than the proof of Theorem 1 because there is only one nonzero function uε
and only one Dirichlet series to deal with; but on the other hand there are
two cases to be considered rather than one, so that we have preferred to give
a uniform treatment.

4. Relations between Mellin transforms; proof of Theorem 1

In Section 2 we saw how the invariance of u under z 7→ z + 1 corresponds
to the existence of the two Dirichlet series L0 and L1 and to the three-term
functional equation of ψ(z) in C r R, and also how the invariance under z 7→
−1/z translates into the functional equations of L0 and L1. In this section we
give the essential part of the proof of Theorem 1 by showing how the functional
equations of the L-series Lε both implies and follows from the extendability of
ψ to all of C ′ (assuming appropriate growth conditions).

The main tool will be Mellin transforms and their inverse transforms,
which are integrals along vertical lines, so we will often need growth estimates
on such lines. We introduce the terminology “α-exponential decay” to denote
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a function which grows at most like O
(
|ρ|A e−α|ρ|

)
for some A as |ρ| → ∞

along a vertical line or in a vertical strip. For instance, the gamma function is
of (π/2)-exponential decay in every vertical strip.

The implications (a)⇔ (b). This part of Theorem 1, which is due to Maass
(see [12]), follows easily from the discussion in Section 2. Indeed, from ∆u =
s(1−s)u and the fact that ∆ commutes with the action of Γ, it follows that the
function u(z) − u(−1/z) satisfies the same differential equation and therefore
vanishes identically if it vanishes to second order on the positive imaginary axis,
i.e., if the two functions u0 and u1 satisfy uε(1/y) = (−1)εy uε(y) (ε = 0, 1),
which by virtue of (1.4) translates immediately into the functional equation
(1.1). The only point which has to be made is that for the converse direction,
which depends on writing uε(y) as an inverse Mellin transform

uε(y) =
1

2πi

∫
<(ρ)=C

L∗ε(ρ) y−ρ dρ (C À 0) ,

we need an estimate on the growth of L∗ε in vertical strips in order to ensure the
convergence of the integral. Such an estimate is provided by the Phragmén-
Lindelöf theorem: the Dirichlet series Lε(ρ) is absolutely convergent and hence
uniformly bounded in some right half-plane, so by the functional equation it
also grows at most polynomially on vertical lines <(ρ) = C with C ¿ 0;
and since by assumption Lε(ρ) is entire of finite order, the Phragmén-Lindelöf
theorem then implies that it grows at most polynomially in |ρ| on any vertical
line. It then follows from the definition of the functions L∗ε(ρ) that they are
of (π/2)-exponential decay, since the gamma factor is. This growth estimate
ensures the rapid convergence of the inverse Mellin transform integral above
and will be needed several times below.

The implication (b)⇒ (c). Let f be the periodic holomorphic function
associated to L0 and L1 by (1.10) and (1.11). Since the An have polynomial
growth, it is clear that f(z) is exponentially small as |=(z)| → ∞ and of at
most polynomial growth as |=(z)| → 0. We have to show that the function
f(z)− z−2sf(−1/z) continues analytically from CrR to C ′ and satisfies the
given growth estimate in the right-half plane. (Here the specific normalization
in (1.11), with the extra minus sign in the lower half-plane, will be essential.)
To do this, we proceed as follows. Denote by

(1.15) f̃±(ρ) =
∫ ∞

0
f(±iy) yρ−1 dy (<(ρ)À 0)

the Mellin transform of the restriction of f to the positive or negative imaginary
axis. (The integral converges by the growth estimates just given.) Then for
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<(ρ) large enough we have

(1.16a) f̃±(ρ) =
∫ ∞

0

(
±
∞∑
n=1

ns−
1
2 A±n e

−2πny

)
yρ−1 dy

= ± Γ(ρ)
2(2π)ρ

(
L0(ρ− s+ 1

2)± L1(ρ− s+ 1
2)
)

= ± 1
πs+1

Γ
(ρ+ 1

2
)

Γ
(2s− ρ+ 1

2
)

cosπ
(
s− ρ

2
)
L∗0(ρ− s+ 1

2)(1.16b)

+
1
πs

Γ
(ρ

2
)

Γ
(2s− ρ

2
)

sinπ
(
s− ρ

2
)
L∗1(ρ− s+ 1

2) ,

where to get the last equality we have used the standard identities

Γ(x) = 2x−1 π−1/2 Γ
(x

2
)
Γ
(x+ 1

2
)
, Γ(x)Γ(1− x) =

π

sinπx
.

From (1.16a) it follows that f̃±(ρ) is holomorphic except for simple poles at
ρ = 0, −1, −2, . . . and is of (π/2)-exponential decay on any vertical line.
Therefore the inverse Mellin transform

f(±iy) =
1

2πi

∫
<(ρ)=C

f̃±(ρ) y−ρ dρ (y > 0)

converges for any C > 0 and extends analytically to all y with | arg(y)| < π/2,
giving the integral representation

f(z) =
1

2πi

∫
<(ρ)=C

f̃±(ρ) e±iπρ/2 z−ρ dρ (z ∈ C, =(z) ? 0)

and therefore

f(z)− z−2s f(− 1/z) =
1

2πi

∫
<(ρ)=C

f̃±(ρ)
[
e±iπρ/2 z−ρ − e∓iπρ/2 z−2s+ρ

]
dρ

=
1

2πi

∫
<(ρ)=C

[
e±iπρ/2 f̃±(ρ)− e∓iπ(2s−ρ)/2 f̃±(2s− ρ)

]
z−ρ dρ

for 0 < C < 2<(s) and =(z) ? 0. But formula (1.16b) together with the
functional equations of L∗0 and L∗1 and the elementary trigonometry identities

±e±iπρ/2 cosπ(s− ρ/2)∓ e∓iπ(2s−ρ)/2 cos
πρ

2
= i sinπs

e±iπρ/2 sinπ(s− ρ/2) + e∓iπ(2s−ρ)/2 sin
πρ

2
= sinπs

give
(1.17)

πs+1

i sinπs
[
e±iπρ/2 f̃±(ρ) − e∓iπ(2s−ρ)/2 f̃±(2s− ρ)

]
= Γ

(ρ+ 1
2
)
Γ
(2s− ρ+ 1

2
)
L∗0(ρ− s+ 1

2)− iπ Γ
(ρ

2
)
Γ
(2s− ρ

2
)
L∗1(ρ− s+ 1

2) ,
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so miraculously the two integral representations of f(z)− z−2sf(−1/z) in the
upper and in the lower half-plane coalesce into a single integral representation

f(z)− z−2sf(−1/z)

=
sinπs
2πs+2

∫
<(ρ)=C

[
Γ
(ρ+ 1

2
)
Γ
(2s− ρ+ 1

2
)
L∗0(ρ− s+ 1

2)

− iπ Γ
(ρ

2
)
Γ
(2s− ρ

2
)
L∗1(ρ− s+ 1

2)
]
z−ρ dρ ,

and this now converges for all z with | arg(z)| < π (i.e. for all z ∈ C ′) because
the expression in square brackets is of π-exponential decay.

Finally, the estimates for f(z) − z−2sf(−1/z) in the right half-plane fol-
low easily from the integral representation just given. Indeed, the integral
immediately gives a (uniform) bound O

(
|z|−C

)
in this half-plane for any C

between 0 and 2σ, but since the integrand is meromorphic with simple poles
at ρ = 0 and ρ = 2s we can even move the path of integration to a vertical line
<(ρ) = C with C slightly to the left of 0 or to the right of 2σ, picking up a
residue proportional to 1 or to z−2s, respectively. This gives an even stronger
asymptotic estimate than the one in (c), and by moving the path of integration
even further we could get the complete asymptotic expansions (1.8), with the
coefficients C∗n being multiples of the values of the L-series L0(ρ) and L1(ρ) at
shifted integer arguments. We omit the details since we will also obtain these
asymptotic expansions in Chapter III by a completely different method.

The implication (c)⇒ (d). This is essentially just the algebraic identity
proved in Section 2 (Proposition 2), since the function ψ defined by (0.5) auto-
matically satisfies the three-term functional equation (1.2). The first estimate
in (1.3) is trivial since it is satisfied separately by f(z) and z−2sf(−1/z), and
the other two estimates were given explicitly in (c) as conditions on the func-
tion f .

The implication (d)⇒ (b). Now suppose that we have a function ψ(z)
satisfying the conditions in part (d) of Theorem 1. We already saw in Sec-
tion2 (Proposition 2 and Remark 2) that the functional equation (1.2) and
the estimates (1.3) imply the existence of Dirichlet series Lε and of a periodic
holomorphic function f(z) related to each other and to ψ by (1.10), (1.11),
(0.5) and (0.6). The last two growth conditions in (1.3) imply that the Mellin
transform integral

(1.18) ψ̃(ρ) =
∫ ∞

0
ψ(x)xρ−1 dx

converges for any ρ with 0 < <(ρ) < 2σ and moreover that we can rotate
the path of integration from the positive real axis to the positive or negative
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imaginary axis to get

(1.19) iρ
∫ ∞

0
ψ(iy) yρ−1 dy = ψ̃(ρ) = i−ρ

∫ ∞
0

ψ(−iy) yρ−1 dy .

The same estimates also imply that f(iy) = O(1) as |y| → 0, and of course
f(iy) is exponentially small for |y| → ∞ by (1.11), so the Mellin transform
integral (1.15) converges for all ρ with <(ρ) > 0 and we have

c(s)
∫ ∞

0
ψ(±iy) yρ−1 dy =

∫ ∞
0

[
f(±iy)− e∓iπs y−2s f(±i/y)

]
yρ−1 dy

(1.20)

= f̃±(ρ)− e∓iπs f̃±(2s− ρ)

for ρ in the strip 0 < <(ρ) < 2σ. Therefore (1.19) gives

eiπρ/2
[
f̃+(ρ)− e−iπs f̃+(2s− ρ)

]
= e−iπρ/2

[
f̃−(ρ)− eiπs f̃−(2s− ρ)

]
.

Substituting for f̃±(ρ) in terms of L∗ε(ρ) from (1.16b), which is valid in the strip
0 < <(ρ) < 2σ by the same argument as before, and moving the appropriate
terms on each side of the equation to the other side, we obtain

iπ1−s

Γ
(1−ρ

2

)
Γ
(1+ρ−2s

2

) [L∗0(ρ− s+ 1
2)− L∗0(s− ρ+ 1

2)
]

=
π−s

Γ
(2−ρ

2

)
Γ
(2+ρ−2s

2

) [L∗1(ρ− s+ 1
2) + L∗1(s− ρ+ 1

2)
]
.

But the left-hand side of this equation changes sign and the right-hand side is
invariant under ρ 7→ 2s− ρ, so both sides must vanish. This gives the desired
functional equations of L0 and L1 .

We still have to check that L∗ε is entire and of finite order. We already
know that f̃±(ρ) is holomorphic for <(ρ) > 0, so formula (1.5) implies that
Lε(ρ) is also holomorphic in this half-plane. If 0 < σ < 1, then by looking
at the poles of the gamma-factor γs(ρ+ ε) we deduce that L∗ε(ρ) has no poles
in the smaller right half-plane <(ρ) > |12 − σ|. The functional equation then
implies that L∗ε(ρ) also has no poles in the left half-plane <(ρ) < 1 − |12 − σ|,
and since these two half-planes intersect, L∗ε(ρ) is in fact an entire function
of ρ. Furthermore, any of the integral representations which show that L∗ε(ρ) is
holomorphic also shows that it is of at most exponential growth in any vertical
strip, which together with the functional equation and the boundedness of Lε
in a right half-plane implies that L∗ε is of finite order.

This completes the proof of the theorem if 0 < σ < 1. To extend the
result to all s with σ > 0, we use the fact (which will be proved in §3 of Chap-
ter III) that any function ψ satisfying the assumptions of (d) has asymptotic
representations of the form (1.8) near 0 and ∞. These asymptotic expansions
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give the locations of the poles of the Mellin transform ψ̃(ρ) of ψ; namely, it has
simple poles at ρ = −m and ρ = 2s+m with residues C∗m and (−1)m+1C∗m, re-
spectively. But equations (1.19) and (1.20) together with equation (1.16b), the
functional equation (1.1) (now established), and the trigonometric identities
preceding equation (1.17) combine to give

C(s) ψ̃(ρ) = Γ
(ρ+ 1

2
)

Γ
(2s− ρ+ 1

2
)
L∗0(ρ− s+ 1

2)

− i π Γ
(ρ

2
)

Γ
(2s− ρ

2
)
L∗1(ρ− s+ 1

2)(1.21)

for some nonzero constant C(s). Replacing ρ by 2s − ρ just changes the sign
of the second term on the right, so the first and second terms on the right are
proportional to ψ̃(ρ) + ψ̃(2s− ρ) and ψ̃(ρ)− ψ̃(2s− ρ), respectively, and this
implies that both L∗0 and L∗1 are entire, since the poles of ψ̃(ρ)± ψ̃(2s− ρ) are
cancelled by those of the gamma factors.

Finally, we observe that if we had used the weaker condition (1.7) instead
of the last two conditions of (1.3) then the same proof would have gone through,
except that we would have had to work with ρ in the smaller strip σ − δ <
<(ρ) < σ + δ instead of 0 < <(ρ) < 2σ.

Chapter II. The period correspondence via integral transforms

Let u(z) be a Maass wave form with spectral parameter s. In Chapter I
we defined the associated period function ψ in the upper and lower half-planes
by the formula

(2.1) ψ(z) .= ±
∞∑
n=1

ns−1/2A±n
(
e±2πinz − z−2se∓2πin/z

)
(=(z) ? 0) .

(Here and throughout this chapter, the symbol .= denotes equality up to a
factor depending only on s.) On the other hand, as was mentioned in the
introduction to the paper, the original definition of the period function as
given (in the even case) in [10] was by an integral transform; namely

(2.2) ψ1(z) .=
∫ ∞

0
zts
(
z2 + t2

)−s−1
u(it) dt

(
<(z) > 0

)
,

where we have written “ψ1” instead of “ψ” to avoid ambiguity until we have
proved the proportionality of the two functions. This definition is more direct,
but does not make apparent either of the two main properties of the period
function, viz., that it extends holomorphically to the cut plane C ′ and that it
satisfies the three-term functional equation (0.1). In this chapter we will study
the function defined by the integral (2.2) from several different points of view,
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each of which leads to a proof of these two properties and each of which brings
out different aspects of the theory. More specifically:

In Section 1 we extend the definition (2.2) to include odd as well as even
wave forms and show, using the representation of ψ(z) as an inverse Mellin
transform of the L-series of u which was the central result of Chapter I, that
the functions ψ and ψ1 are proportional in their common region of definition.
This shows that ψ1 extends to the left half-plane and satisfies the functional
equation (since these properties are obvious from the representation (2.1)), and
at the same time that ψ extends holomorphically across the positive real axis
(since this property is clear from (2.2)).

In Section 2 we give a direct proof of the two desired properties. It turns
out that the integrand in (2.2) can be written in a canonical way as the re-
striction to the imaginary axis of a closed 1-form defined in the whole upper
half-plane. This permits us to deform the path of integration, and from this
the analytic extendability, the functional equation of ψ1(z), and the propor-
tionality of ψ1 and ψ follow in a very natural way.

In Section 3 we study the properties of the function ψ1 when u(z) is as-
sumed to be an eigenfunction of the Laplace operator but no longer to be
Γ-invariant. Specifically, we show that the invariance of u(z) under the trans-
formation

S : z 7→ −1/z

is equivalent to the identity ψ1(1/z) = z2sψ1(z), while the invariance of u(z)
under the transformation

T : z 7→ z + 1

is reflected in the fact that the function ψ2 defined by

(2.3) z−2s ψ2

(
1 +

1
z

)
= ψ1(z)− ψ1(z + 1) (<(z) > 0)

extends holomorphically to C ′ and satisfies the same identity ψ2(1/z) =
z2sψ2(z). It is then easy to deduce that if u is invariant under both S and
T then ψ1 equals ψ2 (i.e., ψ1 satisfies the three-term functional equation) and
is proportional to ψ. We also show how to interpret these relationships in
terms of a summation formula due to Ferrar.

In Section 4 we explain how to pass from the Maass form u(z) to the func-
tion ψ(z) via an intermediate function g(w) which is related to both of them
by integral transforms. This is the approach used in [10], but the derivation
given here is simpler. The function g links u and ψ in a very pretty way: it
is an entire function whose values at integral multiples of 2πi are the Fourier
coefficients of u and whose Taylor coefficients at w = 0 are proportional to the
Taylor coefficients of ψ at z = 1. We also show that the Taylor coefficients of ψ
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at z = 0 are proportional to special values of the L-series of u, in exact analogy
with the corresponding fact for the coefficients of the period polynomials of
holomorphic modular forms which is discussed in Chapter IV.

Finally, in Section 5 we give an expression for ψ(z) as a formal integral
transform of an automorphic distribution on R which is obtained from the
function u(z) by a limiting process as z approaches the boundary. This repre-
sentation makes the properties of ψ intuitively clear and ties together several
of the other approaches used in the earlier sections of the chapter.

