
Beiträge zur Algebra und Geometrie

Contributions to Algebra and Geometry

Volume 44 (2003), No. 1, 111-126.

Projective Schemes with Degenerate
General Hyperplane Section II

E. Ballico N. Chiarli S. Greco *

Dipartimento di Matematica Università di Trento
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Abstract. We study projective non-degenerate closed subschemes X ⊆ Pn

having degenerate general hyperplane section, continuing our earlier work. We
find inequalities involving three relevant integers, namely: the dimensions of the
spans of Xred and of the general hyperplane section of X, and a measure of the
“fatness” of X, which is introduced in this paper. We prove our results first
for curves and then for higher dimensional schemes by induction, via hyperplane
sections. All our proofs and results are characteristic free. We add also many
clarifying examples.
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Introduction

We continue our study, started in [2], of non-degenerate projective schemes S ⊆ PnK (K an
algebraically closed field), having degenerate general hyperplane section and we proceed
in our attempt to classify them, continuing our earlier work [2].
There are several new contributions with respect to the previous paper.
First of all we consider systematically the dimension of the span of the general hyper-

plane sections, namely

s(S) := dim(〈H ∩ S〉),
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where H is a general hyperplane and 〈Z〉 is the linear span of Z. (Observe that the general
hyperplane section of S is degenerate if and only if s(S) ≤ n− 2).
Next, we introduce a suitable measure of the relevant part of the “fatness” of an

irreducible scheme S, which we call “generic spanning increasing” and denote by zS (Defi-
nitions 2.1 and 3.2); if S is non-degenerate with degenerate general hyperplane section one
always has zS > 0.
Our main results are inequalities involving s(S), zS and m(S) := dim(〈Sred〉). The

inequalities we get are often sharp, and we give several examples to clarify them.
The paper is organized as follows.
In Section 1 we collect several preliminary results concerning general hyperplane sec-

tions.
In Section 2 we deal with curves, namely pure one-dimensional schemes.
Some of our results can be summarized in the following:

Theorem A. Let Y ⊆ Pn be a non-degenerate curve with degenerate general hyperplane
section. Let s := s(Y ),m := m(Y ), z := zY .

(i) If Yred is irreducible, then z+2m ≤ s+2 ≤ n and 2m ≤ s+1 (Lemma 2.4, Theorem
2.5).

(ii) If Yred is irreducible and Y is “almost minimal” (Definition 2.9), then (z+1)m ≤ s+1
(Theorem 2.10).

(iii) If Yred is connected then m ≤ s (Proposition 2.11).

We also show that if Y is a multiple line all possible values of s in (i) can occur (Example
2.8) and we discuss the extremal case s = 1 (Remark 2.7). Then we give a variant of
Theorem A(i) when Yred is assumed to be only connected (Proposition 2.13), and we also
give some hints on how to attack the general case (i.e. Yred not connected), by introducing
the notion of “linearly connected” curve (Definition 2.15, Lemma 2.16).

We end Section 2 with some further steps in the classification of non-degenerate curves in
P5 with degenerate general hyperplane section.

Section 3 deals with higher dimension. The general idea is to use induction on the dimen-
sion via general hyperplane section, starting from the results on curves. Our first result
is Lemma 3.1, which shows the behavior of the integer s(S) when passing to a general
hyperplane section. It can be considered as one of the main new contributions of the
present paper, mainly because it is characteristic free (in our previous paper [2] we had a
much weaker result based on the Socle lemma, and hence needing characteristic zero). To
use induction we show first that if S has property S2 and Sred is connected (resp. irre-
ducible), then a “general curve section” Y of S exists and is connected (resp. irreducible)
and moreover zS = zY (Lemma 3.4, Proposition 3.5).

These results allow reduction to the 1-dimensional case. For example we have the following:

Theorem B. Let X ⊆ Pn be a non-degenerate closed subscheme with degenerate general
hyperplane section. Assume d := dim(X) ≥ 2 and that X has Serre’s property S2. Let
s := s(Y ), m := m(Y ), z := zY .
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(i) If Xred is irreducible, then z + 2m ≤ s+ 2 ≤ n and 2m ≤ s+ 1 (Theorem 3.6).
(ii) If Xred is connected, then m ≤ s− d+ 1 (Proposition 3.7.)

The above theorem provides immediately lower bounds for n and s in terms of d (Corollary
3.8). We show that the bound for n is achieved when n is odd or if n ≤ 6, by producing
suitable double structures on a linear space (Example 3.13). This implies that also the
bound for s is achieved in some cases, while the general problem remains open.
From the above double structures we obtain also further examples of non-degenerate

schemes with degenerate general hyperplane section (Example 3.15).

1. Notation and preliminaries

We work over an algebraically closed field K, of arbitrary characteristic. By curve we will
always mean a pure one-dimensional locally Cohen-Macaulay scheme.
If S ⊆ Pn is a non-degenerate closed subscheme we use the following notation:

(i) 〈S〉:= the linear span of S, that is the least linear space containing S as a subscheme;
(ii) m(S) := dim〈Sred〉;
(iii) s(S) := dim〈H ∩S〉, where H is a general hyperplane (thus H ∩S is degenerate if and

only if s(S) ≤ n− 2).

We shall use frequently the notion of S1-image of a closed subscheme S ⊆ Pn via a linear
projection Pn · · · → Pn

′
. We refer to [2] 1.14 and 1.15 for the definition and the main

properties of S1-image.

The following lemma explains the behavior of the invariant s under linear projections.

Lemma 1.1. Let Y ⊆ Pn be a non-degenerate curve and let L ⊆ Pn be a linear subspace of
dimension `. Put n′ := n−`−1 and let g(Y ) be the S1-image of Y via the linear projection
g : Pn · · · → Pn

′
with center L. Assume that n′ ≥ 2 and that g(Y ) 6= ∅. Assume further

that:
(1) Y ∩ L is zero-dimensional and L = 〈Y ∩ L〉.
(2) L does not meet any line contained in Y .

Then s(g(Y )) ≤ s(Y )−`−1 and equality holds if and only if there is a hyperplane H ⊆ Pn

such that L ⊆ H, H does not contain any component of Yred and dim〈H ∩ Y 〉 = s(Y ).

Proof. We identify Pn
′
with a general linear subspace of Pn. Let H ′ ⊆ Pn

′
be a general

hyperplane, and let H := 〈H ′ ∪L〉. By (2) H does not contain any irreducible component
of Yred, whence Y ∩H is zero-dimensional and by semicontinuity we have dim〈H ∩ Y 〉 ≤
s(Y ). Let M be any hyperplane containing H ∩ Y . Then M contains L by (1), whence
M ′ := g(M) is a hyperplane containing H ′∩g(Y ). Conversely ifM ′ ⊆ Pn

′
is a hyperplane

containing H ′ ∩ g(Y ), the hyperplane M := 〈L,M ′〉 contains H ∩ Y . It follows that
codimPn〈Y ∩H〉 = codimPn′ 〈g(Y ) ∩H

′〉 and the conclusion follows. �

The next result, probably well-known, shows that scheme-theoretical inclusions can be
checked via general hyperplane section, under obvious assumptions. We give a proof for
lack of a reference.
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Proposition 1.2. Let X ⊆ Pn be a closed subscheme with no zero-dimensional irreducible
components (embedded or not) and let Y be a closed subscheme of X. Assume that X∩H =
Y ∩H for every general hyperplane H. Then X = Y .

Proof. Let X1, . . . , Xt be the irreducible components of X, with the induced scheme
structure. By our assumption on X, for each i = 1, . . . , t we can fix a closed point
xi ∈ H∩Xi. Now fix i and let x := xi. Put A := OX,x and m := mx. Since X∩H = Y ∩H
we have x ∈ Y and there is an ideal a ⊆ A such that A/a = OY,x. Let h ∈ m be a local
equation of X ∩ H. Since H is general we may assume that x is not the support of an
irreducible component of Y ; this implies that depth(A/a) > 0 and hence we may also
assume that h is A/a-regular. Now a ⊆ hA, and since h is (A/a)-regular it follows that
ha = a, whence a = 0 by Nakayama’s Lemma.
Let now J ⊆ OX be the ideal sheaf corresponding to Y , and let zi be the generic point

of Xi. By the above argument we have Jxi = 0, whence Jzi = 0 for i = 1, . . . , t. Then by
using an affine covering and standard facts on primary decomposition and localizations, it
follows that J = 0, i.e. X = Y (see e.g. [4], Lemma 4 for details). �

Corollary 1.3. Let X ⊆ Pn be a closed subscheme with no zero-dimensional components
and let Z ⊆ Pn be any closed subscheme. If X ∩H ⊆ Z for every general hyperplane H,
then X ⊆ Z.

Proof. Set Y := X ∩ Z ⊆ X. Then X ∩H = X ∩H ∩ Z = Y ∩H, whence X = Y by 1.2
and the conclusion follows. �

For easy reference we include the following lemma concerning the integer m(X).

Lemma 1.4. Let X ⊆ Pn be a non-degenerate closed subscheme. Then:
(i) if X is reduced and connected we have s(X) = n− 1,
(ii) if H is a general hyperplane we have (X ∩H)red = Xred ∩H,
(iii) if Xred is connected and H is a general hyperplane we have m(X ∩H) = m(X)− 1.

Proof. (i) follows from [5], Proposition 1.1, and (ii) is just [2], Lemma 3.2.(a). The last
statement is an easy consequence of (i) and (ii). �

Before we proceed, let us recall some notation given in [2].

If Y ⊆ Pn is a curve, for every irreducible component D of Yred, D′′ will denote the
maximal subcurve of Y with D

′′

red = D.

For any curve Y we denote by Y (1) the maximal generalized rope contained in Y . We
have Yred ⊆ Y (1) ⊆ Y , and if D is any irreducible component of Yred, the corresponding
component of Y (1) is the largest curve contained in the subscheme D′′ ∩D[1], where D[1]

denotes the first neighborhood of D (see [1] for more details).

2. Main results about curves

We begin by defining the main new concept in this paper.
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Definition 2.1. Let Y ⊆ Pn be a curve such that Yred is irreducible.

(i) Fix a hyperplane H not containing Yred and a point P ∈ H ∩ Yred.
We denote by ZP,H the connected component of the scheme Y ∩H supported on P .

(ii) Let now H be a general hyperplane, let P ∈ H ∩ Yred and put Z := ZP,H . Notice that
n−1−dim〈Z〉 is the dimension of the kernel of the restriction map H0(H,OH(1))→
H0(Z,OZ(1)). Therefore the integer dim〈Yred ∪ Z〉 − dim〈Yred〉 does not depend on
the choice of P and H; it will be denoted by zY and called generic spanning increasing
of Y . We write z whenever no explicit reference to Y is needed.

(iii) We call generic fattening dimension of Y the integer fY := zY (1) . We write f when-
ever no explicit reference to Y is needed.

Observe that we have fY = zY (1) ≤ zY , whence f ≤ z and equality holds if Y = Y
(1).

In the following Proposition 2.3 we collect some elementary properties of the above defined
integers. In order to prove it we need a well-known lemma which we include for lack of a
reference.