1. The integral representation of ψ in terms of u

In this section we will use the L-series proof given in Section 4 of Chap-
ter I to prove that the Mellin transforms of the restrictions of ψ1 and ψ to
R+ are proportional and hence that ψ1 is a multiple of ψ. This helps to un-
derstand the properties of the period function, since each representation puts
different aspects into evidence: formula (2.1) and the elementary algebraic
lemma (Proposition 2) of Section 2 of Chapter I make it clear that ψ satisfies
the three-term functional equation (1.2), but not at all obvious that it extends
holomorphically from CrR to C ′, while from (2.2) (or its odd analogue) it is
obvious that ψ1 extends across the positive real axis but not that it extends
beyond the imaginary axis or that it satisfies the three-term equation.

We will state the result in a uniform version which includes both even
and odd Maass forms. The definition (2.2) of the function ψ1(z) must then be
replaced by
(2.4)

ψ1(z) = 2sz
∫ ∞

0

ts+1/2 u0(t)
(z2 + t2)s+1

dt− 2πi
∫ ∞

0

ts−1/2 u1(t)
(z2 + t2)s

dt
(
<(z) > 0

)
,

where u0 and u1, as in Chapter I (eq. (1.6)), denote the renormalized value
and normal derivative of u restricted to the imaginary axis. Of course only the
first term is present is u is even and only the second if u is odd.

Proposition. For u a Maass wave form the function ψ1(z) defined by
(2.4) is proportional to the period function ψ(z) defined in Theorem 1 of Chap-
ter I.

Proof. We will prove this by comparing the Mellin transforms of ψ1 and ψ.
Since u0 and u1 are of rapid decay at both 0 and infinity, the function defined
by (2.4) is holomorphic in the right half-plane and its restriction to the positive
real axis is O(1) near 0 and O(z−2<(s)) at infinity. Hence the Mellin transform∫∞

0 ψ1(x)xρ−1 dx exists in the strip 0 < <(ρ) < 2<(s). We can compute
it easily by interchanging the order of integration and recognizing the inner
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integral as a beta integral. The result of the computation is∫ ∞
0

ψ1(x)xρ−1 dx
.= Γ
(ρ+ 1

2
)

Γ
(2s− ρ+ 1

2
) ∫ ∞

0
u0(t) tρ−s−1/2 dt

− iπ Γ
(ρ

2
)

Γ
(2s− ρ

2
) ∫ ∞

0
u1(t) tρ−s−1/2 dt ,

which agrees (up to a constant factor) with the expression on the right-hand
side of (1.21). Applying the inverse Mellin transform, we deduce that the
functions ψ and of ψ1 are proportional when restricted to the positive real axis
and hence, by analytic continuation, also in the right half-plane.

2. The period function as the integral of a closed 1-form

In the last section we proved that ψ1(z) satisfies the conditions of a Maass
period function (extendability to C ′, functional equation, and growth) by using
the results of Chapter I. Now we give a direct proof by interpreting (2.4) as
the integral of a closed 1-form along a path and then deforming the path.

We start with a more general construction. If u and v are two differentiable
functions of a complex variable z = x + iy, let {u, v} = {u, v}(z) be the
differential 1-form (Green’s form) defined by the formula

(2.5) {u, v} =
(
v
∂u

∂y
−u ∂v

∂y

)
dx+

(
u
∂v

∂x
− v ∂u

∂x

)
dy =

∣∣∣∣∣∣
u ∂u/∂x ∂u/∂y

v ∂v/∂x ∂v/∂y

0 dx dy

∣∣∣∣∣∣ .
We also consider the complex version of this, defined by

[u, v] = [u, v](z) = v
∂u

∂z
dz + u

∂v

∂z̄
dz̄ ,

where dz = dx+ i dy, dz̄ = dx− i dy, ∂
∂z = 1

2
∂
∂x − i

2
∂
∂y , ∂

∂z̄ = 1
2
∂
∂x + i

2
∂
∂y .

Lemma. The forms {u, v} and [u, v] have the following properties:

(i) [u, v] + [v, u] = d(uv), [u, v]− [v, u] = −i {u, v}.

(ii) If u and v are eigenfunctions of the Laplacian with the same eigenvalue,
then {u, v} and [u, v] are closed forms.

(iii) If z 7→ g(z) is any holomorphic change of variables, then {u ◦ g, v ◦ g} =
{u, v} ◦ g and [u ◦ g, v ◦ g] = [u, v] ◦ g.

Proof. (i) Direct calculation.
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(ii) The statement holds for both the euclidean Laplacian ∆0 =
∂2

∂x2
+
∂2

∂y2

and the hyperbolic Laplacian ∆ = −y2∆0, since (for {u, v}, which suffices
by (i))

d{u, v} =
[
− ∂

∂y

(
v
∂u

∂y
− u ∂v

∂y

)
+

∂

∂x

(
u
∂v

∂x
− v ∂u

∂x

)]
dx ∧ dy

=
(
u∆0v − v∆0u

)
dx ∧ dy =

(
v∆u− u∆v

) dx ∧ dy
y2

.

(iii) Again it suffices by (i) to prove this for one of the two forms; this time
[u, v] is easier. Replacing u and v by u ◦ g and v ◦ g multiplies ∂u/∂z by g′(z)
and ∂v/∂z̄ by g′(z), while replacing z by g(z) in [u, v] leaves the coefficients
uvz and vuz̄ unchanged but multiplies dz by g′(z) and dz̄ by g′(z).

We will apply this construction when v is the sth power of the function

Rζ(z) =
y

(x− ζ)2 + y2
=
i

2

(
1

z − ζ −
1

z̄ − ζ

)
(ζ ∈ C, z = x+ iy ∈ H) .

The main properties of this function are the transformation equation

(2.6) Rgζ(gz) = (cζ + d)2Rζ(z)

for g =
(
a b
c d

)
∈ SL(2,R) and the differential equation

(2.7) ∆
(
Rsζ
)

= s(1− s)Rsζ (s ∈ C) .

(Here the sth power is well-defined if ζ ∈ R, since then Rζ(z) > 0; in the
general case we must restrict z to the complement in H of some path joining
ζ and ζ̄ and choose the evident branch of Rsζ .) Both properties can be proved
easily either by direct calculation or (for ζ real, which suffices) by observing
that Rζ(z) = c2=(gz) for any g =

(
a b
c d

)
∈ SL(2,R) with g−1(∞) = ζ.

From (2.7) and (ii) of the lemma it follows that if u : H → C is an
eigenfunction of ∆ with eigenvalue s(1− s), then the differential form {u, Rsζ}
is closed. Explicitly, we have

{u, Rsζ}(z) =
(
sys−1(y2 − (x− ζ)2)(

(x− ζ)2 + y2
)s+1 u(z) +

ys(
(x− ζ)2 + y2

)s uy(z)) dx
+
( −2s(x− ζ)ys(

(x− ζ)2 + y2
)s+1 u(z) − ys(

(x− ζ)2 + y2
)s ux(z)

)
dy .

The dy part of this (with x 7→ 0, y 7→ t, ζ 7→ z) is the integrand in (2.4), so
(2.4) can be rewritten

(2.8) ψ1(ζ) =
∫ i∞

0
{u, Rsζ}(z) ,
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where <(ζ) > 0 and the integral is taken along the imaginary axis. But now,
because the form {u, Rsζ} is closed, we can replace the imaginary axis by any
other path from 0 to i∞ which passes to the left of both ζ and ζ̄. We can then
move ζ to any new point with ζ and ζ̄ to the right of the new path. This gives
the analytic continuation of ψ1 to C ′ for any u which is sufficiently small at
0 and ∞ to ensure convergence, and in particular for u a Maass form. The
three-term functional equation in the Maass case also follows easily. Indeed,
(2.6) and part (iii) of the lemma imply

(cζ + d)−2s ψ1(gζ) =
∫ g−1(∞)

g−1(0)
{u, Rsζ}(z)

for any g =
(
a b
c d

)
∈ SL(2,R) for which u ◦ g = u, and hence for any g ∈ Γ in

the Maass case; thus we have

ψ1(ζ)−ψ1(ζ+1)−(ζ+1)−2sψ1

( ζ

ζ + 1
)

=
(∫ ∞

0
−
∫ ∞
−1
−
∫ −1

0

)
{u, Rsζ}(z) = 0 .

A modification of the same idea can be used to give a direct proof of the
proportionality of the functions ψ1 and ψ in the Maass case. We observe first
that by part (i) of the lemma we can replace {u,Rsζ} by [u,Rsζ ] in (2.8), since
the integral of d(uRsζ) from 0 to ∞ vanishes. The invariance properties of [·, ·]
and Rsζ then give

(2.9) ψ1(ζ) .=
∫ i∞

0
[u, Rsζ ](z) = f1(ζ)− ζ−2s f1(−1/ζ)

for ζ ∈ H, where

f1(ζ) .=
∫ i∞

ζ
[u, Rsζ ](z) (ζ ∈ H) .

(The point of replacing {u,Rsζ} by [u,Rsζ ] in (2.8) is that the former has a
singularity like |z− ζ|−s−1 as z → ζ and hence cannot be integrated from ζ to
∞, whereas the latter has only a |z− ζ|−s singularity at ζ, which is integrable
for 0 < <(s) < 1.) The function f1 is holomorphic, since

∂f1(ζ)
∂ζ̄

= −u(z)
∂

∂z̄

(
Rζ(z)s

)∣∣∣∣
z=ζ

= − is
2

u(z) ys−1

(z − ζ)s−1(z − ζ̄)s+1

∣∣∣∣
z=ζ

= 0 ,

and is obviously periodic (replace z by z + 1 in the integral), so (2.9) gives a
second proof of the three-term functional equation by virtue of Proposition 2
of Chapter I, Section 2. Moreover, term-by-term integration using formula
10.2 (13), [6, Vol. II, p. 129] shows that f1 is proportional to the function f

defined by (1.11) in the upper half-plane. A similar argument works in the
lower half-plane, but now with f1(ζ) defined as −

∫ i∞
ζ̄ [Rsζ , u](z). This gives a
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new proof that the function ψ defined in CrR by (2.1) extends to C ′ and that
the functions ψ1 and ψ are proportional. We have also obtained an explicit
representation of the holomorphic function f : H → C associated to a Maass
wave form as an Abel transform:

Proposition. Let u be a Maass wave form with Fourier expansion (1.9).
Then the function f defined by (1.11) has the integral representation

f(ζ) .=
∫ i∞

ζ

(
∂u(z)
∂z

ys

(z − ζ)s(z̄ − ζ)s
dz +

is

2
u(z)

ys−1

(z − ζ)s−1(z̄ − ζ)s+1
dz̄

)
in the upper half -plane, where the integral can be taken along any path.

3. The incomplete gamma function expansion of ψ

We now consider the behavior of the correspondence u 7→ ψ1 defined by
the integral (2.2) or (2.4) for functions u in the upper half-plane which are not
necessarily invariant under all of Γ but only under S or T separately. This will
lead to a number of alternate descriptions of the transformation and to a better
understanding of its properties, as well as supplying yet another proof that ψ1

satisfies the three-term functional equation when u is in fact a Maass wave
form. For simplicity we restrict our attention to the even case u(z) = u(−z̄),
so that ψ1 is defined by (2.2). The odd case will be treated briefly at the end
of the section.

S-invariance. This is very easy. Substituting t→ 1/t in (2.2) gives

(2.10) u(−1/z) = u(z) ⇒ ψ1(1/z) = z2sψ1(z) ;

i.e., the S-invariance of u is reflected in the τ -invariance of ψ1, where τ is
the involution defined in (1.14). Conversely, if we know that ψ1 = ψτ1 , then
we can deduce that u is S-invariant if it is assumed to be an eigenfunction
of ∆. (Without this assumption it follows only that the restriction of u to the
positive imaginary axis is S-invariant.)

T -invariance. Now suppose that u is a T -invariant even eigenfunction of
∆ and is bounded in the upper half-plane i.e., that u satisfies all the properties
of an even Maass form except the invariance under S. Then u has a Fourier
expansion (1.9) with An = O

(
n1/2

)
by the usual Hecke argument, and by

term-by-term integration we find that the function ψ1 defined by (2.2) has the
expansion

(2.11) ψ1(z) .=
∞∑
n=1

ns−1/2An Cs(2πnz) ,
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where

(2.12) Cs(z) .=
∫ ∞

0

z ts+1/2

(z2 + t2)s+1
Ks−1/2(t) dt

(
<(z) > 0

)
.

The function Cs(z) (a special case of the “Lommel function”) has very nice
properties. The ones we will use are given in the following proposition and
corollary.

Proposition 1. Let s ∈ C, <(s) > 0, and <(z) > 0. Then

(2.13) Cs(z) .= eiπ(s−1/2)+izΓ(1− 2s, iz) + e−iπ(s−1/2)−izΓ(1− 2s,−iz)

where Γ(a, x) =
∫∞
x e−t ta−1 dt is the incomplete gamma function. The func-

tion Cs(z) is also given, up to factors depending only on s, by each of the
following formulas:

Cs(z) .=
∫ ∞

0

cos t
(z + t)2s

dt ,(2.14)

Cs(z) .=
∫ ∞

0

w2s

w2 + 1
e−wz dw ,(2.15)

Cs(z ) .= sin(πs+ z)−
∞∑
n=0

(−1)n z2n+1−2s

Γ(2n+ 2− 2s)
.(2.16)

Remark. The normalization of Cs(z) is not particularly important for our
purposes, so we did not include it in the statement. Occasionally we will want
to have fixed a choice. We then take the right-hand side of equation (2.15)
as the definition of Cs(z), which determines the implied constants of propor-
tionality in equations (2.12), (2.13), (2.14) and (2.16) as π−1/22s+1/2Γ(1 + s),
1
2Γ(2s), Γ(2s), and π/ sin 2πs, respectively.

Proof. The equality (up to constants) of the various functions in (2.12)–
(2.15) can be verified by standard manipulations or by looking them up in
tables of integrals. A more enlightening proof is to observe that each of these
functions has polynomial growth at infinity and satisfies the differential equa-
tion

C′′s (z) + Cs(z) .= z−2s−1

(where the implied constant, with the normalization just given, is Γ(2s+ 1)),
and that these properties characterize Cs uniquely. (To get the differential
equation for (2.12) and (2.14), integrate by parts and use the second-order
differential equations satisfied by cos t and Ks−1/2(t).) The power series ex-
pansion (2.16) of Cs(z) at 0 is obtained from (2.13) using ex

(
Γ(a)−Γ(a, x)

)
=

Γ(a)
∑∞

n=0(−1)nxa+n/Γ(a+ n+ 1).
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Corollary. The function Cs(z) extends holomorphically to the cut plane
C ′ and has the asymptotic expansion, uniform in any wedge | arg z| ≤ π − ε,

(2.17) Cs(z) ∼
∞∑
n=0

(−1)n Γ(2s+ 2n+ 1)
z2s+2n+1

as |z| → ∞. Moreover, it satisfies

(2.18) e±πis Cs(z) + e∓πis Cs(−z) .= e±iz (z ∈ C, =(z) ? 0) .

Proof. The analytic continuation and the symmetry property (2.18) follow
easily from either (2.14) or (2.16). The asymptotic expansion can be obtained
from any of the formulas (2.12)–(2.15) if <(z) > 0, and from formula (2.14)
for all z ∈ C ′ .

Proposition 2. Let u be a bounded, even, and T -invariant eigenfunction
of ∆ in the upper half -plane, and define ψ1 and ψ2 by equations (2.2) and
(2.3). Then:

i) Both ψ1(z) and ψ2(z) extend holomorphically to C ′, and ψ2 is τ -in-
variant.

ii) The function in CrR defined by ψ1(z) + e∓2πisψ1(−z) for =(z) ? 0 is
periodic.

Proof. Each term of the series (2.11) extends holomorphically to C ′ by
the corollary, and the series converges absolutely and locally uniformly because
of the estimates An = O(

√
n) and Cs(z) = O

(
|z|−2<(s)−1

)
. This gives the

extension of ψ1 to C ′. Now using (2.14) we get

ψ1(z)− ψ1(z + 1) .=
∞∑
n=1

n1/2−sAn

∫ 1

0

cos 2πnt
(z + t)2s

dt

for z ∈ C ′, the calculation being justified by the absolute convergence. Re-
placing z by 1/(z − 1) gives

(2.19) ψ2(z) .=
∞∑
n=1

n1/2−sAn

∫ 1

0

cos 2πnt
(1− t+ tz)2s

dt

for z ∈ C \ (−∞, 1]. The right-hand side obviously defines a holomorphic
function in C ′, and the symmetry under z 7→ 1/z follows by substituting
t 7→ 1 − t. This proves (i), and part (ii) is easily seen to be an equivalent
statement to part (i).

Equations (2.11) and (2.18) give the following more explicit version of part
(ii):

(2.20) ψ1(z) + e∓2πisψ1(−z) .= c?(s) f(z) (=(z) ? 0) ,



216 J. LEWIS AND D. ZAGIER

where f(z) is the periodic function in C r R defined by equation (1.11) and
c?(s) the factor (which depends on the sign of =(z) and hence cannot be
absorbed by the .=) defined in (1.12).

The Maass case. Combining the results of the last two subsections im-
mediately yields a proof of both the three-term functional equation of ψ1 and
the proportionality of ψ1 and ψ when u is a Maass form. Indeed, ψ1 is then
τ -invariant by (2.10), so e∓2πisψ1(−z) = z−2sψ1(−1/z). Part (ii) of Proposi-
tion 2 then says that ψ1(z) + z−2sψ1(−1/z) is periodic, which is equivalent to
the three-term functional equation by Proposition 2 of Chapter I, Section 2.
The same argument applied to (2.20) implies the proportionality of ψ1(z) and
the function ψ(z) defined by (2.1). (Compare equations (0.6) and (0.5).)

The results of our analysis can be summarized in the following proposition.

Proposition 3. Let An (n ≥ 1) be complex numbers satifying An =
O(n1/2) and s a complex number with <(s) > 0. Then the following conditions
are equivalent :

i) The numbers An are the Fourier coefficients of an even Maass form
with eigenvalue s(1− s);

ii) For z ∈ C with =(z) ? 0,
(2.21)

∞∑
n=1

An n
s−1/2 Cs(2πnz) = ±cs

∞∑
n=1

An n
s−1/2

(
e±2πinz − z−2se∓2πin/z

)

with cs =
π

2i
csc(πs) and Cs(z) as in Proposition 1 and the following remark ;

iii) The function on the left-hand side of (2.21) is τ -invariant.

The equivalence of condition (iii) with the apparently stronger condition
(ii) says that once we assume that ψ(z) has an expansion in terms of Lommel
functions, then merely requiring its τ -invariance implies the full period prop-
erty. Thus the three-term functional equation in this situation contains a lot
of “overkill.” We also remark that in the Maass case we have ψ1 = ψ2 (this is
just the three-term functional equation), so that (2.19) gives yet another rep-
resentation, distinct from (2.1) and (2.11), of the period function of an (even)
Maass wave form in terms of its Fourier coefficients.

Alternate approach: Ferrar summation. The relationship stated in Propo-
sition 3 can be seen in another way by making use of the Ferrar summation
formula [7]. This summation formula characterizes sequences {An} whose asso-
ciated Dirichlet series L(ρ) =

∑
Ann

−ρ satisfy a functional equation L(1−ρ) =
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Φ(ρ)L(ρ) by the property that

(2.22)
∞∑
n=1

Anh(n) =
∞∑
n=1

Anh
z(n) ( + possible residue terms )

for arbitrary (nice) test functions h, where h → hz is the integral transform
whose kernel function is the inverse Mellin transform of Φ(ρ). For example,
the integral transform corresponding to the functional equation satisfied by the
Riemann zeta function is the Fourier cosine transform, and the Ferrar sum-
mation formula (2.22) for the sequence An = 1 is just the Poisson summation
formula.

When Φ(ρ) is the function corresponding to the functional equation of an
even Maass form with spectral parameter s, then we find from standard tables
of Mellin transforms that the integral transform specified by Ferrar’s formula
is

hz(y) =
∫ ∞

0
Fs(yx)h(x) dx

with Fs(ξ) = F1−s(ξ) given by

Fs(ξ) =
π

cosπs
(
J2s−1(4π

√
ξ)− J1−2s(4π

√
ξ)
)

+ 4 sinπsK2s−1(4π
√
ξ)

(and no contribution from the residue terms in this case). Applying formula
(2.22) to the test function h(x) = Ks−1/2(ax) gives the characteristic inversion
formula ∞∑

n=1

AnKs−1/2(2πny) = y−1
∞∑
n=1

AnKs−1/2(2πn/y)

of an (even) Maass form, while applying it to h(x) = xs−1/2eiax and to h(x) =
xs−1/2Cs(ax) gives (after some manipulations) the identities (2.21) and

∞∑
n=1

Ann
s−1/2Cs(2πnz) = z−2s

∞∑
n=1

Ann
s−1/2 Cs(2πn/z) ,

respectively, which by Proposition 3 above also characterize the Fourier coef-
ficients of Maass wave forms.

The odd case. Finally, we should say briefly what happens in the case
of functions u which are anti-invariant under z 7→ −z̄. In this case ψ1 is
defined by the second term in (2.4). The analogue of (2.10) is again easy: if
u is S-invariant then u1(1/t) = −tu1(t) and ψ1 is anti-invariant under τ . If
u is T -invariant, then computing u1(t) from the Fourier expansion of u and
integrating term by term in (2.4) gives an expansion like (2.11), but with the
cosine-like function Cs(z) replaced by its “sine” analogue

Ss(z) .=
∫ ∞

0

ts+1/2

(z2 + t2)s
Ks−1/2(t) dt

(
<(z) > 0

)
.
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This function (suitably normalized) is related to Cs by

Ss = Cs−1/2 , Cs = −S0
s−1/2 , S ′s = −Cs , C′s = S0

s ,

where S0
s (z) = Ss(z)− Γ(2s)z−2s = O

(
z−2s−2

)
. The story now works much as

before, the T -invariance of u being reflected finally in the anti-τ -invariance of
ψ2 or equivalently in the periodicity of ψ1(z) − e∓2πisψ1(−z). The only new
point is that the series

∑
ns−1/2An Ss(2πnz) does not converge absolutely and

must be replaced by
∑
ns−1/2An S0

s (2πnz) + Γ(2s)L1(s + 1
2)(2πz)−2s, where

L1(ρ) is (the analytic continuation of) the L-series associated to u. We omit
the details.

4. Other integral transforms and intermediate functions

We again consider a periodic, bounded, and even solution of ∆u =
s(1 − s)u, where <(s) > 0. In the last section we developed the properties
of the associated holomorphic functions ψ1 and ψ2 defined by (2.2) and (2.3),
and in particular showed that ψ2 continues to C ′ and is τ -invariant. The for-
mer property implies that the power series expansion of ψ2(1 + z) has radius
of convergence 1, so the function g defined by

(2.23) g(w) =
∞∑
m=0

Cm
Γ(m+ 2s)

wm , where ψ2(1 + z) =
∞∑
m=0

Cm z
m ,

is entire and of exponential type (i.e. g(w)¿ e(1+ε)|w| ), while the τ -invariance
of ψ2 is equivalent to the functional equation

(2.24) g(−w) = ew g(w)

by a calculation whose proof we leave to the reader as an exercise. (Hint:
Compute the function ψ2 corresponding via (2.23) to g(w) = w2ne−w/2.)

Proposition. The Fourier coefficients of u are related to the function g

by

(2.25) g(±2πin) .= n−s+1/2An (n = 1, 2, . . . ).

In other words, the entire function g simultaneously interpolates the
Fourier coefficients of u and is related via its Taylor expansion to the func-
tion ψ2. Since ψ2 is proportional to ψ in the case when u is a Maass wave
form, the proposition gives us an explicit way to recover a Maass form from
its associated period function.
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Proof. Using the integral formula (2.19) and expanding (1+tz)−2s by the
binomial theorem, we find that the coefficients Cm defined by (2.23) are given
by

Cm
.= (−1)m

(
m+ 2s− 1

m

) ∞∑
n=1

n1/2−sAn

∫ 1

0
tm cos 2πnt dt ,

so

g(w) .=
∞∑
n=1

n1/2−sAn

∫ 1

0
e−wt cos 2πnt dt(2.26)

=
(
1− e−w

) ∞∑
n=1

n1/2−sAn

∫ ∞
0

e−wt cos 2πnt dt

=
(
1− e−w

) ∞∑
n=1

n1/2−sAn
w

w2 + 4π2n2
.

The proposition follows immediately.

The identity (2.26) was proved in [10, Lemma 5.1] in a different way, which
we sketch briefly. Let u be a periodic eigenfunction (not necessarily Maass)
with Fourier expansion (1.9), say with An = O(n1/2). Define a function φ on
{w : |=(w)| < 2π} as the Hankel transform

(2.27) φ(w) = w1−s
∫ ∞

0

√
wt J

s−1
2
(wt)u(it) dt .

Integrating term-by-term, using formula 8.13 (2), [6, Vol. II, p. 63] gives

(2.28) φ(w) =
∞∑
n=1

n
1
2−sAn

w

w2 + (2πn)2
.

Hence φ(w) continues meromorphically to an odd function in the whole
complex plane with simple poles of residue (2πn)−s+1/2An/2 at w = ±2πin
(n = 1, 2, . . . ) and no other poles, and is of polynomial growth away from the
imaginary axis. In other words, the translation invariance of u is reflected in
φ(w) in the properties of being odd and having (simple) poles only in 2πiZ.
Now define the function g(w) by

(2.29) g(w) =
(
1− e−w

)
φ(w) ;

then these properties translate into the properties that g is entire of exponential
type and satisfies the functional equation (2.24) and the interpolation property
(2.25). On the other hand, ψ1 can be expressed in terms of φ as a Laplace
transform

(2.30) ψ1(z) .=
∫ ∞

0
e−zw w2s−1 φ(w) dw (<(z) > 0) .
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(Proof. Substitute (2.27) into (2.30) and apply the integral 4.14(8) of [6, Vol. I]
to recover (2.2) up to a constant depending only on s.) This and (2.29) give

ψ1(z)− ψ1(z + 1) .=
∫ ∞

0
e−zw w2s−1 g(w) dw (<(z) > 0) ,

or, replacing z by 1/z and then w by wz,

(2.31) ψ2(1 + z) .=
∫ ∞

0
e−w w2s−1 g(wz) dw (<(z) > 0) .

The integral on the right converges for <(z) > −1 because g is of exponential
type, giving the holomorphic continuation of ψ2 to the right half-plane, and
differentiating (2.31) n times and setting z = 0, we recover the relationship
(2.23) between the Taylor expansions of g at w = 0 and of ψ2 at z = 1.

The two approaches can be related by observing that substituting (2.28)
into (2.30) and using formula (2.15) for Cs(z) gives the Lommel function ex-
pansion (2.11).

Finally, we observe that applying τ to equation (2.30) gives

ψτ1 (z) .=
∫ ∞

0
e−w w2s−1 φ(wz) dw (<(z) > 0) .

The same argument which was used to get from (2.31) to (2.23) now shows
that the function ψτ1 (z) is C∞ at z = 0 (more precisely, its derivatives from
the right to any order exist) and has an asymptotic expansion given by

(2.32) ψτ1 (z) ∼
∑
m≥0
m odd

Γ(m+ 2s)
φ(m)(0)
m!

zm (z → 0, <(z) > 0) .

Note that the series has radius of convergence 0 because the radius of con-
vergence of the power series of φ(w) at w = 0 is finite. On the other hand,
expanding each term in (2.28) in a geometric series in w2 we find that

φ(m)(0)
m!

=
(−1)

m−1
2

(2π)m+1
L0(m+ s+ 1

2) (m odd) ,

where L0(ρ) =
∑
Ann

−ρ is the L-series of u. In particular, in the Maass case,
when ψτ1 = ψ1 = ψ2

.= ψ, we obtain

Proposition. Let u be an even Maass wave form with eigenvalue s(1−s),
and ψ(z) the associated period function. Then ψ(z) is infinitely often differen-
tiable from the right at z = 0 with ψ(m)(0) = 0 for m even and

(2.33) ψ(m)(0) .=
m!

(2πi)m
Γ(m+ 2s)L0(m+ s+ 1

2) (m odd) .

This result, which can also be proved by using the invariance property
ψ = ψτ , the Lommel function expansion (2.11), and the asymptotic formula
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(2.17) for Cs(z), will be discussed again (in both the even and odd cases)
in Chapter IV in connection with the holomorphic period theory. In fact,
(2.33) is the exact analogue of the fact that the period function associated
to a holomorphic modular form is a polynomial whose coefficients are simple
multiples of special values of its L-series.

5. Boundary values of Maass wave forms

A combination of two ideas led to the equivalence between Maass forms
and their associated period functions developed in [10]: the Ferrar summation
formula discussed in Section 3 above and the (formally) automorphic boundary
form of the Maass form. This boundary form is a Γ-invariant distribution on
the boundary of the symmetric space H whose existence follows from general
results on boundary forms of eigenfunctions of invariant differential operators
on symmetric spaces. However, the general theory is set up in a way which
makes it hard to apply directly to our situation and which obscures the action
of the translation and inversion generators T and S of Γ. We will therefore
present the ideas first from a naive point of view by showing how to express
a Maass wave form u and its associated functions f , ψ, g, φ and Lε formally
as simple integral transforms of various types (Poisson, Stieltjes, Laplace and
Mellin) of a single “function” U(t). This makes transparent the relationships of
these various functions to one another and also lets one directly translate their
special properties in the Maass case into a certain formal automorphy property
of U . The formal argument can then be made rigorous by interpreting U as a
Γ-invariant object in a suitable space of distributions.

Suppose that we have a function or distribution U(t) on the real line and
associate to it three functions u, f and ψ as follows:

u(z) = ys
∫ ∞
−∞
|z − t|−2s U(t) dt (z ∈ H) ,(2.34)

f(z) =
∫ ∞
−∞

(z − t)−2s U(t) dt (z ∈ C r R) ,(2.35)

ψ(z) =
∫ 0

−∞
(z − t)−2s U(t) dt (z ∈ C ′) .(2.36)

Then (assuming that the integrals converge well enough) the function u is an
eigenfunction of the Laplace operator with eigenvalue s(1−s) and the functions
f and ψ are holomorphic in the domains given. If U is also automorphic in
the sense that

(2.37) U(t) = |ct+ d|2s−2 U
(at+ b

ct+ d

)
for all

(
a b
c d

)
∈ Γ ,
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then u is Γ-invariant, f is periodic and is related to ψ by (0.5) and (0.6), and
ψ satisfies the three-term functional equation (1.2) by virtue of Proposition 2,
Section 2, of Chapter I or alternatively by the following formal calculation:

ψ(z)− ψ(z + 1)

=
∫ 0

−1

U(t)
(z − t)2s

dt (by (2.37) with
(
a b
c d

)
=
(

1 1
0 1

))
=
∫ 0

−1

(1 + t)2s−2

(z − t)2s
U
( t

1 + t

)
dt (by (2.37) with

(
a b
c d

)
=
(

1 0
1 1

))
=
∫ 0

−∞

U(t) dt
(z − zt− t)2s

= (z + 1)−2s ψ
( z

z + 1
)
.

Now in fact there cannot be a reasonable function satisfying (2.37) (for
instance, the value of U(t) for t rational would have to be proportional to
|denom(t)|2−2s), and the existence of even a distributional solution in the usual
sense is not at all clear. We will come back to this issue a little later. First,
we look at the properties of the integral transforms (2.34)–(2.36) for functions
U(t) for which the integrals do make sense and see how they are related; this
will give new insight into the u ↔ ψ relationship which is the fundamental
subject of this paper and will at the same time tell us what the object U(t)
should be when u is a Maass wave form.

For convenience, we consider the even case when U(t) = U(−t) and
u(−z̄) = u(z) (the odd case would be similar), but make no further auto-
morphy assumptions on U . We also change the name of the function defined
by (2.36) to ψ1, since it is related to the function (2.34) by equation (2.2).
This can be seen by the calculation

(2.38) 2
∫ ∞

0

z τ2s dτ

(z2 + τ2)s+1|t− iτ |2s =
∫ ∞

0

(z + t) (τ2 + zt) τ2s dτ

(τ2 + z2)s+1(τ2 + t2)s+1

=
∫ ∞
−∞

(z + t) dv(
v2 + (z + t)2

)s+1

.= (z + t)−2s (t ∈ R+, <(z) > 0) ,

where the first equality is obtained (initially for z ∈ R+) by symmetrizing
with respect to τ 7→ zt/τ , the second by substituting v = τ − zt/τ , and the
third by the homogeneity property of the integral. (This also works without
the assumption of evenness if we replace (2.2) by (2.4).) A considerably easier
calculation shows that the functions (2.35) and (2.36) are related by (2.20).

Now consider the case when U is periodic. (As in Chapter I, we always
mean by this “1-periodic,” i.e. U(t + 1) = U(t).) Then u and f are also
clearly periodic, while the T -invariance of U is reflected in ψ1 by the property
ψτ2 = ψ2 with ψ2 defined by (2.3). (This is the equivalence of parts (i) and
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(ii) of Proposition 2, Section 3, which was noted at the time.) But we can be
much more explicit, and tie the new approach in with the results of Section 3,
by using the Fourier expansion of U . If we write this expansion (still in the
even case) as

(2.39) U(t) =
∞∑
n=1

n
1
2−sAn cos(2πnt) ,

then standard integrals show that the periodic functions (2.34) and (2.35) have
the Fourier expansions (1.9) and (1.11), respectively, while the representation
(2.14) of the Lommel function shows that the function (2.36) is given by the
expansion (2.11). We can also connect with the results of Section 4 by defining

g(w) =
∫ 1

0
e−wt U(t) dt (w ∈ C) ,(2.40)

φ(w) =
∫ ∞

0
e−wt U(t) dt (<(w) > 0)(2.41)

and observing that these functions are related to u and ψ1 and each other by
equations (2.23), (2.27) and (2.29) and have the expansions given in (2.26) and
(2.28), respectively. Finally, the L-series defined by (1.10) is expressed by

(2.42)
1
2

(2π)−ρ Γ(ρ) cos
(πρ

2
)
L0(ρ+ s− 1

2) =
∫ ∞

0
U(t) tρ−1 dt ,

and again the relationship of this function to the others (namely, that it is
proportional to the Mellin transforms of u(iy), f(iy), ψ(x), or φ(w)) follows
easily by comparing the various integral representations in terms of U .