Lemma 2.2. Let P ∈ Pn be a point and let Z be a closed subscheme of the first neigh-
borhood of P . Then:
(i) For every closed subscheme W of Z we have dim(〈W 〉) = deg(W )− 1;
(ii) the map W 7→ 〈W 〉 is a bijection between the set of closed subschemes of Z and the
set of linear subspaces of 〈Z〉 containing P . The inverse map is: L→ L ∩ Z.

Proof. Replacing Pn with 〈Z〉 may assume that Z is non-degenerate. We may also assume
that P is the origin of an affine chart with coordinatesX1, . . . , Xn. PutR := K[X1, . . . , Xn]
and M := (X1, . . . , Xn)R. Let A := OZ,P = K[X1, . . . , Xn]/Q and let m = M/Q be the
maximal ideal of A. By assumption A is artinian and m2 = 0 whence the set of ideals of
A coincides with the set of K-subspaces of A. Since Z is non-degenerate we have Q =M2

and hence the K-subspaces of A correspond bijectively to the K-subspaces of the K-vector
space generated byX1, . . . , Xn. The conclusions follow easily from these remarks. We leave
the details to the reader. �

Proposition 2.3. Let Y ⊆ Pn be a curve, with Yred irreducible. Put s := s(Y ), m :=
m(Y ), z := zY , f := fY . Fix a general P ∈ Yred and a general hyperplane H through P ,
and put Z := ZP,H . Then:
(i) z = dim〈Z〉 − dim(〈Z〉 ∩ 〈Yred〉) ≤ s;
(ii) f +m ≤ z +m ≤ s+ 1;
(iii) z = 0 if and only if Y ⊆ 〈Yred〉 and f = 0 if and only if Y (1) ⊆ 〈Yred〉;
(iv) z > 0 if Y is non-degenerate and s ≤ n− 2;
(v) f = dim(TP (Y

(1))) − dim(TP (Y (1) ∩ 〈Yred〉), where TP (X) denotes the embedded
Zariski tangent space of the scheme X ⊆ Pn at the closed point P ∈ X;

(vi) f ≤ deg Y (1)

deg Yred
− 1 and equality holds if and only if dim(〈Z〉 ∩ 〈Yred〉) = 0.

Proof. (i) We have: 〈Yred ∪ Z〉 = 〈〈Z〉 ∪ 〈Yred〉〉, hence

z = dim〈Yred〉+ dim〈Z〉 − dim(〈Z〉 ∩ 〈Yred〉)− dim〈Yred〉
= dim〈Z〉 − dim(〈Yred〉 ∩ 〈Z〉).
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(ii) Since 〈H ∩ Y 〉 ⊇ 〈Z〉 ∪ 〈H ∩ Yred〉 we have:

s ≥ dim〈Z〉+ dim〈H ∩ Yred〉 − dim(〈Z〉 ∩ 〈H ∩ Yred〉)
= dim(〈Z〉) +m− 1− dim〈〈Z〉 ∩ 〈Yred〉)
= z +m− 1.

(iii) If z = 0, then 〈Zi〉 ⊆ 〈Yred〉 for all the components Zi of H ∩Y . Then H ∩Y ⊆ 〈Yred〉,
whence Y ⊆ 〈Yred〉 by Corollary 1.3. The converse is obvious. Similarly for f .

(iv) If z = 0 then Y ⊆ 〈Yred〉 by (iii). But Yred is degenerate because s ≤ n− 2, and this
is a contradiction.

(v) We may assume Y = Y (1), whence Z is contained in the first neighborhood of P . Then
by Lemma 2.2 we have TP (Z) = 〈Z〉. Now P is a smooth point of Yred, and if r is the
tangent line to Yred at P it is easy to see that TP (Y ) = 〈Z ∪ r〉. Since r ⊆ 〈Yred〉 we have
〈Z ∪ Yred〉 = 〈TP (Y ) ∪ Yred〉, and the conclusion follows.

(vi) As in (v) we may assume that Z is contained in the first neighborhood of P . Then

by Lemma 2.2 we have dim〈Z〉 ≤ degZ − 1 and since degZ = deg Y (1)

deg Yred
the conclusion

follows. �

Next, we want to prove an inequality relating the invariants m, s and z, which generalizes
Theorem 2.1 of [2] (see Theorem 2.5 below). We begin with a weaker result.

Lemma 2.4. Let Y ⊆ Pn be a non-degenerate curve with degenerate general hyperplane
section and assume Yred irreducible. Let s := s(Y ) and m := m(Y ). Then 2m ≤ s+ 1.

Proof. We use induction on n. Observe first that s ≥ 1, for otherwise deg Y = 1 and Y is
degenerate. Then if n = 2 the statement is empty. If n = 3 we have s = 1 and by [8] we
have m = 1 and the conclusion follows in this case.
Assume now n ≥ 4. We argue by contradiction, by assuming 2m ≥ s+2. Since s ≥ 1,

this implies m ≥ 2. Recall that since Yred is irreducible and its general hyperplane section
is degenerate, then Yred itself is degenerate.
Take a general P ∈ Yred and a general v ∈ TP (Y ). Since Yred is degenerate and Y is

not, we have 〈v〉 6⊆ 〈Yred〉.
Let g : Pn · · · → Pn−2 be the linear projection from the line 〈v〉 and let g(Y ) be the

S1-image (see [2], 1.14). Since m ≥ 2 we have g(Y ) 6= ∅ and g(Y ) is non-degenerate by [2],
1.15. Moreover 〈v〉∩〈Yred〉 = {P} and then dim〈g(Y )red〉 = m−1. Clearly deg(〈v〉∩Y ) ≥ 2
whence 〈v〉 = 〈〈v〉 ∩ Y 〉. Then by Lemma 1.1 we have s(g(Y )) ≤ s− 2. Then by induction
we have 2(m− 1) ≤ s(g(Y )) ≤ s− 2 + 1, whence 2m ≤ s+ 1, a contradiction. �

Theorem 2.5. Let Y ⊆ Pn be a non-degenerate curve with degenerate general hyperplane
section and assume Yred irreducible. Let s := s(Y ),m := m(Y ), z := zY , f := fY . Then
z + 2m ≤ s+ 2; in particular f + 2m ≤ s+ 2.

Proof. Let H be a general hyperplane, P ∈ H ∩Y and put Z := ZP,H . By Proposition 2.3
(i) and (iii) we have dim〈Z〉 ≥ z > 0. We need a preliminary result.
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Claim. For i = 0, . . . , z there is a linear space Mi such that:
1) Mi ⊆ 〈Z〉
2) Mi ∩ 〈Yred〉 = {P}
3) Mi = 〈Mi ∩ Y 〉
4) dimMi = i.

Proof of Claim. We use induction on i. If i = 0 just take M0 = {P}. Assume that Mi
exists for some i with 0 ≤ i < z. Then Mi 6= 〈Z〉 by 4) and by 1), 2), 3) there is a line r
with the following properties:
i) r ⊆ 〈Z〉
ii) r ∩ 〈Yred〉 = {P}
iii) r ∩ Y 6⊆Mi.
Then Mi+1 := 〈Mi ∪ r〉 has the required properties.

Now we can prove the theorem. Observe first that by Proposition 2.3(i) we may assume
m ≥ 2. Put M := Mz and let π : Pn · · · → Pn−z−1 be the linear projection from M .
Observe that since s ≤ n− 2 we have n− z − 1 ≥ m ≥ 2 by Proposition 2.3(ii). Let Y ′ be
the S1-image of Y under the projection π.
SinceM ∩〈Yred〉 = {P} and dim〈Yred〉 ≥ 2, we have that Y ′ 6= ∅ and Y ′red is the image

of Yred under the projection from the point P . Hence dim〈Y ′red〉 = m− 1. Moreover Y
′ is

non-degenerate by [2], 1.15.
Put s′ := s(Y ′). By Lemma 1.1 we have s′ ≤ s− z − 1 and by Lemma 2.4 applied to

Y ′ ⊆ Pn−z−1 we have 2(m− 1) ≤ s′+1. It follows 2(m− 1) ≤ s− z, whence our claim. �

Remark 2.6. From 2.4 we have that s ≥ 2m− 1, whence s ≥ 1. Therefore the extremal
case is s = 1. From 2.5 and 2.3(iii) when s = 1 it follows that z + 2m ≤ 3, whence
2m ≤ 3− z ≤ 2 which implies that m = 1. It follows that if Y ⊆ Pn is a non-degenerate
curve whose general hyperplane section spans a line, then Yred is a line and zY = 1.
The easiest curves with this property are double lines and it is easy to show that in

any Pn with n ≥ 3 there are non-degenerate double lines (e.g. [2], Example 1.6).
There are also non-degenerate multiple lines of degree ≥ 3 with collinear general

hyperplane section, but they can occur only in positive characteristic, as follows from
Hartshorne Restriction Theorem (see [8] for P3 and [6] for arbitrary Pn).
A complete classification of the non-degenerate multiple lines of degree ≥ 3 in P3

having collinear general hyperplane section is given by Hartshorne [8]. It is not difficult to
produce examples of such lines also in higher dimensional spaces, starting from examples
in P3, but a general classification is not known.

Example 2.7. Let Y ⊆ P5 be a non-degenerate curve with degenerate general hyperplane
section and assume Yred irreducible, with deg Y ≥ 2. Then from 2.5 we have immediately
m = 2 and z = 1. We shall see later that such curves do exist (see Example 3.15).

Example 2.8. If Yred is a line, it is clear from Definition 2.1 that zY = s(Y ), and hence
for these curves the bound z+2m ≤ s+2 of Theorem 2.5 is sharp. We want to show that
such curves Y do exist, and that every compatible value of z can occur.
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More precisely we will show that for any n ≥ 3 and any s with 1 ≤ s ≤ n − 1 there is a
non-degenerate curve Y such that Yred is a line and s = s(Y ) = deg(Y )− 1.
For this let S ⊆ Pn be a smooth surface scroll of minimal degree n− 1. If n = 3, then

S is a smooth quadric and one can take as Y the scheme corresponding to the divisor d`,
where ` is a line on S and 2 ≤ d ≤ 3.
If n > 3, S can be constructed as follows: let L ⊆ Pn be a linear subspace of dimension

n − 2 and let C ⊆ L be a rational normal curve spanning L. Let ` be a line skew with
L, and let ϕ : ` → C be an isomorphism. Then the required S is the union of the lines
joining P and ϕ(P ), for each P ∈ `. Observe that S is a non-degenerate integral surface
of degree n − 1. It follows that H ∩ S is a curve of degree n − 1 spanning H, hence is a
rational normal curve in H. Let now d be an integer with 2 ≤ d ≤ n and let Y be the
curve corresponding to the divisor d` on S. Then deg(Y ) = d and Y is non-degenerate.
Moreover, if H is a general hyperplane, H ∩ Y is a zero-dimensional subscheme of H ∩ S
of degree d. Since H ∩ S it is a rational normal curve it follows that dim〈H ∩ Y 〉 = d− 1,
that is s(Y ) = d− 1. The conclusion follows.

Now we give a result for a class of curves which include minimal curves as defined in [2].

Definition 2.9. Let Y ⊆ Pn be a non-degenerate curve. We will say that Y is almost
minimal if Y = Y (1) and moreover for every subcurve Y ′ of Y , with Yred ⊆ Y ′, we have
either Y ′ ⊆ 〈Yred〉 or 〈Y ′〉 = Pn. A minimal curve (as defined in [2], Definition 1.12) is
almost minimal by [2], Remark 1.13.