If the function U is smooth as well as periodic, then the coefficients An in
(2.39) are of rapid decay and all the expansions just given converge nicely. If
instead we start with a sequence of coefficients An of polynomial growth, then
the series (2.39) no longer converges, but still defines a T -invariant distribution
on the real line. In particular, this is true when the An are taken to be the
Fourier coefficients of a Maass wave form, and in that case the estimate An =
O(
√
n) is sufficient to make the various expansions converge, as discussed in the

previous sections of this chapter. However, it is not immediately clear why the
distribution U(t) defined by (2.39) should have the automorphy property (2.37)
in the Maass case, or, for that matter, even what this automorphy property
means. We now describe several different ways, both formal and rigorous, to
see in what sense the series (2.39) can be considered to be an automorphic
object when the An are the Fourier coefficients of a Maass form.

1. The first approach is based on the asymptotic expansion near 0 of the
K-Bessel functions occurring in the Fourier development of u; namely:

Ks−1/2(2πt) = αst
1/2−s + α1−s t

s−1/2 + O(t2) as t→ 0 .
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(Here we are using <(s) = 1
2 ; if <(s) had a different value the analysis would

actually be easier because Ks−1/2(t) would behave asymptotically like a single
power of t.) Substituting this into (1.9) gives the formal asymptotic formula

(2.43) u(z) ∼ αs U(x) y1−s + α1−s Ũ(x) ys (z = x+ iy, y → 0) ,

where

(2.44) U(t) =
∑
n6=0

|n|
1
2−sAn e

2πint , Ũ(t) =
∑
n6=0

|n|s−
1
2 An e

2πint .

(The first of these expansions coincides with (2.39) in the even case.) Com-
bining (2.43) with the Γ-invariance of u we obtain formally equation (2.37)
and also the corresponding automorphy property of Ũ with 2 − 2s replaced
by 2s. The rigorous version of this approach is the theory of boundary forms,
discussed below.

2. A second way to see formally why the Fourier series (2.39) should be
automorphic when {An} are the coefficients of a Maass form is based on the
properties of the associated period function. We know that the function ψ

defined on C r R by (2.1) extends analytically to the positive real axis, so
computing ψ(x) for x > 0 formally as the limit of ψ(z) from above and below
we have the “equality”∑

n>0

ns−1/2An
(
e2πinx − x−2se−2πin/x

)
= −

∞∑
n<0

|n|s−1/2An
(
e−2πinx − x−2se2πin/x

)
,

where of course none of the four series (taken individually) are convergent,
though both sides of the equation are supposed to represent the same perfectly
good function ψ|R+. Now moving two of the four terms to the other side of
the equation gives exactly the automorphy of Ũ(x) under S, and since the
invariance under T is obvious this “proves” the automorphy in general. Note
the formal similarity between this argument and the “criss-cross” argument
used in Chapter I (equation (1.20) and the following calculations) to prove the
extendability to C ′ of the function (2.1).

This approach, too, can be made rigorous, this time by using the theory of
hyperfunctions, which is a alternative way to define functionals on a space of
test functions on R as the differences of integrals against holomorphic functions
(here f(z)) in the lower and upper half-planes. The theory in the Maass context
is developed in [1], where the goal is to give a cohomological interpretation of
theory of period functions. We refer the interested reader to [1] and also to Part
II of the present paper, where various related approaches will be discussed.
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3. A third approach is based on the L-series of u. The functional equation
(1.1) of the L-series says that (the analytic continuation of) the left-hand side
of (2.42) is invariant under ρ 7→ 2s− ρ, while the corresponding invariance of
the right-hand side of (2.42) is formally equivalent to the automorphy under τ
(and hence, since we are in the even case, under S) of U .

4. The automorphy of U under S can also be obtained as a formal conse-
quence of the Ferrar summation formula discussed at the end of §3. The kernel
function Fs(ξ) for the Ferrar transform, which was given there as a complicated
explicit linear combination of Bessel functions, has the simple integral repre-
sentation

(2.45) Fs(ξ) = 4 ξ−s+1/2

∫ ∞
0

x2s−2 cos(2πx) cos(2πξ/x) dx .

Therefore Fourier inversion implies that the Ferrar transform of the function
ht(x) = x−s+1/2 cos(2πxt) is hzt (y) = y−s+1/2 t2s−2 cos(2πy/t) for any t > 0,
and the Ferrar summation formula (2.22) applied to ht reduces formally to the
desired automorphy property U(t) = |t|2s−2U(1/t). To make sense of this latter
identity we simply dualize by integrating against an arbitrary (sufficiently nice)
test function ϕ. The formulas just given for ht and hzt show that the Ferrar
transform of ϕ̂ (the Fourier cosine transform of ϕ) is ϕ̂τ (the Fourier cosine
transform of ϕτ ), so the Ferrar summation formula becomes

(2.46)
∞∑
n=1

n
1
2−sAnϕ̂(n) =

∞∑
n=1

n
1
2−sAnϕ̂τ (n) ,

and this is precisely the desired automorphy property of U , if U given by (2.39)
is now thought of as a distribution.

5. We now make this distributional point of view rigorous by defining
a precise space of test functions on which Γ acts and a corresponding space
of distributions to which U belongs. Let Vs be the space of C∞ functions ϕ
on R such that ϕτ is also C∞; i.e. ϕ(t) has an asymptotic expansion ϕ(t) ∼
|t|−2s

∑
n≥0 cnt

−n as |t| → ∞. This space has an action of the group G =
PSL(2,R) given by

(
ϕ|g)(x) := |cx + d|−2s ϕ

(
ax+b
cx+d

)
for g =

(
a b
c d

)
∈ G. This

can be checked either directly or, more naturally, by noting that Vs can be
identified via ϕ ↔ Φ(x, y) = y−2sϕ(x/y) with the space of C∞ functions
Φ : R2

r{(0, 0)} → C with the homogeneity property Φ(tx, ty) = |t|−2sΦ(x, y),
with the action of G given simply by Φ 7→ Φ◦g. (A third model consists of C∞

functions f on the circle, with Φ(reiθ) = r−2sf(θ) or f(2θ) = | cos θ|−2sϕ(tan θ)
and the corresponding G-action.) If <(s) = 1

2 , then Vs is nothing other than
the space of smooth vectors in the standard Kunze-Stein model for the unitary
principal series.
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We can now think of the “function” U defined by (2.39) as a linear map
from Vs to C, given by

(2.47) ϕ 7→ U [ϕ] :=
∞∑
n=1

n1/2−sAn ϕ̂(n) .

The series converges rapidly because ϕ̂(n) decays as n → ∞ faster than any
power of n, and hence gives an interpretation of the formal integral U [ϕ] =∫∞
−∞ U(t)ϕ(t) dt . The meaning of the automorphy equation (2.37) is now

simply the following:

Proposition. Let s ∈ C with <(s) > 0, and {An}n≥1 a sequence of com-
plex numbers of polynomial growth. Then the An are the Fourier coefficients
of an even Maass wave form u with eigenvalue s(1−s) if and only if the linear
map Vs → C defined by (2.47) is invariant under the action of Γ on Vs .

Proof. The “if” direction is obtained by applying the linear functional U
to the test function ϕz ∈ Vs defined by

ϕz(t) :=
ys

|z − t|2s (z ∈ H) ,

since ϕz transforms under SL(2,R) by ϕz|g = ϕg(z) and U [ϕz] = u(z) by (2.34).
For the other direction, it suffices to check the invariance of U [ϕ] under the
generators T and S. The former is obvious since replacing ϕ by ϕ|T does
not change ϕ̂(n), n ∈ Z, and the statement for S is simply (2.46). One must
also verify that the conditions of Ferrar’s theorem are satisfied for the pair of
functions h = ϕ̂, hz = ϕ̂τ for any ϕ ∈ Vs. We omit this.

We chose to prove this proposition “by hand” by using integral transforms
and the explicit generators S and T of Γ = PSL(2,Z), in accordance with the
themes of this chapter. Actually, however, the proposition has nothing to do
with this particular subgroup, but is true for any subgroup of G. This follows
from the fact ([9] and [8], Theorem 4.29) that the “Poisson map” U 7→ u(z)
:= U [ϕz] gives a G-equivariant bijection between the continuous dual of Vs
(= the space of distributions on P1(R)) and the space of eigenfunctions of ∆
on H with eigenvalue s(1 − s) which have at most polynomial growth at the
boundary.

Chapter III. Periodlike functions

In the previous two chapters we showed how to associate to any Maass
wave form a holomorphic solution of the three-term functional equation (1.2)
in the cut plane C ′, and conversely showed that any such holomorphic solu-
tion satisfying suitable growth conditions is the period function associated to
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a Maass form. In this chapter we investigate more fully the properties of gen-
eral solutions of the three-term functional equation, which we call periodlike
functions. We will be interested both in describing the totality of periodlike
functions and in determining sufficient conditions for such a function to be the
period function of a Maass form.

As in Section 3, Chapter I, we denote the space of all (resp. all even or odd)
periodlike functions by FEs (resp. FE+

s or FE−s ). We write FEs(X) or FE±s (X)
for the corresponding spaces of solutions in one of the domains X = H, H−
(lower half-plane), CrR, C ′ or R+, and add the subscript “ω” to denote the
subspace of analytic solutions. We have

where the direct sum decomposition in the first line comes from the fact that
if one of the arguments x, x + 1 or x/(x + 1) of the three-term functional
equation belongs to one of the three sets R, H or H− then all three do, the
vertical arrows are inclusions, and the remaining maps are injective because an
analytic function in a connected domain is determined by its Taylor expansion
at a single point.

In Section 1 we construct explicit families of periodlike functions, the con-
structions being general enough to show that even the smallest space FEs(C ′)ω
in the above diagram is infinite-dimensional for every complex number s. In
Section 2 we give a complete description of all (resp. all continuous or all
smooth) periodlike functions on R+ by a method analogous to that of funda-
mental domains in the theory of automorphic functions, i.e. we describe various
subsets D ⊂ R+ with the property that every function on D is the restriction
of a unique function in FEs(R+).

The other two sections describe the analytic properties of periodlike func-
tions. In Section 3 we show that every smooth periodlike functions on R+ has
an asymptotic expansion of a very precise kind at both 0 and ∞. From this
description it follows in particular that every such function ψ(x) is bounded
by a specific power of x (depending on s) in both directions; for instance, if
<(s) = 1

2 , the case of most interest to us, then ψ(x) satisfies the estimate (0.4).
In Section 4 we perform the “bootstrapping” described in the introduction to
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the paper and show that an element of FEs(R+)ω satisfying an apparently
only slightly stronger growth condition (e.g. (0.3) in the case <(s) = 1

2) is the
restriction to R+ of an element of FEs(C ′)ω and comes from a Maass wave
form.

1. Examples

In this section we construct a variety of functions in C ′ or R+ satisfying
the three-term functional equation.

Example 1. The first example is extremely simple: For any complex num-
ber s the function

(3.1) ψ−s (z) = 1− z−2s (z ∈ C ′)

is holomorphic for z ∈ C ′ and satisfies equation (1.13) with the minus sign, so

ψ−s ∈ FE−s (C ′)ω (∀s ∈ C) .

The periodic function f associated via the correspondences (0.5) and (0.6)
to ψ−s (for s /∈ Z) is constant. The function ψ−s (z) vanishes identically for
s = 0 but its derivative with respect to s is the function 2 log z, which is
a nonzero element of FE−0 , so we get a holomorphic and nowhere vanishing
section s 7→ s−1ψ−s (z) of the vector bundle

⋃
s∈C FE−s .

Example 2. The previous example gave an odd solution of the three-term
functional equation for all s ∈ C. Our second example, which is more com-
plicated, will give an even solution for all s. Suppose first that <(s) > 1 and
define

(3.2) ψ+
s (z) =

∑∗

m,n≥0

1
(mz + n)2s

(z ∈ C ′, <(s) > 1),

where the asterisk on the summation sign means that the “corner” term (the
one with m = n = 0) is to be omitted and the “edge” terms (those with either
m or n equal to 0) are to be counted with multiplicity 1/2. The sum is (locally
uniformly) absolutely convergent and hence defines a holomorphic function of
z. Moreover,

ψ+
s (z + 1) =

∑∗

m,n≥0

1
(mz +m+ n)2s

=
∑∗

n≥m≥0

1
(mz + n)2s

;

thus

ψ+
s (z + 1) + z−2s ψ+

s

(z + 1
z

)
=
( ∑∗

n≥m≥0

+
∑∗

m≥n≥0

)
1

(mz + n)2s
= ψ+

s (z) ,
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i.e. ψ+
s ∈ FE+

s . We can analytically continue ψ+
s (z) in a standard way: write

Γ(2s)ψ+
s (z) =

∫ ∞
0

t2s−1
∑∗

m,n≥0

e−(mz+n)t dt

=
∫ ∞

0
t2s−1

(
1
4

1 + e−zt

1− e−zt
1 + e−t

1− e−t −
1
4

)
dt

and split up the integral into
∫ A

0 +
∫∞
A , where 0 < A < 2π min(1, |z|−1).

The second integral converges rapidly for all s ∈ C, since the integrand is
exponentially small at infinity, and hence defines a holomorphic function of s,
while the first integral can be expanded as∫ A

0
t2s−1

( ∑
m,n≥0

m+n even

Bm
m!

Bn
n!

(zt)m−1 tn−1

)
dt

=
∑

m,n≥0
m+n even

Bm
m!

Bn
n!

zm−1 Am+n+2s−2

m+ n+ 2s− 2
.

where Bn is the nth Bernoulli number. This expression is meromorphic in
s with at most simple poles at s = 1, 0, −1, . . . . All of these poles dis-
appear if we divide by Γ(s − 1), and the three-term functional equation is
preserved by the analytic continuation, so we get a holomorphic section s 7→
(Γ(2s)/Γ(s − 1))ψ+

s (z) of the vector bundle
⋃
s∈C FE+

s . Moreover, the special
values of this section for integers s ≤ 1 can be evaluated by comparing the
residues of Γ(2s)ψ+

s (z) and Γ(s−1) and are elementary functions of z, the val-
ues for s = 1, 0 and −1 being (up to constants) the functions z−1, z−1−3 + z,
and z−1 − 5z + z3, whose periodlike property one can verify by hand. The
function ψ+

s (z) for s /∈ Z is the period function of the nonholomorphic Eisen-
stein series Es(z), while for integer values s = k or s = 1− k (k = 1, 2, . . . ) it
is related to the holomorphic Eisenstein series G2k(z). These connections will
be discussed in Sections 1 and 2 of Chapter IV, respectively.

Example 3. Generalizing Example 1, we take any periodic function Q(z)
and set

(3.3) ψ(z) = Q(z)− z−2sQ(−1/z) .

Then ψ belongs to FEs (and in fact to FE∓s if Q(−z) = ±Q(z)). This is for-
mally the same construction as in (0.5), with Q instead of f , but there we
required f to be defined and holomorphic on CrR, whereas now the inter-
esting examples are obtained when the function Q(z) is defined on R or on
some neighborhood of R in C. For instance, taking Q(z) to be cotπ(z − α)
with α ∈ CrR gives examples of periodlike functions on R+ which extend
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meromorphically to C ′ but which can have poles arbitrarily close to the real
axis, while taking Q to be entire but of large growth gives solutions of (0.2)
which extend analytically to all of C ′ but have arbitrarily bad growth as x→ 0
or x → ∞. These examples show that the conclusions of the theorem in the
introduction to this paper fail radically if no growth condition is imposed on
the periodlike function ψ|R+. The fact that FEs(C ′)ω is infinite-dimensional
(in fact, uncountable-dimensional) for all s also follows from this construc-
tion, for example by considering the linearly independent periodic functions
Q(z) = exp

(
α e2πiz

)
, α ∈ C.

Example 4. We can similarly try to generalize Example 2 by replacing the
constant function 1 with an arbitrary periodic function Q(z). Define

(3.4) ψ(z) =
1
2
Q(z) +

z−2s

2
Q
(
−1
z

)
+
∑
c, d>0

(c,d)=1

(cz + d)−2sQ
(az + b

cz + d

)
,

where a and b are integers chosen so that ad − bc = 1. This converges if
<(s) > 1 (assuming that Q is continuous) because the arguments of all but
finitely many terms lie in a thin strip around the real axis and Q is bounded in
such a strip by virtue of its periodicity. For Q≡1 the function ψ is just ζ(2s)−1

times the function ψ+
s of Example 2, and essentially the same calculation as

given there shows that also in the general case it belongs to FEs (and in fact
to FE±s if Q(−z) = ±Q(z)), the domain of definition and analyticity properties
being determined by those of Q. Unfortunately, however, the construction only
works in the domain <(s) > 1, since we do not know how to give the analytic
continuation of the series for general Q.

Example 5. If s is an integer, then the theory of periodlike functions is
somewhat different since even in the domain CrR the correspondence with
periodic functions described in Proposition 2, Section 2, of Chapter I is no
longer bijective. If s is a negative integer then there are sometimes polynomial
solutions of (1.2) other than ψ−s , the first examples being the functions

z(z2 − 1)2(z2 − 4)(4z2 − 1) ∈ FE+
−5 , and z2(z2 − 1)3 ∈ FE−−5

for s = −5. Such solutions correspond to cusp forms of weight 2 − 2s on
SL(2,Z), as will be discussed in detail in Section 2 of Chapter IV. For positive
integral values of s one also has examples of rational periodlike functions,
discovered by M. Knopp and studied by several subsequent authors (see [4]
and the references there), e.g.,

(z2 + 1)(2z4 − z2 + 2)
z(z2 − z − 1)2(z2 + z − 1)2

for s = 2.
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2. Fundamental domains for periodlike functions

If a group Γ acts on a set X, then the functions on X with a specified
transformation behavior with respect to Γ are completely determined by their
values in a fundamental domain, and these values can be chosen arbitrarily.
The fundamental domain is not unique, but must merely contain one point
from each orbit of Γ on X. Similarly, for the three-term functional equation
there are “fundamental domains” such that the solutions of the equation are
completely determined by their values in that domain, which can be prescribed
arbitrarily. The next proposition describes two such fundamental domains for
the even three-term functional equation on the positive reals.

Proposition. a) Any function on the half -open interval [1, 2) is the re-
striction of a unique element of FE+

s (R+) for every s ∈ C.

b) Any function on the half -open interval (0, 1
2 ] is the restriction of a

unique element of FE+
s (R+) for every s ∈ C such that

(
3+
√

5
2

)s 6= 1 .

Proof. a) Let ψ0 be the given function on [1,2) and ψ any extension of it to
R+ satisfying (0.1). It suffices to consider ψ on [1,∞) since ψ(1/x) = x2sψ(x).
We decompose [1,∞) as

⋃
n≥0 In with In = [n + 1, n + 2). For x ∈ In with

n ≥ 1 we have x − 1 ∈ In−1,
x

x− 1
∈ I0 (unless n = 1, x = 2). The three-

term equation then shows that the restriction ψn := ψ|In satisfies ψn(x) =
ψn−1(x−1)− (x−1)−2sψ0

( x

x− 1
)

, and hence by induction on n that ψ|[1,∞)

is given by ψ(2) = 1
2ψ0(1) and

(3.5) ψ(x) = ψ0

(
x− [x] + 1

)
−

[x]−1∑
j=1

(x− j)−2s ψ0

(
1 +

1
x− j

)
(x 6= 2) .

This proves the uniqueness of ψ, but at the same time its existence, since the
function defined by this formula has the desired properties.

b) The proof is similar in principle, but somewhat more complicated.
Instead of [1,∞) =

⋃
n≥0[n + 1, n + 2) we use the decomposition (0, 1] =

{α, 1} ∪
⋃
n≥0 Jn, where α = 1

2(
√

5 − 1) is the reciprocal of the golden ra-
tio and Jn is the half-open interval with endpoints Fn/Fn+1 (excluded) and
Fn+2/Fn+3 (included), Fn being the nth Fibonacci number. Note that the ori-
entation of these intervals depends on the parity of n, the even indices giving
intervals J0 = (0, 1

2 ], J2 = (1
2 ,

3
5 ], . . . to the left of α and the odd indices giving

intervals J1 = [2
3 , 1), J3 = [5

8 ,
2
3), . . . to the right of α. The inductive procedure

now takes the form ψn(x) = x−2sψn−1

(1− x
x

)
− ψ0(1 − x) for the function
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ψn := ψ|Jn, leading to the closed formula

ψ(x) =
∣∣Fnx− Fn−1

∣∣−2s
ψ0

(−Fn+1x+ Fn
Fnx− Fn−1

)(3.6)

−
n∑
j=1

∣∣Fj−1x− Fj−2

∣∣−2s
ψ0

(
Fj+1x− Fj
Fj−1x− Fj−2

)
for x ∈ Jn, n ≥ 0.

This defines ψ(x) for all x ∈ (0, 1] except α and 1. At those two points the
values must be given by ψ(α) =

(
α−2s − 1

)−1
ψ0(α2) and ψ(1) = 21−2sψ0(1

2),
as one sees by taking z = α and z = 1 in (0.1) and using the relation ψ(1/x) =
x2sψ(x). (This is where we use the condition α2s 6= 1.) One again checks that
formula (3.6), completed in this way at the two missing points 1 and α, does
indeed give a periodlike extension of ψ0.

Remarks. 1. In a) and b) we could have chosen the intervals (1
2 , 1] and

[2,∞) instead, since the function we are looking for transforms in a known way
under x → 1/x. The proposition also holds for the odd functional equation,
except that the fundamental domain in (a) must be taken to be (1, 2] instead
of [1, 2) because ψ(1) is now automatically 0 and does not determine ψ(2).
For the uniform case (i.e., solutions of (0.2)) the corresponding fundamental
domains are (1

2 , 2] and (0, 1
2 ] ∪ [2,∞).

2. There are many other choices of “fundamental domains.” Two simple
ones, again for the even functional equation, are [1 + α, 2 + α) and [1, 1 + α]∪
(2, 2 + α), where α = 1

2(
√

5− 1) as before. The proofs are similar.

3. Related to the proof of part (b) of the proposition is the following amus-
ing alternative form of the even three-term functional equation when <(s) > 0
and ψ is continuous:

(3.7) ψ(z) =
∞∑
n=1

(
Fnz + Fn+1

)−2s
ψ

(
Fn−2z + Fn−1

Fnz + Fn+1

)
(and similarly for the odd case, but with the nth term multiplied by (−1)n ).

4. Another natural question is whether there are also fundamental do-
mains D in the sense of this section for the three-term functional equation in
the cut plane C ′. We could show using the axiom of choice that such domains
exist, but did not have any explicit examples. However, Roelof Bruggeman
pointed out a very simple one, generalizing (a) of the proposition, namely the
strip D = {z ∈ C | 1 ≤ <(z) < 2}. (This is for the even case; otherwise take
the union of D and its image under τ .) A sketch of the argument showing
that this domain works is as follows: for <(z) ≥ 2 use the three-term rela-
tion to express ψ(z) in terms of the values of ψ at z/(z − 1), which is in D,
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and z − 1, where ψ is known by induction; then use the evenness to define
ψ in the reflected domain <(1/z) ≥ 1; and finally, in the remaining domain
max{<(z),<(1/z)} < 1 use the three-term relation to express the value of ψ at
z inductively in terms of its values at 1 + z and 1 + 1/z, which are both nearer
to D than z is. One checks fairly easily that this uniquely and consistently
defines a periodlike function on all of C ′.

5. In the proposition we considered simply functions ψ : R+ → C defined
pointwise, with no requirements of continuity or other analytic properties. In
case (a) a necessary condition for continuity is that the given function ψ0 on
[1,2) extends continuously to [1, 2] and satisfies ψ0(2) = 1

2ψ0(1), and one can
check easily from formula (3.5) that this condition in fact ensures the continuity
of ψ everywhere. (Of course it suffices to check the match-up at the endpoints
x = n of the intervals In.) The situation for smoothness is similar: if ψ0

extends to a C∞ function on [1,2] and the derivatives of both sides of (0.1)
agree to all orders at z = 1, then the extension ψ defined in the proof of part
(a) is C∞ everywhere. In a sense, this holds for (real-) analytic also: if ψ0

is analytic on [1,2) and extends analytically to (a neighborhood of) [1,2] with
the same matching conditions on its derivatives, then ψ is automatically also
analytic. But this is no longer useful as a construction because we have no way
of ensuring that the function defined by analytic continuation starting from its
Taylor expansion at one endpoint of the fundamental domain will satisfy the
required matching conditions at the other endpoint.

For case (b) the story is more complicated, even for continuity. The single
condition

lim
x→0

(
ψ0(x)− (1 + x)−2sψ0

( x

1 + x

))
= 21−2sψ0(1

2)

on the function ψ0 : (0, 1
2 ] → C is enough to ensure the matching of the func-

tions ψn and ψn+2 at the common endpoint of their intervals of definition, but
the resulting function on (0, α) ∪ (α, 1] will in general be highly discontinuous
at the limit point α of these intervals. Requiring continuity at α imposes far
severer restrictions on ψ0, namely, that the identity (3.7) should hold (with ψ
replaced by ψ0) for all z ∈ (0, 1

2 ]. This has the remarkable consequence that a
“fundamental domain” for continuous functions is smaller than for arbitrary
functions. For instance, if ψ is assumed to be continuous then its values on
(0,
√

2−1] already determine it, since for
√

2−1 < z ≤ 1
2 all the arguments on

the right-hand side of (3.7) are less than
√

2− 1; and similarly ψ is completely
determined by its values on [α2, 1

2 ] because if 0 < x < α2 then the n = 1
term in (3.7) for z = x/(1 − x) has argument x and all the other terms have
arguments strictly between x and 1

2 .
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3. Asymptotic behavior of smooth periodlike functions

In this section will study smooth solutions of the three-term functional
equation (0.2) on R+. (By “smooth” we will always mean C∞.) We denote
the space of such functions by FEs(R+)∞. As usual, we use σ to denote <(s).

Proposition. Let s ∈ C r {1
2 , 0, −1

2 , . . . }. Then any function ψ ∈
FEs(R+)∞ has asymptotic expansions of the form

(3.8a) ψ(x) ∼ x−2sQ0

(1
x

)
+

∞∑
m=−1

C∗m x
m as x→ 0,

ψ(x) ∼ Q∞(x) +
∞∑

m=−1

(−1)m+1C∗m x
−m−2s as x→∞,(3.8b)

where Q0, Q∞ : R → C are smooth periodic functions. The coefficients C∗m
are given in terms of the Taylor coefficients Cn = ψ(n)(1)/n! of ψ(x) at x = 1
by

(3.9) C∗m =
1

m+ 2s

m+1∑
k=0

(−1)k Bk

(
m+ 2s
k

)
Cm+1−k (m ≥ −1) ,

where Bk is the kth Bernoulli number.

Corollary. Let s and ψ be as above. Then:

(3.10) ψ(x) is O
(
x−max(2σ,1)

)
as x→ 0, O

(
xmax(0,1−2σ)

)
as x→∞.

Proof. We start with the expansion near 0. Suppose first that σ > 1
2 , and

define Q0(x) for x > 0 by

(3.11) Q0(x) =
1
x2s

ψ
(1
x

)
−
∞∑
n=0

1
(n+ x)2s

ψ
(
1 +

1
n+ x

)
.

Clearly this converges to a smooth function on R+. Moreover,

Q0(x)−Q0(x+ 1) =
1
x2s

ψ
(1
x

)
− 1

(x+ 1)2s
ψ
( 1
x+ 1

)
− 1
x2s

ψ
(
1 +

1
x

)
= 0 ,

so Q0(x) is periodic. In the general case we replace (3.11) by

(3.12) Q0(x) = x−2s ψ
(1
x

)
−

M∑
m=0

Cm ζ(m+ 2s, x)

−
∞∑
n=0

1
(n+ x)2s

(
ψ
(
1 +

1
n+ x

)
−

M∑
m=0

Cm
(n+ x)m

)
,
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where M is any integer with M + 2σ > 0 and ζ(a, x) is the Hurwitz zeta

function, defined for <(a) > 1 as
∞∑
n=0

1
(n+ x)a

and for other values of a 6= 1 by

analytic continuation. The infinite sum in (3.12) converges absolutely and one
checks easily that the definition is independent of M , agrees with the previous
definition if σ > 1

2 , and is again periodic. From the estimate ζ(a, x) = O(x1−a)
we obtain that

1
x2s

ψ
(1
x

)
= Q0(x) +

M∑
m=0

Cm ζ(2s+m,x) + O
(
x−2s−M) (x→∞)

for any integer M with M + 2σ > 0, and if we now use the full asymptotic
expansion of the Hurwitz zeta function

ζ(a, x) ∼ 1
a− 1

∑
k≥0

(−1)k Bk

(
k + a− 2

k

)
x−a−k+1 (x→∞) ,

which is an easy consequence of the Euler-Maclaurin summation formula, we
obtain the asymptotic expansion (3.8a) with coefficients C∗m defined by (3.9).

The analysis at infinity is similar. If σ > 1
2 , then we define

(3.13) Q∞(x) = ψ(x)−
∞∑
n=1

(n+ x)−2s ψ
(
1− 1

n+ x

)
and find from (0.2) as before that Q∞(x + 1) = Q∞(x). The same trick as
before permits us to define Q∞ also when σ ≤ 1

2 , obtaining the formulas

ψ(x) = Q∞(x) +
M∑
m=0

(−1)mCm ζ(m+ 2s, x+ 1) + O
(
x−2s−M) (x→∞)

for M sufficiently large. Now using the asymptotic expansion of ζ(a, x + 1),
which is identical with that of ζ(a, x) but without the factor (−1)k, we get
(3.8b). The corollary follows because any smooth periodic function on R is
bounded.

Remarks. 1. In principle it would have sufficed to treat just one of the ex-
pansions at 0 and∞, since if ψ(x) satisfies the three-term functional equation,
then so does ψτ (x) = x−2s ψ(1/x), and replacing ψ by ψτ simply interchanges
the two asymptotic formulas in (3.8), with the roles of Q0 and Q∞ exchanged
and C∗m multiplied by (−1)m+1. However, it is not obvious (though it will
become so in the next remark) that replacing ψ by ψτ changes the Taylor
coefficients Cn in such a way as to multiply the right-hand side of (3.9) by
(−1)m+1, so it seemed easiest to do the expansions at 0 and ∞ separately.
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2. There is a more direct way to relate the coefficients of the asymptotic
series in (3.8) to the Taylor coefficients Cn. For convenience of notation we
write the expansions (3.8) as

ψ(x) ∼
x→0

Q0(1/x)
x2s

+ P0(x) , ψ(x) ∼
x→∞

Q∞(x) +
P∞(1/x)
x2s

where P0(t) and P∞(t) are Laurent series in one variable. Similarly, we write

ψ(x) ∼
x→1

P1(x− 1) , where P1(t) =
∞∑
n=0

Cnt
n ∈ C[[t]] ,

for the asymptotic expansion of ψ around 1. (Notice that saying that a function
is C∞ at a point is equivalent to saying that it has an asymptotic power series
expansion at that point.) Now, setting x = t or x = −1− 1/t in the functional
equation (0.2) and letting t tend to 0 from the right or left, respectively, we
find that the three formal Laurent series P0, P∞ and P1 are related by

P0(t)− (1 + t)−2sP0

( t

1 + t

)
= P1(t) = (1 + t)−2sP∞

( −t
1 + t

)
− P∞(−t) .

Denoting the coefficients of P0 by C∗m and expanding by the binomial theorem,
we find that the first of these equations is equivalent to the system of equations

(3.14) Cn =
n−1∑
m=−1

(−1)n−m−1

(
n− 1 + 2s
n−m

)
C∗m (n ≥ 0) ,

while the second equation is the identical system but with C∗m replaced by the
coefficient of tm in −P∞(−t). But the system (3.14) is clearly invertible, since
the leading coefficients n−1+2s are nonzero for all n. It follows that the C∗n are
uniquely determined in terms of the Cn and hence also that P∞(t) = −P0(−t);
i.e., that the mth coefficient of P∞ is (−1)m+1C∗m as asserted in (3.8b). Finally,
to see that the inversion of the system (3.14) is given explicitly by (3.9) we
rewrite these equations in terms of generating functions as

(3.15)
∞∑
n≥0

Cn
Γ(n+ 2s)

wn =
(
1− e−w

) ∞∑
m=−1

C∗m
Γ(m+ 2s)

wm ,

which can be inverted immediately by multiplying both sides by (1−e−w)−1 =∑
Bkw

k−1/k! . The reader may recognize formula (3.15) as being identical
(in the case of the expansions associated to an even Maass form u) with the
relation between the functions g(w) and φ(w) discussed in Chapter II, Section 4
(compare equations (2.29), (2.23) and (2.32)), while equation (2.33) of that
section identifies the coefficients C∗m in the Maass case as special values of the
L-series associated to u.
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3. Finally, we say a few words about the case excluded so far when
2s = 1 − h for some integer h ≥ 0. Equation (3.12) defining Q0 (the case
of Q∞ is similar and will not be mentioned again) no longer makes sense
since the term Chζ(1, x) occurring in it is meaningless. However, the function
lima→1

(
ζ(a, x)− ζ(a)

)
exists and equals −Γ′(x)/Γ(x)− γ for some constant γ

(namely, Euler’s). If we modify the definition (3.12) by replacing the undefined
term Chζ(1, x) by −ChΓ′(x)/Γ(x) , then we find that Q0 is again smooth and
periodic but that the expansion (3.8b) must be changed by replacing the term
C∗h−1x

h−1 by (Ch log x+C∗h−1)xh−1. The value of C∗h−1 here is arbitrary, since
we can change it simply by adding a constant to the periodic function Q0.
(This corresponds to the arbitrary choice of additive constant in our renor-
malization of ζ(1, x).) Everything else goes through as before, and (3.10) is
also unaffected except in the case s = 1

2 , when the logarithmic term becomes
dominant. We can summarize the growth estimates of ψ for arbitrary s ∈ C
by the following table:

We illustrate the proposition by describing the expansions (3.8) for each
of the special periodlike functions given in Section 1.

Example 1. Here Q∞(x) ≡ 1, Q0(x) ≡ −1, C∗m = δm,0, and Cn equals 0
for n = 0 and −

(−2s
n

)
for n ≥ 1, in agreement with (3.14).