Theorem 2.10. Let the notation and assumptions be as in 2.5 and assume further Y
almost minimal. Then (f + 1)m ≤ s+ 1.

Proof. Since Y is almost minimal we have Y = Y (1), whence f = zY . If m = 1 the
conclusion follows from Proposition 2.3(ii). So we assume that m ≥ 2 and we will show
that for i = 1, . . . ,m the following statement holds (see Definition 2.1 for notation):

(αi) There are general P1, . . . , Pi ∈ Yred and a general hyperplane H containing P1, . . . , Pi
such that dim〈Z1 ∪ . . . ∪ Zi ∪ Yred〉 = if +m, where Zi := ZPi,H .

Our conclusion will follow from (αm). Indeed if (αm) holds we have:

〈Z1 ∪ . . . ∪ Zm ∪ Yred〉 ∩H ⊆ H ∩ Y

and hence mf +m− 1 ≤ s, which is our claim.

We prove (αi) by induction on i. (α1) follows immediately from Definition 2.1. Now we
assume that (α1), . . . , (αi) are true and (αi+1) is false for some i with 1 ≤ i ≤ m− 1 and
we get a contradiction. Fix P1, . . . , Pi such that (αi) holds. Then for each general H and
P ∈ H∩Yred, (αi+1) does not hold for P1, . . . , Pi, P , that is ifMi := 〈ZP1∪ . . .∪ZPi∪Yred〉
then dim〈Mi〉 = if +m and dimMP,H ≤ (i+1)f +m− 1, where MP,H := 〈Z1 ∪ . . .∪Zi ∪
ZP,H ∪ Yred〉. Since MP,H = 〈Mi ∪ 〈ZP,H ∪ Yred〉〉 we have:

dim(Mi ∩ 〈ZP,H ∪ Yred〉) = dimMi + dim〈ZP,H ∪ Yred〉+
−dim〈(Mi ∪ 〈ZP,H ∪ Yred〉)〉

= if +m+ f +m− dimMP,H
≥ if +m+ f +m− [(i+ 1)f +m− 1]
≥ m+ 1.
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SinceMi∩〈ZP,H∪Yred〉 ⊇ 〈Yred〉 it follows thatMi∩〈ZP,H〉 6⊆ 〈Yred〉. Then there is a point
Q ∈Mi ∩ 〈ZP,H〉, Q /∈ 〈Yred〉. Let D be the line QP . Since D ⊆ 〈ZP,H〉 and Y = Y (1), by
Lemma 2.2 D contains a subscheme WP,H of ZP,H , supported at P and spanning D. It
follows that WP,H is a subscheme of Y , supported at P and of length at least 2. Now we
have: D ⊆ Mi and D 6⊆ 〈Yred〉 (because D ∩ 〈Yred〉 = {P} scheme-theoretically), whence
WP,H 6⊆ 〈Yred〉. Let Y ′ ⊆ Y be the least subcurve of Y containing all the subschemes
WP,H for general P . Then Yred ⊆ Y ′ ⊆ Y ∩Mi, whence Y ′ ⊆ Mi. Moreover Y ′ 6⊆ 〈Yred〉
by construction, and since Y is almost minimal we have 〈Y ′〉 = Pn. Then Mi = Pn. On
the other hand we have

dim(Mi) ≤ dim(〈H ∩ Y 〉 ∪ 〈Yred〉)
= s+m− dim〈H ∩ Yred〉
= s+m− (m− 1)
= s+ 1
≤ n− 1.

and this is a contradiction. �

The results obtained so far need the assumption that Yred is irreducible. If we drop this
assumption we can get weaker results, which still generalize some statements in [2]. The
next result e.g. generalizes Proposition 2.3 of [2].

Proposition 2.11. Let Y ⊆ Pn be a non-degenerate curve, with degenerate general
hyperplane section and with Yred connected. Put m := m(Y ) and s := s(Y ). Then m ≤ s.

Proof. We argue by contradiction by assuming m ≥ s+1. Let H be a general hyperplane.
Then dim(〈Y ∩ H〉) = s and dim(〈Yred ∩ H〉) = m − 1 because Yred is connected. It
follows that dim(〈Yred ∩H〉) ≥ dim(〈Y ∩H〉), and since Yred ∩H ⊆ Y ∩H it follows that
〈Y ∩H〉 = 〈Yred ∩H〉. The proof can be concluded exactly as in [2], proof of Proposition
2.3. �

Definition 2.12. Let Y be a non-degenerate curve, and let Yi, 1 ≤ i ≤ r be the irreducible
components of Yred. For each i put zi := zYi Set zY := min1≤i≤r{zi}. The integer zY will
be called minimal spanning increasing of Y . Similarly we can define the minimal fattening
dimension fY of Y (see Definition 2.1).

Observe that if Yred is irreducible the above notation is consistent with the one given in
Definition 2.1.

Proposition 2.13. Let Y be a non-degenerate curve, with degenerate general hyperplane
section and assume Yred connected. Assume further that 〈Yred〉 = 〈D〉 for every irreducible
component D of Yred. Let z = zY , f = fY and put m := m(X). Then z + 2m ≤ s+ 2; in
particular f + 2m ≤ s+ 2.

Proof. Let Y1, . . . , Yr be the irreducible components of Yred. We use induction on r. For
r = 1 we apply Theorem 2.5. Assume that r > 1 and assume that the statement is true for
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every r′ with 1 ≤ r′ < r. Since Yred is connected we can always assume that Y1∪ . . .∪Yr−1
is connected.
Let X1 := Y

′′
1 ∪ . . . ∪ Y

′′
r−1 and X2 := Y

′′
r . Then Y = X1 ∪X2 and 〈X1〉 ∩ 〈X2〉 6= ∅.