Example 2. Here ψ = ψτ , so we must have Q0 = Q∞ and C∗m =
(−1)m+1C∗m, i.e. C∗m = 0 for m even. A simple calculation shows that

Q0(z) = 1
2ζ(2s) (constant function) and C∗m = Bm+1

(
m+ 2s
m+ 1

)
ζ(m+ 2s)
m+ 2s

for odd m ≥ −1.

Example 3. Here (assuming that the function Q is smooth) Q∞(x) =
Q(x), Q0(x) = −Q(−x), C∗−1 = 0 and C∗m = Q(m)(0)/m! for m ≥ 0.

Example 4. Here we find Q0(x) = 1
2 Q(−x), Q∞(x) = 1

2 Q(x). The
coefficients C∗m can be calculated as special values of Dirichlet series; e.g.

C∗−1 =
∞∑
c=1

∑
a mod c
(a,c)=1

Q
(a
c

)
c−2s ,

where the series converges because <(s) > 1 and Q is bounded.
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Example 5. For the examples of polynomial periodlike functions ψ(x) for
negative integral values of s (like the two given for s = −5), we can simply
take Q0 = Q∞ = 0 and define C∗m as the mth coefficient of the polynomial
ψ, so that C∗m = 0 for m = −1 or m > 2 − 2s. Then (3.8a) is obvious and
(3.8b) follows from the property ψ(x) = −x−2sψ(−1/x) which always hold for
such polynomial solutions. Of course this is not quite unique, since we could
also take Q0(x) = a, Q∞(x) = −a for any constant a and change the value
of the coefficient C∗−2s by a. In the case of rational periodlike functions for
positive integral s we again take Q0 = Q∞ = 0 and define the coefficients from
the expansion of ψ at either 0 or ∞ (e.g. C∗−1 = 2, C∗1 = 13, C∗3 = 57, . . .
and C∗0 = C∗2 = . . . = 0 for the example given at the end of §2 with s = 2),
the results of the two calculations agreeing because we again always have the
invariance property ψ(x) = −x−2sψ(−1/x).

Let us return to the general case and suppose again that s /∈ {1
2 , 0,−1

2 , . . . }.
Then there is no ambiguity in the decomposition of ψ into a “periodic” and an
“asymptotic” part at 0 or ∞, so that equations (3.8) give a well-defined map

FEs(R+)∞ −→ C∞(R/Z) ⊕ C∞(R/Z)(3.16)

ψ 7→ (Q0, Q∞) .

A natural question is whether this map is surjective. The construction of
Example 3 shows that all pairs (Q0, Q∞) of the form (Q(x), −Q(−x)) are in
the image. The construction of Example 4 gives the complementary space
{(Q(x), Q(−x))}, and hence the full surjectivity, if σ > 1. This construction
also works in the analytic category and will be essentially all we can prove about
surjectivity there (cf. §4). For σ < 1 we do not know whether the surjectivity
is true. It would suffice to construct an even C∞ periodlike function ψ = ψτ

having a given periodic function Q as its Q0. A simple construction using
the second fundamental domain construction (part (b) of the proposition) of
Section 2 produces an infinity of even periodlike functions with given (smooth)
Q0 which are C∞ except at the two points α = 1

2(
√

5− 1) and α−1, but we do
not know whether any of them can be made smooth at these two points.

4. “Bootstrapping”

Theorem 2. Let s be a complex number with σ > 0 and ψ any real -
analytic solution of the functional equation (0.2) on R+ such that :

(3.17) ψ(x) is o
(
x−min(2σ,1)

)
as x→ 0, o

(
xmin(0,1−2σ)

)
as x→∞.
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Then ψ extends holomorphically to all of C ′ and satisfies the growth conditions

(3.18) ψ(z)¿


|z|−2σ if <(z) ≥ 0, |z| ≥ 1,

1 if <(z) ≥ 0, |z| ≤ 1 ,

|=(z)|−σ if <(z) < 0 .

Corollary. Under these hypotheses, ψ is the period function associated
to a Maass wave form with eigenvalue s(1 − s). In particular, if σ = 1

2 then
any bounded and real -analytic even or odd periodlike function comes from a
Maass form.

The corollary follows from Theorem 2 and from Theorem 1 of Chapter I,
Section 1, since the estimates (3.18) are the same as (1.3) with A = σ. Observe
that the growth estimate (3.17) which suffices to imply that ψ comes a Maass
form differs from the estimate (3.10) which holds automatically for smooth
periodlike functions only by the replacement of “max” by “min” and of “O” by
“o”. In particular, in the case of most interest when σ = 1

2 , merely changing
“O” to “o” suffices to reduce the uncountable-dimensional space FEs(R+)ω
(cf. §1) to the finite- (and usually zero-) dimensional space of period functions
of Maass wave forms, as already discussed in the introduction to the paper.

Proof. We first observe that, since both the hypothesis (3.17) and the
conclusion (3.18) are invariant under ψ 7→ ψτ , we can split ψ into its even and
odd parts 1

2(ψ±ψτ ) and treat each one separately. We therefore can (and will)
assume that ψ is either invariant or anti-invariant under τ . This is convenient
because it means that we can restrict our attention to either z with |z| ≤ 1
or |z| ≥ 1 (usually the latter), rather than having to consider both cases. In
particular, we only need to use one of the two estimates (3.17), and only have
to prove the first and the last of the inequalities (3.18).

We begin by proving the analytic continuation. The key point is that
the estimates (3.17) imply that the periodic function Q∞ and the coefficient
C∗−1 in (3.8b) (as well, of course, as the periodic function Q0 in (3.8a)) vanish.
From (3.9) or (3.14) it then follows that ψ(1) (= C0) also vanishes. This in
turn implies that equation (3.13) holds even if σ is not bigger than 1

2 (recall
that σ > 0 by assumption), so that the vanishing of Q∞ gives the identity

(3.19) ψ(z) =
∞∑
n=1

(n+ z)−2s ψ
(
1− 1

n+ z

)
for all z on (and hence for all z in a sufficiently small neighborhood of) the
positive real axis. This formula will play a crucial role in what follows.

We first show that ψ extends to the wedge Wδ = {z : | arg(z)| < δ}
for some δ > 0. The function ψ is already holomorphic in a neighborhood
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of R+ and in particular in the disk |z − 1| < ε for some ε. Formula (3.19)
then defines ψ (as a holomorphic function extending the original values) in the
subset {z ∈ R : |z| > 1/ε} of the right half-plane R = {z ∈ C : x > 0}.
(We use the standard notations x and y for the real and imaginary parts of z.)
The assumed invariance or anti-invariance of ψ under τ gives us ψ also in the
half-disk {z ∈ R : |z| < ε}. Since the interval [ε, 1/ε] is compact, this suffices
to define ψ in a wedge of the form stated.

We next show that any periodlike function inWδ (even without any growth
or continuity assumptions) extends uniquely to a periodlike function on all of
C ′. Denote by Q the sub-semigroup of SL(2,Z) generated by the matrices
T =

(
1 1
0 1

)
and T ′ =

(
1 0
1 1

)
. Note that any element of Q has nonnegative entries.

(In fact, Q consists of all matrices in SL(2,Z) with nonnegative entries, but
we will not need this fact.) We claim that for any z ∈ C ′ there are only finitely
many elements γ =

(
a b
c d

)
of Q for which γ(z) = (az + b)/(cz + d) does not

belong to Wδ. Indeed, this is obvious for the matrices
(

1 b
0 1

)
with c = 0, and

no element of Q has a = 0, so we can assume that ac 6= 0. Then

arg
(
γ(z)

)
= arg

(
c

a
· az + b

cz + d

)
= arg

(
1− 1

a(cz + d)

)
.

Choose M so large that Wδ contains a (1/M)-neighborhood of 1. There are
only finitely many pairs of integers (c, d) with |cz+ d| < M , and for each such
pair only finitely many integers a with 0 < a < M/|cz + d|, which proves the
claim. Now let Qn (n ≥ 0) be the subset of Q consisting of words in T and
T ′ of length exactly n. By what we just showed, we know that for any z ∈ C ′
and n sufficiently large (depending on z) we have γ(z) ∈ Wδ for all γ ∈ Qn.
We choose such an n and define

(3.20) ψ(z) =
∑
γ∈Qn

(ψ|γ)(z) ,

where (ψ|γ)(z) := (cz+d)−2sψ(γ(z)) for γ =
(
a b
c d

)
∈ Q. (The power (cz+d)−2s

is well-defined because cz+d ∈ C ′.) The right-hand side is well-defined because
each argument γ(z) is in the domain Wδ where ψ is already defined; it is
independent of n because ψ satisfies the three-term functional equation ψ =
ψ|T +ψ|T ′ in Wδ and Qn+1 = QnT

⊔
QnT

′ (disjoint union); and it satisfies the
three-term functional equation because Qn+1 = TQn

⊔
T ′Qn. It is also clear

(since the sum in (3.20) is finite and one can choose the same n for all z′ in a
neighborhood of z) that this extension is holomorphic if ψ|Wδ is holomorphic.
This completes the proof of the analytic continuation.

We now turn to the proof of the estimates (3.18). We again proceed in
several steps. In principle the proof of the estimates mimics the proof of the
analytic continuation, with an inductive procedure to move outwards from the
positive real axis to all of C ′. However, if we merely estimated ψ in the wedge



PERIOD FUNCTIONS FOR MAASS WAVE FORMS. I 241

Wδ and used (3.20) directly, we would get a poorer bound than we need, so we
have to organize the induction in a more efficient manner.

We start by estimating ψ away from the cut. The first inequality in
(3.18) follows immediately from formula (3.19) and the vanishing of ψ at 1. In

fact, this gives the full asymptotic expansion ψ(z) ∼
∞∑
m=0

(−1)m+1C∗mz
−m−2s

as |z| → ∞ in R, with the same C∗m as in (3.8b). (Note that |z−2s| ¿ |z|−2σ

because arg(z) is bounded.) The same method works to estimate ψ(z) for
z ∈ L (left half-plane) with |y| > 1

2 , the bound obtained now being |y|−2σ in-
stead of |z|−2σ. This proves the third estimate in (3.18), and in fact a somewhat
sharper bound, in this region.

It remains to consider the region X = {z ∈ L : |z| ≥ 1, |y| ≤ 1
2}. (Recall

that we can restrict to |z| ≥ 1 because ψτ = ±ψ.) To implement the induction
procedure in this region we define a map J : X → {z ∈ C ′ : |z| ≥ 1} which

moves any z ∈ X further from the cut. This map sends z to
z +N ′

z +N
, where

−N is the nearest integer to z and −N ′ the second nearest, or more explicitly

(3.21) J(z) =


z +N − 1
z +N

if −N ≤ x < −N + 1
2 , N ≥ 1 ,

z +N + 1
z +N

if −N − 1
2 ≤ x < −N, N ≥ 1 .

We claim that

(3.22) ψ(z) = ±(z +N)−2s ψ
(
J(z)

)
+ O(1) .

(Here and in the rest of the proof all O-estimates are uniform, depending only
on ψ.) This follows in the first case of (3.21) from the calculation

ψ(z)− (z +N)−2s ψ
(
J(z)

)
= ψ(z +N) +

N−1∑
n=1

(z + n)−2s ψ
(
1− 1

z + n

)
= O(1) +

N−1∑
n=1

O
(
(N − n− 1

2)−2σ−1
)

and in the second case from a similar calculation using

ψ(z)∓ (z +N)−2s ψ
(
J(z)

)
= ψ(z +N + 1)±

N−1∑
n=1

(z + n)−2s ψ
(
1 +

1
z + n

)
.

Multiplying both sides of (3.22) by ys and noting that =(J(z)) = y/|z +N |2,
we obtain the estimate

(3.23) F (z) = F (J(z)) + O
(
|y|σ

)
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for the function F (z) := |y|σ |ψ(z)|. On the other hand, for z ∈ X we have

(3.24)
∣∣=(J(z)

)∣∣ =
|y|

|z +N |2 =
|y|

(x+N)2 + y2
≥ |y|

1
4 + 1

4

= 2
∣∣=(z)

∣∣ .
The desired bound F (z) = O(1) follows easily from (3.23) and (3.24). Indeed,
(3.24) implies that some iterate Jk of J maps z outside X. Write z0 = z and
zj = J(zj−1) for 1 ≤ j ≤ k, so that z0, . . . , zk−1 ∈ X and zk /∈ X but |zk| ≥ 1.
We have

(3.25) F (z) = O
(
|y0|σ

)
+O

(
|y1|σ

)
+ · · ·+O

(
|yk−1|σ

)
+F (zk)

(
yj := =(zj)

)
by (3.23). But F (zk) = O(1) by the estimates away from the cut proven earlier,
and |yj | ≤ 2−k+j for 0 ≤ j ≤ k − 1 by (3.24). The result follows.

Remark. From the proof of Theorem 2 it is clear that we could weaken
the hypothesis (3.17) somewhat and still obtain the same conclusion: it would
suffice to assume that

ψ(x) = o
(
x−2σ

)
as x→ 0, ψ(x) = o

(
1
)

as x→∞

(which is weaker than (3.17) if σ > 1
2) and that ψ(1) = 0, since these hypotheses

would already imply that Q0 ≡ Q∞ ≡ 0, C∗−1 = 0 in (3.8) and this is all
that was used in the proof. The contents of Theorem 2 and its corollary can
therefore be summarized by saying that the sequence

0 −→ Maasss
α−→ FEs(R+)ω

β−→ Cω(R/Z) ⊕ Cω(R/Z)⊕ C ,

where α sends a Maass wave form to its period function and β sends a real-
analytic periodlike function ψ to (Q0, Q∞, C∗−1) , is exact. As in Section 3, it
is natural to ask whether β is surjective. The same constructions as used there
for the C∞ case (Examples 3 and 4 of §1) show that the image of β contains
at least one copy {Q(x), −Q(−x)} of Cω(R/Z), and that it contains all of
Cω(R/Z) ⊕ Cω(R/Z) if σ > 1. But the latter case is not very interesting,
since then Maasss = {0}, and for 0 < σ < 1 we do not know how to decide the
surjectivity question.

Chapter IV. Complements

In this chapter we describe the extension of the period theory to the
noncuspidal case, its connection with periods of holomorphic modular forms,
and its relationship to Mayer’s theorem expressing the Selberg zeta function of
Γ as a Fredholm determinant. Other “modular” aspects of the theory (such as
the action of Hecke operators and the Petersson scalar product) will be treated
in Part II of the paper.
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1. The period theory in the noncuspidal case

So far we have been considering only cuspidal Maass forms. If we define
more generally a Maass form with spectral parameter s to be a Γ-invariant
solution of the equation ∆u = s(1 − s)u in the upper half-plane which grows
less than exponentially as y → ∞, then the space of such forms for a given
value of s contains the cusp forms as a subspace of codimension 1, the extra
function being the nonholomorphic Eisenstein series Es(z). This is the function
defined for <(s) > 1 by

(4.1) Es(z) =
1
2

∑
(m,n)∈Z2r{(0,0)}

ys

|mz + n|2s

and for arbitrary s by the Fourier expansion

(4.2) Es(z) = ζ(2s) ys +
π1/2Γ(s− 1

2)
Γ(s)

ζ(2s− 1) y1−s

+
4πs

Γ(s)
√
y
∞∑
n=1

n
1
2−sσ2s−1(n)K

s−1
2
(2πny) cos(2πnx) ,

where σν(n) =
∑

d|n d
ν . If our theory of period functions of Maass forms is to

extend to the noncuspidal case, there should therefore be a solution ψ of the
(even) three-term functional equation associated to Es. We claim that this is
the case, with ψ being the function ψ+

s introduced in Example 2 of Section 1,
Chapter III. There are three ways of seeing this:

1. Substitute u(z) = Es(z) into the integral (2.2). From (4.2) we see that
Es(iy) = O

(
ymax(σ,1−σ)

)
as y → ∞, and the invariance under y 7→ 1/y gives

the corresponding statement as y → 0, so the integral converges for all s with
σ > 0. For σ > 1 we can substitute the convergent series (4.1) into (2.2) and
integrate term by term using the integral formula

2z
∫ ∞

0

t2s dt

(m2t2 + n2)s (z2 + t2)s+1
=

Γ(s+ 1
2)Γ(1

2)
Γ(s+ 1)

1
(mz + n)2s

(which is just (2.38) with the omitted constant re-inserted) to get ψ .= ψ+
s .

This calculation was also done by Chang and Mayer [2].

2. Start with ψ = ψ+
s and try to work out the corresponding Maass form

by using the correspondences ψ ↔ f ↔ u from Chapter I. The first step is
easy: if f(z) is the function defined by equation (0.6) with ψ = ψ+

s , then

f(z) .= ψ+
s (z) + z−2s ψ+

s (−1/z) =
∑∗

m≥0

∑
n∈Z

1
(mz + n)2s

(4.3)

= 1
2

(
1 + e−2πis

)
ζ(2s) +

(−2πi)2s

Γ(2s)

∞∑
n=1

σ2s−1(n) e2πinz
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for z ∈ H (the second equality follows from the Lipschitz formula for∑
(z + n)−ν), and of course f(−z) = −f(z) since we are in the even case.