Hence by [2], Lemma 1.1.(b) at least one among X1, X2, say X1, has degenerate general
hyperplane section in its span.
Then we can apply the induction assumption to X1. We have s(X1) ≤ s, m(X1) = m

and z ≤ zX1 , f ≤ z. Thus by induction we have:

z + 2m(X) ≤ zXi + 2m(Xi) ≤ s(Xi) + 2 ≤ s(X) + 2.

which is our claim. �

Example 2.14. Let Y ⊆ P5 be a non-degenerate curve with degenerate general hyper-
plane section and m = 2. Then for every irreducible component D of Yred, with degD ≥ 2
we have z ≤ 1. Indeed, set w := dim(〈D′′〉). If w = 2 we have z = 0. If w = 3 we have
z ≤ 1. If w = 5 we have z = 1 by Example 2.6.
Moreover it cannot be w = 4. Indeed, assume w = 4. Then: if D′′ has degenerate

general hyperplane section, we conclude by 2.5 applied to D′′ ⊆ 〈D′′〉 = P4; if D′′ has
non-degenerate general hyperplane section, then for every general hyperplane H we have
dim(〈(Y ∩H)〉) = 3, whence 〈(D′′∩H)〉 = 〈(Y ∩H)〉, which implies Y ∩H ⊆ 〈(D′′∩H)〉 =
〈D′′〉∩H, and Y ⊆ 〈D′′〉 by Corollary 1.3. This is a contradiction, being Y non degenerate.
Note that this example is more precise than Proposition 2.13: indeed it allows com-

ponents of Yred not spanning 〈Yred〉).

We conclude this section by some hints on how to deal with the case when Yred is non-
connected. In this situation there is a trivial case, namely Y = A ∪B where A and B are
curves with 〈A〉 ∩ 〈B〉 = ∅. Indeed if this holds, then the general hyperplane section of Y
is degenerate, as remarked in [2], Lemma 1.1.
In view of the above it is natural to give the following:

Definition 2.15. Let Y ⊆ Pn be a curve and let Yj, (1 ≤ j ≤ p) be the irreducible
components of Yred. Then Y is said to be linearly connected if it is possible to order the
Yj’s in such a way that

〈Y1 ∪ Y2 ∪ . . . ∪ Yj−1〉 ∩ 〈Yj〉 6= ∅ (2 ≤ j ≤ p).

Observe that if Yred is connected, then Y is linearly connected. It is easy to show that the
converse is false.

For linearly connected curves we have the following:

Lemma 2.16. Let Y ⊆ Pn be a reduced linearly connected curve. Then s(Y ) = m(Y )−1.
In particular if Y is non-degenerate, then the general hyperplane section of Y is non-
degenerate.
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Proof. Let Y1, . . . , Yp be the irreducible components of Y . We use induction on p, the case
p = 1 being well known (see e.g. Lemma 1.4).
Let p > 1 and set Z1 = Y1∪Y2∪ . . .∪Yp−1, Z2 = Yp. Since Y is linearly connected we

may assume that Z1 is linearly connected, and hence by the inductive hypothesis the claim
holds for Z1 and Z2. Assume the claim false for Y , that is assume Y ∩ H is degenerate
(with respect to 〈Y 〉.
Since Y is linearly connected we may assume that 〈Z1〉 ∩ 〈Z2〉 6= ∅, whence by [2],

Lemma 1.1 either Z1 or Z2 has degenerate general hyperplane section (with respect to its
span), a contradiction. �

Remark 2.17. Using Lemma 2.16 it is easy to show that 2.11 and 2.13 hold under the
weaker assumption of Y being linearly connected. Indeed the proofs of 2.11 and 2.13 work
also in this case. We leave the details to the reader.

3. Results in higher dimension

We begin with a generalization of Lemma 3.1 in [2], which allows to work in arbitrary
characteristic and to bring into play the integer s(X) (see Section 1).

Lemma 3.1. Let X ⊆ Pn be a non-degenerate closed subscheme with degenerate gen-
eral hyperplane section. Assume that X has no zero-dimensional components and that
dim(X) ≥ 2. Let Y be a general hyperplane section of X. Then s(Y ) ≤ s(X)− 2.
In particular the general hyperplane section Y ∩H of Y , considered as a closed subscheme
of 〈Y 〉 ∩H, is degenerate.

Proof. Let H1, H2, H3 be three general hyperplanes, and put Yi := X ∩ Hi and Zi,j :=
Yi ∩Hj , for i, j = 1, 2, 3 and i 6= j. By definition we have dim〈Yi〉 = s(X) and dim〈Zi,j〉 =
s(Y ) for all i, j as above. Clearly s(Y ) ≤ s(X) − 1, so if the conclusion is false we
have dim(〈Z1,3〉) = dim(〈Z2,3〉) = dim(〈Y3〉) − 1, and since 〈Z1,3〉 6= 〈Z2,3〉 we must have
〈〈Z1,3〉∪〈Z2,3〉〉 = 〈Y3〉. Then an easy calculation shows that 〈Y3〉 ⊆ 〈〈Y1〉∪〈Y2〉〉. Now let
H1 andH2 be fixed, and letH3 vary. Then by Corollary 1.3 we have that X ⊆ 〈〈Y1〉∪〈Y2〉〉,
and since X is non-degenerate it follows dim(〈〈Y1〉∪〈Y2〉〉) = n. Now 〈〈Y1〉∩〈Y2〉〉 = 〈Z1,2〉
and from the above it follows:

s(Y ) = dim(〈Z1,2〉)
= dim(〈Y1〉) + dim(〈Y2〉)− n
≤ s(X)− 2

the last inequality because s(X)−n ≤ −2 by assumption. This is a contradiction, and the
conclusion follows. �

Definition 3.2. Let X ⊆ Pn be a closed subscheme of dimension d ≥ 2, with Xred
irreducible.