Comparing this with the Fourier expansion (4.2), we see that indeed the two
functions f and u = Es are related up to a constant factor by the recipe given
in Chapter I (equations (1.9) and (1.11)), except that there we had no constant
terms and we did not specify how to get the coefficients of ys and y1−s for a
noncuspidal u from f . Comparing (4.3) and (4.2) suggests that the former
coefficient should come from the constant term of the Fourier expansion of f ,
but it is not yet clear where the coefficient of y1−s comes from. (We will see
the answer in a moment.)

3. According to the proposition at the end of Section 4 of Chapter II, the
period function of an even Maass cusp form u is C∞ from the right at 0 and
its mth Taylor coefficient at 0 vanishes for m even and is a simple multiple of
L0(m+ s+ 1

2) for m odd, where L0(ρ) is the L-series of u. On the other hand,
the function ψ+

s (x) has an expansion at 0 given by

ψ+
s (x) ∼ ζ(2s)

2
x−2s+

ζ(2s− 1)
2s− 1

x−1+
∑
m≥1
m odd

(
m+ 2s− 1

m

)
Bm+1

m+ 1
ζ(m+2s)xm ,

where Bn denotes the nth Bernoulli number (this easily proved result was
already mentioned under “Example 2” at the end of §3 of Chapter III); and
since by (4.2) the L-series of Es is a multiple of ζ(ρ−s+ 1

2)ζ(ρ+s− 1
2), we see

that the same relationship holds for the pair u = Es, ψ = ψ+
s . Moreover, from

this point of view we can also see where the two first coefficients in (4.2) come
from: they are (up to simple multiples) the coefficients of x−2s and x−1 in the
asymptotic expansion of ψ(x) at x = 0. This suggests the following theorem.

Theorem. Let s be a complex number with <(s) > 0, s /∈ Z.

a) If u is a Γ-invariant function in H with Fourier expansion

(4.4) u(z) = c0y
s + c1y

1−s + 2
√
y

∞∑
n=1

AnK
s−1

2
(2π|n|y) cos(2πnx)

and we define a periodic holomorphic function f : C r R→ C by

(4.5) ±f(z) =
π

1
2−s

Γ(1
2 − s)

c0 +
∞∑
n=1

ns−
1
2An e

±2πinz
(
=(z) ? 0

)
,

then the solution ψ of the three-term functional equation (0.1) defined by (0.5)
extends holomorphically to C ′ and satisfies

(4.6) ψ(x) =
π

1
2 Γ(s+ 1

2)
Γ(s)

c0

x2s
+
c1

x
+ O(1) (x→ 0) .
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b) Conversely, if ψ is a real -analytic solution of (0.1) on R+ with asymp-
totics of the form (4.6), then ψ extends holomorphically to C ′, the function f

defined by (0.6) has a Fourier expansion of the form (4.5), and the function u

defined by (4.4) is Γ-invariant.

Proof. a) The function u is the sum of a cusp form and a multiple of
Es. The assertion is true for cusp forms by the results of Chapter I (with
c0 = c1 = 0) and for the Eisenstein series by the discussion above.

b) By the evenness of ψ, the assumed asymptotic behavior is equivalent to
the assertion that ψ(x) ∼ cx1−2s + c′ + O(x−2s) as x→∞ for some c, c′ ∈ C.
If c = c′ = 0 then the asserted facts are the contents of Theorems 1 and 2.
We indicate how to modify the proofs of these theorems to apply to the new
situation.

To prove that ψ extends holomorphically to C ′ we follow the “bootstrap-
ping” proof of Chapter III, the only change being that equation (3.19) is re-
placed by

(4.7) ψ(z) = c′ + ψ(1) ζ(2s, z + 1) +
∞∑
n=1

(n+ z)−2s

(
ψ
(
1− 1

n+ z

)
−ψ(1)

)
.

(Proof : Note first that ψ(1) = (2s−1)c by the three-term functional equation.
Using the functional equation we deduce that difference of the two sides of
(4.7) is a periodic function, and since it is also o(1) at infinity it must vanish.
This argument is essentially the same as the proof of the proposition in §3 of
Chapter III.) At the same time we find that the assumed asymptotics of ψ(x)
at 0 and ∞ remain true for ψ(z) in the entire right half-plane, and that ψ(z)
is bounded by a negative power of |y| near the cut in the left half-plane. (To
prove the latter statement we note that replacing (3.19) by (4.7) gives (3.23)
and (3.25) with the exponent σ replaced by −C for some C > 0, and using
|yi+1| ≥ 2|yi| we obtain F (z) = O

(
|y|−C

)
.)

To get (4.5), observe that the asymptotic expansions of ψ(iy) at 0
and ∞ imply that the function c?(s)f(iy) = ψ(iy) + (iy)−2sψ(i/y) equals
c′(1+e−2πis)+o(1) as y →∞. Also, f(z) is periodic by Proposition 2 of Chap-
ter I, Section 2. It follows that f(z) has a Fourier expansion

∑
n≥0 ane

2πinz

in H with c?(s)a0 = c′(1 + e−2πis). Now use the relation between c′ and c0 in
(4.6) together with formula (1.12).

We now have the coefficients An and can define u by (4.4). This function
is automatically an eigenfunction of ∆ and periodic, so we only need to show
the invariance of u(iy) under y 7→ 1/y. We will follow the L-series proof of
Chapter I with suitable modifications. Note first that, by virtue of the estimate
of ψ near the cut given above, the coefficients An have at most polynomial
growth, so that the L-series L0(ρ) = 2

∑
Ann

−ρ converges in some half-plane.
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If we now define

u0(y) =
1√
y

(
u(iy)− c0y

s − c1y
1−s) = 2

∞∑
n=1

AnK
s−1

2
(2π|n|y)

(cf. (1.6)), then the Mellin transform of u0(y) is L∗0(ρ) := γs(ρ)L0(ρ) for <(ρ)
sufficiently large. Similarly the Mellin transform f̃(ρ) of f(iy)−a0 is a multiple
of L0(ρ− s+ 1

2), the formulas being the same as in (1.16) (with f̃± = ±f̃ and
L1 = L∗1 = 0). Now the same arguments as in Section 4 of Chapter I let us
deduce from the analytic continuability of ψ across R+ that L∗0(ρ) = L∗0(1− ρ)
and from this that u(iy) = u(i/y). The effect of subtracting the powers of y
from u(iy) and the constant term from f(iy) in order to get convergence in
a half-plane is that the function L∗0(ρ) is now no longer entire, but acquires
four simple poles, at 1

2 − s, 3
2 − s, s− 1

2 and s+ 1
2 , with residues −c0, c1, −c1

and c0, respectively. Also, the Mellin transforms of ψ(x) and ψ(±iy) do not
necessarily converge in any strip and we must subtract off a finite number of
elementary functions from ψ in order to define and compute these transforms.
The details of the argument are left to the reader.

Remarks. 1. Part (b) of the theorem and the fact that cusp forms have
codimension 1 in the space of all Maass forms imply that if ψ(x) is any analytic
even periodlike function satisfying ψ(x) ∼ cx1−2s + c′ + O(x−2s) as x → ∞,

then c = λ
ζ(2s− 1)

2s− 1
, c′ = λ

ζ(2s)
2

for some λ ∈ C. This fact will be used in

Section 3.

2. We stated the theorem only in the even case. The odd case is uninter-
esting. On the one hand, since the function Es is even, any odd Maass form is
cuspidal. In the other direction, if an odd periodlike function has an asymp-
totic expansion of the form (4.6), then c1 = ψ(1)/(2s−1) = 0 by the three-term
equation, while c0 can be eliminated by subtracting from ψ a multiple of the
trivial periodlike function ψ−s (z) = 1− z−2s of (3.1).

2. Integral values of s and connections
with holomorphic modular forms

In this section, we will first review the classical Eichler-Shimura-Manin
theory of period polynomials of holomorphic modular forms and describe the
analogies between the properties of these polynomials and of the holomorphic
function ψ(z) associated to a Maass wave form, justifying the title of the paper.
Second, and more interesting, we will show that the two theories are not only
analogous, but are in fact related to one another in the special case when the
spectral parameter s is an integer. In that case, there are no Maass cusp forms,
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but there are “nearly automorphic” eigenfunctions u of the Laplace operator
whose associated periodic and holomorphic function f(z) is a holomorphic cusp
form of weight 2k in the case s = k ∈ Z>0 and the Eichler integral of such a
form if s = 1− k ∈ Z≤0.

Let f(z) be a holomorphic cusp form of weight 2k on Γ; to fix nota-
tion we recall that this means that f satisfies f

∣∣
2k
γ = f for all γ ∈ Γ,

where the weight 2k action of G on functions is defined by
(
F
∣∣
2k

( a b
c d

))
(z) =

(cz + d)−2kF
(az + b

cz + d

)
, and that f has a Fourier expansion of the form

(4.8) f(z) =
∞∑
n=1

an q
n (z ∈ H) ,

where we have used the standard convention q = e2πiz. Associated to f is a
polynomial rf of degree 2k − 2, the period polynomial of f . It can be defined
in three ways (we now use the symbol .= to denote equality up to a constant
depending only on k):

(i) by the identity

(4.9) rf (z) .= f̃(z)− z2k−2f̃(−1/z) (z ∈ H) ,

where f̃ is the Eichler integral of f , defined by the Fourier expansion

(4.10) f̃(z) =
∞∑
n=1

an
n2k−1

qn (z ∈ H) ;

(ii) by the integral representation

(4.11) rf (X) .=
∫ ∞

0
f(τ) (τ −X)2k−2 dτ ,

where the integral is taken over the positive imaginary axis;
(iii) by the closed formula

(4.12) rf (X) .=
2k−2∑
r=0

(−2πi)−r

(2k − 2− r)! Lf (r + 1)Xr ,

where Lf (ρ) =
∑∞

n=1 ann
−ρ (or its analytic continuation) is the Hecke L-series

associated to f .
The proofs that these definitions agree are simple. Denote by D the

differential operator

D =
1

2πi
d

dz
= q

d

dq
,

so that the relationship between the functions with the Fourier expansions
(4.8) and (4.10) is given by

(4.13) D2k−1(f̃) = f .
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The key point is that the (2k − 1)st power of the operator D intertwines the
actions of G = PSL(2,R) in weights 2− 2k and 2k; i.e.

(4.14) D2k−1
(
F
∣∣
2−2k

g
)

=
(
D2k−1F

)∣∣
2k
g

for any g ∈ G and any differentiable function F . (The identity (4.14) is known
as Bol’s identity; we will see why it is true a little later.) It follows that the
function rf defined by (4.9) satisfies

D2k−1
(
rf
)

= D2k−1
(
f̃ − f̃

∣∣
2−2k

S
)

= D2k−1f̃ −
(
D2k−1f̃

)∣∣
2k
S = f − f

∣∣
2k
S = 0

(where S =
( 0 −1

1 0

)
as usual) and hence is indeed a polynomial of degree 2k−2.

To show that it is proportional to the polynomial defined by (4.11), we observe
that the (2k − 1)fold primitive f̃ of f can also be represented by the integral
f̃(z) .=

∫∞
z (z − τ)2k−2 f(τ) dτ (Proof: the right-hand side is exponentially

small at infinity and its (2k− 1)st derivative is a multiple of f), and from this
and the modularity of f we get z−2kf̃(−1/z) .=

∫ 0
z (z − τ)2k−2 f(τ) dτ , from

which the asserted equality follows. Finally, the equality of the right-hand
sides of (4.11) and (4.12) follows from the representation of Lf (r + 1) as a
multiple of

∫∞
0 τ rf(τ) dτ .

It is now clear why throughout this paper we have been referring to the
function ψ(z) associated to a Maass form u as its “period function,” for each
of the defining properties (i)–(iii) has its exact analogue in the theory we have
been building up. Formula (4.9) is the analogue of formula (0.5) expressing
ψ as f |(1 − S) where f is the periodic holomorphic function attached to u;
formula (4.11) corresponds to the expression (2.8) given in §2 of Chapter II
for ψ as an integral of a certain closed form attached to u; and formula (4.12)
is the analogue of the result given in Chapter II (eq. (2.33)) for the Taylor
coefficients of ψ as multiples of the values of the L-series of u at (shifted)
integer arguments.

We can in fact make the analogy even more precise. Denote by P2k−2

the space of polynomials of degree ≤ 2k − 2, with the action
∣∣
2−2k

(we will
drop the subscript from now on) of G. (Note that P2k−2 with this action is a
sub-representation of the space V1−k defined at the end of Section 5 of Chapter
II.) It is easily shown using the above definitions that the period polynomial
rf of a cusp form belongs to the space

W2k−2 :=
{
F ∈ P2k−2 : F |(1 + S) = F |(1 + U + U2) = 0

}
.

Here S and U = TS are the standard generators of Γ with S2 = U3 = 1 and
we have extended the action of Γ on P2k−2 to an action of the group ring Z[Γ]
by linearity, so that e.g. F |(1 + U + U2) means F + F |U + F |U2. In fact it
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is known that the functions rf (X) and rf (X̄) as f ranges over all cusp forms
of weight 2k span a codimension 1 subspace of W2k−2. (The missing one-
dimensional space comes from an Eisenstein series; see below.) The relations
defining W2k−2 express the fact that there is a 1-cocycle Γ → P2k−2 sending
the generators T and S of Γ to 0 and F , respectively, this cocycle in the case
F = rf being the map defined by γ 7→ f̃ |(1− γ). We now have:

Proposition. Every element of W2k−2 is a solution of the three-term
functional equation (0.2) with parameter s = 1 − k, and conversely if k > 1
every periodlike function of parameter 1−k which is a polynomial is an element
of W2k−2.

Proof. The elements T =
( 1 1

0 1

)
and T ′ =

( 1 0
1 1

)
are represented in terms of

the generators S and U by T = US, T ′ = U2S, respectively, so for F ∈W2k−2

we find F |(1− T − T ′) = F |(1 +S)−F |(1 +U +U2)|S = 0, which is precisely
the three-term functional equation. For the converse direction, we reverse
the calculation to find that a periodlike function F satisfies F |(1 + S) =
F |(1+U+U2). WritingH for the common value of F |(1+S) and F |(1+U+U2),
we find that H is invariant under both S and U and hence under all of Γ. It
follows that H = 0 (the only T -invariant polynomials are constants, and these
are not S-invariant for k > 1). Hence F satisfies the equations defining W2k−2,
while from F |S = −F it follows that deg(f) ≤ 2k − 2, so F ∈ P2k−2.

The proposition and the preceding discussion show that for the param-
eter s = 1 − k the period polynomials of holomorphic cusp forms of weight
2k produce holomorphic solutions of the three-term functional equation with
reasonable growth properties at infinity. How does this fit into our Maass pic-
ture? The answer is very simple. For each integer h the differential operator
∂h := D − ih/(2πy) (where z = x + iy as usual) intertwines the actions of G
in weights 2h and 2h+ 2, i.e.

∂h
(
F
∣∣
2h
g
)

= ∂h(F )
∣∣
2h+2

g .

In particular, if F is modular (or nearly modular) of weight 2h, then ∂hF is
modular (or nearly modular) of weight 2h + 2. Iterating, we find that the
composition ∂nh := ∂h+n−1 ◦ · · · ◦ ∂h intertwines the actions of G in weights 2h
and 2h+2n and in particular sends modular or nearly modular forms of weight
2h to modular or nearly modular forms of weight 2h+ 2n. On the other hand,
by induction on n one proves the formula

(4.15) ∂nh =
n∑

m=0

n!
(n−m)!

(
n+ 2h− 1

m

)( −1
4πy

)m
Dn−m .
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In the special case when h = 1 − k and n = 2k − 1 this reduces simply to
∂nh = Dn, which explains Bol’s identity (4.14): the operator ∂nh always preserves
modularity (shifting the weight by 2n) but in general destroys holomorphy,
while Dn preserves holomorphy but in general destroys modularity, so that in
the case n+ 2h = 1 when they agree both properties are preserved.

Now, dropping the lower indices on the ∂’s for convenience, we can factor
the identity D2k−1 = ∂2k−1 as D2k−1 = ∂k ◦ ∂k−1, leading to the picture
indicated by the following diagram:

Hence we can factor the relation (4.13) into steps, writing

(4.16) f = ∂k0 (u) where u := ∂k−1
1−k (f̃) .

From (4.15) and (4.10) we immediately obtain the Fourier expansion of u,
and comparing the result with the well-known formulas for Bessel functions of
half-integer index in terms of elementary functions, we find to our delight the
familiar-looking expression

(4.17) u(z) .=
√
y

∞∑
n=1

AnKk−1/2(2πny) e2πinx ,

with Fourier coefficients An given by

(4.18) An =
{
n−k+1/2 an for n > 0 ,

0 for n < 0 .

In particular, the function u defined in (4.16) is an eigenfunction of the Laplace
operator with eigenvalue k(1−k) and is T -invariant and small at infinity. It is
not quite Γ-invariant, but its behavior under the action of the second generator
S of Γ is easily determined:

u(z) − u(−1/z) = u
∣∣
0

(1− S)

.=
(
∂k−1

1−k f̃
)∣∣

0
(1− S)

= ∂k−1
1−k
(
f̃
∣∣
2−2k

(1− S)
)

= ∂k−1
1−k
(
rf
)
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by (4.9) and the intertwining property of ∂nh . Thus u(z)−u(−1/z), and hence
also u(z)− u(γ(z)) for every γ ∈ Γ, belongs to the to the space P 0

k of polyno-
mials in x, y and 1/y which are annihilated by ∆− k(1− k). In fact, the map
∂k−1

1−k is an isomorphism from P2k−2 to P 0
k and transfers the original cocycle

γ 7→ f̃
∣∣
2−2k

(1 − γ) with coefficients in P2k−2 to the cocycle γ 7→ u|0(1 − γ)
with coefficients in P 0

k .
Let us compare this new correspondence with our usual correspondence

between Maass cusp forms and their period functions. There are several points
of difference as well as of similarity. The obvious one is that in our new situation
the eigenfunction u is no longer a Maass form, but only “Maasslike” in the sense
just explained. But there are other differences. First we point out a property
of the usual u↔ ψ correspondence which we have not previously emphasized:
associated to a Maass form u there is not just one, but two period functions.
Namely, if u is an eigenfunction of ∆ with eigenvalue λ and we write its Fourier
expansion in the form (1.9), we can freely choose between the parameter s and
the parameter 1−s, since the K-Bessel function Kν(t) is an even function of its
index ν. But when we write down the associated periodic function f in CrR by
(1.11), we have broken the s↔ 1−s symmetry and chosen one of the two roots
of s(1−s) = λ, so that there is actually a second holomorphic periodic function
f̃ , defined by the same formula (1.11) but with the exponent s− 1

2 replaced by
1
2−s (compare eq. (2.44), where there were two boundary forms U(t) and Ũ(t)
associated to u), and similarly a second period function ψ̃ = f̃

∣∣
2−2s

(1 − S).
The choice was not important in the case of a Maass cusp form, since then
<(s) = 1

2 anyway, so that ψ(z) 7→ ψ(z̄) gives a correspondence between the
two possible choices for the period function. But in our new situation the
picture is different: if u is the Maasslike function defined by (4.17) and (4.18),
then with the spectral parameter s = k we see that the “f” defined by (1.11)
is our original cusp form f and the “f̃” defined by (1.11) with s replaced by
1− s is the associated Eichler integral (4.10). The reason for this dichotomy is
that the correspondence between periodlike and periodic functions described in
Proposition 2, Section 2, of Chapter I breaks down when the parameter s is an
integer: the maps ψ 7→ ψ

∣∣
2s

(1 + S) and f 7→ f |2s(1 − S) still send periodlike
to periodic functions and vice versa, but are no longer isomorphisms, since
their composition is 0 in both directions. (This is because h 7→ h

∣∣
2s
g is a

G-action for s ∈ Z, and S2 = 1 in G.) The two functions f and f̃ associated
to an eigenfunction u with eigenvalue k(1 − k) behave very differently under
these correspondences: f itself (if we make the choice s = k and if u is the
Maasslike form associated to a holomorphic cusp form) is Γ-invariant in weight
2k and hence is annihilated by 1−S, while f̃ is mapped by 1−S to the period
polynomial rf which in turn, unlike the period functions of true Maass forms,
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is then in the kernel of 1 + S. The situation is summarized by the following
diagram:

We mention one other point of difference: in the usual case a Maass form
was typically even or odd (it is believed—and certainly true for all eigenfunc-
tions computed up to now—that the space of Maass forms for a given eigenvalue
is at most one-dimensional, in which case every Maass form is necessarily an
even or an odd one), while the expansion (4.17) does not have either of the
symmetry properties A−n = ±An. If we split (4.17) into its even and odd
parts by writing e2πinx as the sum of cos(2πnx) and i sin(2πnx), we find two
different cocycles in H1(Γ, P 0

k ), given by the even and odd parts of the period
polynomial rf . This corresponds to the fact mentioned above that the space
W2k−2 contains two isomorphic images of the space of holomorphic cusp forms
of weight 2k.

To complete the picture we should say something about the Eisenstein
case. The space of all modular forms of weight 2k on Γ is spanned (for k > 1)
by the cusp forms and the classical Eisenstein series G2k. For f = G2k one can
still define an associated function rf by appropriate modifications of each of
the three definitions (i)–(iii), as was shown in [15]. The result (proposition on
p. 453 of [15]) is

rG2k
(X) .=

k∑
n=0

B2n

(2n)!
B2k−2n

(2k − 2n)!
X2n−1 +

ζ(2k − 1)
(2πi)2k−1

(
X2k−2 − 1

)
,

which is not quite an element of P2k−2 but of the larger space (on which G

does not act) spanned by {Xn | −1 ≤ n ≤ 2k− 1}. The even and odd parts of
rG2k

are (multiples of) the functions ψ+
1−k and ψ−1−k discussed in Examples 1

and 2 of Chapter III, Section 1. This is in accordance with the correspondence
for cusp forms described above, since from (4.2) and the fact that the nth

Fourier coefficient of G2k is σ2k−1(n) for n > 0 we see that the “u” associated
to f = G2k should be precisely the nonholomorphic Eisenstein series Ek, whose
period function for the choice of spectral parameter s = 1 − k is indeed the
function ψ+

1−k, as we saw in Section 1. This function belongs to P2k−2 and
spans the “missing one-dimensional space” mentioned before the proposition
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above. The other period function ψ+
k of Ek, associated to the choice of spectral

parameter s = k, is not a polynomial but instead is the periodlike function
whose image under 1 + S is the element f = G2k of ker(1− S).

We make one final observation. All three definitions (i)–(iii) of classical
period polynomials have analogies for the periods of Maass forms, as discussed
at the beginning of this section, but there is one aspect of the classical theory
which does not immediately generalize, namely the interpretation of the map
T 7→ 0, S 7→ rf as a cocycle. The reason is that for s nonintegral the “action”∣∣
2s

is not in fact an action of the group G, because the automorphy factors
(cz + d)−2s have an ambiguity given by powers of e2πis. This means that the
relation ψ

∣∣
2s

(1− T − T ′) = 0 (three-term functional equation) does not imply
that there is a cocycle on Γ (say, with coefficients in the space of holomorphic
functions on C ′) sending T to 0 and S to ψ. Nevertheless, there are ways
to interpret ψ as part of a 1-cocycle, and these in fact work for any discrete
subgroup of G, permitting us to extend the theory developed in this paper to
groups other than PSL(2,Z). This will be the main subject of Part II of this
paper.

3. Relation to the Selberg zeta function and Mayer’s theorem

The theme of this paper has been the correspondence between the spec-
tral parameters of the group Γ = PSL(2,Z) and the holomorphic solutions of
the three-term functional equation (0.2). On the other hand, there is a fa-
mous relation between the same spectral parameters and the set of lengths of
the closed geodesics on the Riemann surface X = H/Γ, namely the Selberg
trace formula, which expresses the sum of the values of suitable test functions
evaluated at the spectral parameters as the sum of a transformed function
evaluated on this length spectrum. The triangle is completed by a beautiful
result of Mayer, which relates the length spectrum of X, as encoded by the
associated Selberg zeta function Z(s), to the eigenvalues of a certain linear
operator Ls which is closely connected with the three-term functional equa-
tion. Combining this theorem, the underlying idea of whose proof is essentially
elementary, with the theory developed in this paper yields a direct connection
between Maass wave forms and the length spectrum of X, and hence a new
insight into the Selberg trace formula.

We begin by recalling the definitions of Z(s) and Ls and the proof of
Mayer’s theorem, referring to [13] and [11] for more details. The function Z(s)
is defined for <(s) > 1 by the product expansion

(4.19) Z(s) =
∏

{γ} in Γ
γ primitive

∞∏
m=0

(
1−N (γ)−s−m

)
.
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Here the first product is taken over Γ-conjugacy classes of primitive hyperbolic
elements of Γ (“hyperbolic” means that the absolute value of the trace is bigger
than 2, and “primitive” that γ is not a power of any matrix of smaller trace),
and the norm N (γ) is defined as 1

4

(
|tr(γ)| +

√
tr(γ)2 − 4

)2
or equivalently

as ε2 where γ is conjugate in PSL(2,R) to ±
( ε 0

0 1/ε

)
. The function Z(s), or

rather its logarithmic derivative, arises by applying the Selberg trace formula
to a particular family of test functions parametrized by the complex number s.
The trace formula then implies that Z(s) extends meromorphically to all s,
with poles at negative half-integers and with zeros at the spectral parameters
of Γ, together with the value s = 1 and the zeros of ζ(2s).

The operator Ls is an endomorphism of the vector space V of functions
which are holomorphic in the disk D = {z ∈ C | |z − 1| < 3

2} and continuous
in D. It is defined for <(s) > 1

2 by

(4.20) (Lsh)(z) =
∞∑
n=1

1
(z + n)2s

h
( 1
z + n

)
(h ∈ V) ,

where the holomorphy of h at 0 implies that the sum converges absolutely and
again belongs to V. We continue this meromorphically to all complex values
of s by setting

(4.21) (Lsh)(z) =
M−1∑
m=0

cm ζ(2s+m, z + 1) + (Lsh0)(z) ,

where ζ(s, z) denotes the Hurwitz zeta function, M is any integer greater than
1− 2<(s), the cm (0 ≤ m ≤M − 1) are the first M Taylor coefficients of h(z)
at 0, and h0(z) = h(z) −

∑M−1
m=0 cmz

m. This is clearly independent of M and
holomorphic except for simple poles at 2s = 1, 0, −1, . . . . Mayer proves that
the operator Ls is of trace class (and in fact nuclear of order 0), from which it
follows that the operators 1± Ls have determinants in the Fredholm sense.

Theorem (Mayer [13], [14]). The Selberg zeta function of H/Γ is given by

(4.22) Z(s) = det
(
1− Ls

)
det
(
1 + Ls

)
.

A simplified version of the proof is given in [11]. Roughly, the idea is as
follows. We may assume <(s) > 1. After an elementary manipulation, (4.19)
can be rewritten

logZ(s) = −
∑
{γ}, k

1
k
χs
(
γk
)
,

where the sum over γ is the same as before and k runs over all integers ≥ 1, and
where χs(γ) = N (γ)−s/

(
1 − N (γ)−1

)
. By the reduction theory of quadratic

forms, every conjugacy class {γk} of hyperbolic matrices in Γ has a finite
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number of “reduced” representatives (a matrix
( a b
c d

)
∈ Γ is called reduced if

0 ≤ a ≤ b, c ≤ d); these have the form ρn1 · · · ρn2l
where n1, . . . , n2l ∈ N are

the convergents in a periodic continued fraction expansion associated to {γk}
and ρn =

( 0 1
1 n

)
, and the l/k reduced representatives of the conjugacy class

are all obtained by permuting (n1, . . . , n2l) cyclically. On the other hand, any
reduced matrix γ =

( a b
c d

)
in Γ acts on V by (πs(γ)f)(z) = (cz+ d)−2sf

(
az+b
cz+d

)
(this makes sense because γ(D) ⊂ D for γ reduced), and this operator is of
trace class with Fredholm trace Tr(πs(γ)) = χs(γ). Putting all of this together
and observing that Ls =

∑∞
n=1 πs(ρn), we find

logZ(s) = −
∞∑
l=1

1
l

Tr
(
L2l
s

)
= log det

(
1− L2

s

)
as claimed. Actually, the formula (4.22) can be made a little more precise, as
discussed in [5] and [11]: the function Z(s) has a natural splitting Z+(s)Z−(s)
where Z+(s) is the Selberg zeta function of Γ+ = PGL(2,Z) (with the elements
of Γ+ of determinant −1 acting onH by z 7→ (az̄+b)/(cz̄+d) ) and where Z+(s)
and Z−(s) have zeros at the spectral parameters of Γ corresponding to even
and odd Maass forms, respectively, and one in fact has Z±(s) = det

(
1∓ Ls) .

We now come to the connection with period functions. Fredholm theory
implies that the trace class operators Ls share with operators of finite rank
the property that det(1 ∓ Ls) = 0 if and only if Ls has an eigenvector with
eigenvalue ±1. Hence combining Mayer’s theorem (in the sharpened form just
mentioned) with the known position of the zeros of Z(s) implied by the Selberg
trace formula, we obtain

Corollary. Let s 6= 1
2 be a complex number with <(s) > 0. Then:

a) there exists a nonzero function h ∈ V with Lsh = −h if and only if s
is the spectral parameter corresponding to an odd Maass wave form on Γ;

b) there exists a nonzero function h ∈ V with Lsh = h if and only if s is
either the spectral parameter corresponding to an even Maass form, or 2s is a
zero of the Riemann zeta function, or s = 1.

We now show how the main theorems of this paper give a constructive
proof of this corollary, independent of Mayer’s theorem and the Selberg trace
formula. To do this, we use the following bijection between solutions of Lsh =
±h and holomorphic periodlike functions.

Proposition. Suppose that <(s) > 0, s 6= 1
2 . Then a function h ∈ V is

a solution of Lsh = ±h if and only if h(z) is the restriction to D of ψ(z + 1)
where ψ is a holomorphic solution in C ′ of the even/odd three-term functional
equation (1.13) having the asymptotic behavior ψ(x) = cx1−2s + O

(
x−2s

)
as

x→∞.
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Proof. First assume that h ∈ V is given with Lsh = ±h. Then the same
bootstrapping arguments as given in Section 4 of Chapter III (compare for
instance equation (3.19)) shows that the function ψ(z) := h(z − 1) extends
analytically to all of C ′. (The function Lsh for any h ∈ V is holomorphic
in a much larger domain than D, including in particular the right half-plane
<(z) > −3

5 , so h = ±Lsh is also defined in this domain, and iterating this
argument we extend h to a larger and larger region finally filling up the cut
plane Cr (−∞,−1].) The even or odd three-term functional equation for ψ is
obvious from the identity Lsh(z− 1) = Lsh(z) + z−2sh(1/z), which is valid for
any h ∈ V. The asymptotic expansion of ψ at infinity, with c = h(0)/(2s− 1),
follows easily from equation (4.21).

Conversely, assume we are given a holomorphic function ψ in C ′ which sat-
isfies the even or odd three-term functional equation and the given asymptotic
formula. We must show that the function h(z) := ψ(z + 1), which obviously
belongs to V, is a fixed-point of ±Ls. The first observation is that, as pointed
out in the first part of the proof, the function Lsh is defined in the right
half-plane and satisfies Lsh(z − 1) = Lsh(z) + z−2sh(1/z). From this and the
functional equation of ψ it follows that the function h1(z) := Lsh(z) ∓ h(z)
is periodic. But by letting x → ∞ in (0.2) we find that the constant c in
the assumed asymptotic formula for ψ is given by c = ψ(1)/(2s − 1) (and in
particular vanishes in the odd case); and from this and equation (4.21) we
find (since the leading terms cancel) that h1(x) is O(x−2s), and hence o(1),
as x → ∞, which together with the periodicity implies that h1 ≡ 0. (Notice
that this proof duplicates part of the proof of the theorem of Section 1: the
assumptions on ψ imply the hypotheses in part (b) of the theorem with c0 = 0,
and the assertion Lsh = h is equivalent to equation (4.7) with c′ = 0.)

We can now write down the following explicit functions h satisfying the
conditions of the corollary:

(a) If s is the spectral parameter of an even or odd Maass form u on Γ, then the
period function associated to u satisfies the hypotheses of the proposition
with c = 0 and hence gives a solution of Lsh = ±h with h(0) = 0.

(b) If ζ(2s) = 0, then the function ψ+
s (z) studied in Section 1 of this chapter

satisfies the conditions of the proposition, so ψ+
s (z + 1) is a solution of

Lsh = h.

(c) If s = 1, then the function ψ(z) = 1/z satisifes the hypotheses of the
proposition, so the function h(z) = 1/(z + 1) is a solution of L1h = h.
(This can of course also be checked directly.)
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Conversely, any solution of Lsh = ±h must be one of the functions on this
list. Indeed, in the odd case the coefficient c in the proposition is always 0,
so the function ψ(z) = h(z − 1) is the period functions of an odd Maass cusp
form by the corollary to Theorem 2 (Chapter III). The same applies in the
even case if the coefficient c vanishes. If it doesn’t, and if s is not an integer,
then Remark 1 following the theorem of Section 1 of this chapter shows that
ζ(2s) must be 0; then ψ must be a nonzero multiple of ψ+

s (z) because s has
real part less than 1/2 and hence cannot be the spectral parameter of a Maass
cusp form. The case s = 1 works like the cases when ζ(2s) = 0 (and in fact can
be absorbed into it if we notice that the family of Maass forms (s − 1)Es(z)
is continuous at s = 1 with limiting value a constant function and that the
family of period functions (s− 1)ψ+

s (z) is continuous there with limiting value
a multiple of 1/z). Again this is the only possible solution for this value of s
since by subtracting a multiple of 1/z from any solution we would get a period
function corresponding to a Maass cusp form, and they do not exist for this
eigenvalue. The case when s is an integer greater than 1 was excluded in the
theorem in Section 1 because the f ↔ ψ bijection breaks down, but can be
treated fairly easily by hand and turns out to be uninteresting: there are no
solutions of the three-term functional equation of the form demanded by the
proposition, in accordance with the corollary to Mayer’s theorem. Finally, we
remark that our analysis could be extended to σ < 0, but we omitted this to
avoid further case distinctions and because it turns out that the only solutions
of the three-term functional equation with growth conditions of the required
sort are the ones for s = 1− k coming from holomorphic modular forms which
were discussed in the last section. A complete analysis of the Mayer operator
Ls in this case is given in [3].
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