(i) We define the generic spanning increasing zX of X as in the case of curves (cf.
Def. 2.1), by replacing the general hyperplane H with a general linear space L of
codimension d.



122 E. Ballico et al.: Projective Schemes with . . .

(ii) We define the general fattening dimension of X to be the integer

fX := dim(TP (X
(1)))− dim(TP (X

(1) ∩ 〈Xred〉)

where X(1) is the largest subscheme of X, without embedded components, contained in the
first neighborhood of Xred and P is a general point in Xred.

Definition 3.3. Let X ⊆ Pn be a closed subscheme of dimension d ≥ 2. Let L be a
general linear space of codimension d− 1. If X ∩ L is a curve according to our definition
we call it a general curve section of X.

The following Lemma gives sufficient conditions for the existence of a general curve section.

Lemma 3.4. Let X ⊆ Pn be a closed subscheme of dimension d ≥ 2. Assume further
that X has Serre’s property S2 (see e.g. [7]). Then we have:
(i) If Xred is irreducible, then a general curve section Y of X exists and Yred is irreducible;
(ii) if Xred is connected, then X is equidimensional, a general curve section Y of X exists
and Yred is connected.

Proof. (i) By [2], Lemma 3.2(b) it follows that Y has property S2, and is equidimensional,
hence it is a curve according to our definition. The irreducibility of Yred follows easily from
Lemma 1.4 and Bertini’s Theorem.

(ii) Since Xred is connected, property S2 implies that X is equidimensional, as follows
easily from [7], Corollary. 5.10.9. The conclusion follows from [2], Lemma 3.2(c). �

We want to study the behavior of the integer zX when passing to a general curve section.

Proposition 3.5. Let X ⊆ Pn be a non-degenerate S2 closed subscheme of dimension
d ≥ 2, with Xred irreducible and let Y be a general curve section of X. Then:
(i) zX = zY and fX = fY ;
(ii) if the general hyperplane section of X is degenerate, then zX > 0.

Proof. (i) Put Y = X ∩ L, where L is a general linear space of codimension d − 1. Then
Yred is an irreducible curve by Lemma 3.4, and hence the statement makes sense.
By Lemma 1.4 we have Yred = Xred ∩ L and the first equality follows immediately.

Moreover one can prove easily that Y (1) = X(1) ∩ L and TP (Y (1)) = TP (X(1)) ∩ L. The
conclusion follows from Proposition 2.3 and a direct calculation.

(ii) By Lemma 3.1 the general hyperplane section of Y is degenerate, whence zY > 0 by
Proposition 2.3(iii). The conclusion follows from (i). �

Our next result generalizes Theorem 2.5 to higher dimension.

Theorem 3.6. Let X ⊆ Pn be an S2 closed subscheme of dimension d, with Xred irre-
ducible. Assume that the general hyperplane section of X is degenerate. Put s := s(X),
m := m(X), z := zX and f := fX . Then
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(i) f + 2m ≤ z + 2m ≤ s+ 2 ≤ n
(ii) 2m ≤ s+ 1 ≤ n− 1.

Proof. If d = 1 this is just Theorem 2.5. Assume d ≥ 2 and let Y be a general curve
section of X (Lemma 3.4). Then we have: m(X) = m(Y ) + d − 1 by Lemma 1.4, and
s(X) ≥ s(Y ) + 2(d − 1) by Lemma 3.1. The conclusion follows from Proposition 3.5 and
Theorem 2.5 applied to Y . �

Now we turn our attention to reducible schemes. Our first result generalizes [2], Theorem
3.5(a).

Proposition 3.7. Let X ⊆ Pn be a non-degenerate S2 closed subscheme with degenerate
general hyperplane section. Assume Xred connected. Put d := dim(X), m := m(X),
s := s(X). Then m ≤ s− d+ 1.

Proof. If d = 1 the statement is Proposition 2.11. Assume d > 1. By Lemma 3.4 we can
consider a general curve section Y of X and Yred is connected. By Lemma 3.1 we have
s(Y ) ≤ s(X)−2(d−1) and by Lemma 1.4 we have m(Y ) = m(X)−(d−1). The conclusion
follows from Proposition 2.11 and a trivial calculation. �

Corollary 3.8. Let the notation and the assumptions be as in Proposition 3.7. Then
d ≤ s+1

2 and if equality holds then Xred is a linear space. In particular d ≤
n−1
2 .

Proof. We have d ≤ m and d = m if and only if Xred is a linear space. The conclusion
follows from Proposition 3.7. �

As an immediate consequence of Corollary 3.8 we have the following statement, which was
proved in characteristic zero ([2], Theorem 3.3(a)) .

Corollary 3.9. Let X ⊆ Pn be a non-degenerate S2 closed subscheme with Xred connected.
Assume that dim(X) ≥ n

2 . Then the general hyperplane section of X is non-degenerate.

Now we want to generalize Proposition 2.13 to higher dimension.

Definition 3.10. Let X ⊆ Pn be a closed subscheme. We define the minimal spanning
increasing zX and the minimal fattening dimension fX in the obvious way, similar to
Definitions 2.12 and 3.3. If X is S2 and equidimensional (in particular connected) and Y
is a general curve section of X (Definition 3.4) one can prove that zY = zX and fY = fX ,
with the same argument as in Proposition 3.5.

Proposition 3.11. Let X ⊆ Pn be a non-degenerate S2 closed subscheme with degenerate
general hyperplane section. Assume Xred connected and 〈Xred〉 = 〈Xi〉 for every irreducible
component of Xred. Put d := dim(X), m := m(X), s := s(X), z = zX , f = fX . Then
2m+ f ≤ 2m+ z ≤ s+ 2 ≤ n.
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Proof. If d = 1 the statement is Proposition 2.13. The general case can be proved by
reduction to the general curve section as in the proof of Proposition 3.7. We leave the
details to the reader. �

Remark 3.12. Let X ⊆ Pn be a non-degenerate S2 closed subscheme of dimension d with
degenerate general hyperplane section. We wish to understand what can be the maximal
possible degeneration for the general hyperplane section of X (i.e. the least value of s(X)
with respect to 3.6 and 3.8). Recall that if Xred is connected then s ≥ 2d− 1 by 3.8.

1) If s = 2d − 1 then Xred is a linear space by 3.8 and z = 1 by 3.5 and 3.6. Then X
must be a double structure on Xred.

2) If s = 2d then d ≤ m ≤ d+ 1 by 3.6. Then:
2a) if m = d then Xred is a linear space and 1 ≤ z ≤ 2 by 3.5 and 3.6;
2b) if m = d + 1 and we can apply 3.11 then 1 ≤ z ≤ 2. Otherwise Xred has at least a
linear irreducible component and a non-linear one.

We will see in Example 3.13 that in some situation the extremal cases described above can
actually occur. We don’t know what happens in general.

Example 3.13. We show that the bound d ≤ n−1
2 in 3.8 is sharp when n is odd. This is

clear if d = 1 (take any non-degenerate double line in P3), hence we assume d ≥ 2. We
must have n = 2d+ 1 and Xred must be a linear subspace, say L, of dimension d. As we
have seen in Remark 3.12, we have that z = 1 and X is a double structure on L. We will
show that such double structures do exist, also with property S2. Set I = IL and recall
that X is a double structure on L with property S2 if and only if the ideal sheaf J := IX
of X fits into an exact sequence of OL-modules of the form

(∗) 0→ J/I2 → I/I2 → OL(a)→ 0

for a suitable a (see e.g. [3], Theorem 5.2 for details).

Now we have I/I2 ∼= (n − d)OL(−1), whence the above sequence exists if and only if
there is a surjective morphism φ : (n− d)OL → OL(a+ 1). Any such φ is determined by
f1, . . . , fn−d ∈ H0(OL(a+1)) with no common zeroes. Since n−d = d+1 this can happen
if and only if a ≥ −1.
Now we study the non-degeneracy of X. Since the closed subscheme corresponding

to the ideal sheaf I2 is aCM, from the exact sequence:

0→ I2 → J → J/I2 → 0

we get the exact sequence

0 = H0(I2(1))→ H0(J(1))→ H0((J/I2)(1))→ 0.

It follows h0(J(1)) = h0(J/I2)(1). From (∗) we deduce the exact sequence:

0→ (J/I2)(1)→ (n− d)OL → OL(a+ 1)→ 0
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whence H0(J/I2)(1) = 0 if and only if the map H0((n − d)OL) → H0(OL(a + 1)) is
injective, which is equivalent to say that f1, . . . , fn−d are linearly independent; this can
happen if and only if a ≥ 0.
Therefore from now on we assume a ≥ 0 and f1, . . . , fn−d linearly independent.

Let now H be a general hyperplane and let L′ := L ∩ H. Let X ′ := X ∩ H and put
I ′ := IL′,H = I|H , J

′ := IX′,H = J|H .
We have the exact sequences:

0→ J ′/I ′2 → I ′/I ′2 → OL′(a)→ 0

0→ I ′2 → J ′ → J ′/I ′2 → 0

As above we see that X ′ is degenerate if and only if h0((J ′/I ′2)(1)) 6= 0 and this is
equivalent to say that the restriction of φ

φ′ : H0((I ′/I ′2)(1))→ H0(OL′(a+ 1))

is not injective.
Now I ′/I ′2 = (n− d)OL′(−1) whence h0((I ′/I ′2)(1)) = n− d = d+ 1
Since h0OL′(a+ 1) =

(
a+d
d−1

)
, φ′ is certainly non injective if

(
a+d
d−1

)
< d+ 1 i.e. if a = 0.

Thus we get examples for a = 0.

Remarks 3.14.
(i) Do we get examples as in 3.13 also for a > 0? If so, this would depend on the choice
of f1, . . . , fn−d.

(ii) We don’t know how to produce examples if n is even. For example if n = 6 we have
d ≤ 2 and m ≤ 3. If d = 1 it is easy to give examples. If d = 2 the argument in
3.13 can be adapted by taking a = 1 and produces a double plane as in the odd case.
However we don’t know if the case m = 3 can actually occur. For higher even n the
problem remains open.

Example 3.15. Let n ≥ 5 be an odd integer and let n = 2d + 1. Let X ⊆ Pn be the
scheme of dimension d constructed in Example 3.13. Let F be a hypersurface of degree > 1
not containing Xred, and letW := F ∩X. From the exact sequence 0→ IW → IF ⊕IX , we
get the exact sequence 0 → H0(IW (1)) → H0(IF (1)) ⊕ H0(IX(1)) which readily implies
thatH0(IW (1)) = 0, that isW is non-degenerate. Moreover the general hyperplane section
of W is obviously degenerate. Observe also that if F is general we can have that Wred is
smooth (and irreducible). Finally it is easy to see that W is a double structure on Wred
and that m(W ) = d. From Theorem 3.6 it follows that zW = 1 and the bound given by
the same theorem is sharp.

In particular if n = 5 we have examples of curves as described in Example 2.7.

Remark 3.16. When dealing with schemes X with Xred non-connected one could try to
use the notion of linearly connected (Definition 2.15). But this definition has the obvious
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drawback of not being preserved by general hyperplane sections. This makes the usual
induction methods not immediate to apply.
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