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Abstract. The classification of finite flag-transitive linear spaces is almost com-
plete. For the thick case, this result was announced by Buekenhout, Delandtsheer,
Doyen, Kleidman, Liebeck and Saxl, and in the thin case (where the lines have 2
points), it amounts to the classification of 2-transitive groups, which is generally
considered to follow from the classification of finite simple groups. These two clas-
sifications actually leave an open case, which is the so-called 1-dimensional case.
In this paper, we work with two additional assumptions. These two conditions,
namely (2T)1 and RWPri, are taken from another field of study in Incidence Ge-
ometry and allow us to obtain a complete classification, which we present at the
end of this paper. In particular, for the 1-dimensional case, we show that the only
(2T)1 flag-transitive linear spaces are AG(2, 2) and AG(2, 4), with AΓL(1, 4) and
AΓL(1, 16) as respective automorphism groups.

1. Introduction

Flag-transitive linear spaces1 are very common objects appearing in the theory of Incidence
Geometry [5]. A major goal of Incidence Geometry is to generalize J. Tits’ theory of Buildings,
which was itself developed in order to acquire a better understanding of the simple groups
of Lie type.

∗The address of this author is now: Department of Mathematics, Building 380, Stanford University,
94305-2125 Stanford, CA, U.S.A.
†e-mail: dleemans@ulb.ac.be
1See Section 2 for the definitions.
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The study of flag-transitive linear spaces with line-size 2 is equivalent to the study of 2-
transitive permutation groups, which is generally considered to follow from the classification
of finite simple groups. Some work concerning the classification of 2-transitive groups goes
back to the 19th century, and an explicit list finally appears in Kantor [33]. The list includes
a unique case remaining open to some extent. We call this case 1-dimensional, because the
automorphism group is then a group of semilinear transformations of an affine line.
This 1-dimensional gap also appears in the study of the thick case (when the line-size

is greater than 2). In this case, a basic result of Higman and McLaughlin [4] shows that
all flag-transitive groups acting on a linear space are primitive on their point-set. Using the
well-known O’Nan-Scott theorem, Buekenhout, Delandtsheer and Doyen2 showed that the
possible groups are either almost simple or affine [10]. In 1990, these three authors together
with Kleidman, Liebeck and Saxl3 announced a classification of the linear spaces for which
the full automorphism group is not 1-dimensional and acts flag-transitively [11].

Proposition 1.1. (BDDKLS [11]) Any flag-transitive thick linear space with non-1-dimen-
sional automorphism group is one of the following:
– a projective space

– an affine space

– a Hering space

– a Witt-Bose-Shrikhande space

– a hermitian unital

– a Ree unital 2

The proof of this result was published in several papers, and only completed a short time
ago. The proof in the affine case is due to Liebeck [40]. The almost simple case involved
several authors. Delandtsheer took the case where the simple socle is an alternating group
[20]. She also handled the case where the group G is one of the simple groups L2(q), L3(q),
U3(q) and

2B2(q) [17]. In his paper [35], Kleidman solved the case where the socle of G is
an exceptional group of Lie type. He gave a proof for three of the ten families of exceptional
groups and some hints for the remaining cases. The case of the sporadic groups was ruled
out by Buekenhout, Delandtsheer, and Doyen [8] and Davies [16]. Finally, Saxl completed
the proof in a recent preprint [46], where he dealt with the remaining families of exceptional
type together with the classical groups of Lie type.
The second aspect of this work is to use other properties, namely (2T)1 and RWPri.

Historically, these concepts arose from experimental and theoretical work of Buekenhout,
Cara, Dehon and Leemans. They start with a group G, a collection of subgroups and a
construction of Tits based on this data. This method produces too many geometries, and
a natural task is to find additional properties fulfilled by the most “interesting” of those
geometries. Prototypes for interesting geometries are the buildings. The theory of buildings
and other interesting sporadic geometries lead to the RWPri and (2T)1 conditions. The
RWPri geometries of several infinite families of groups are now classified (see for instance
Leemans [37, 39, 36, 38] for the Suzuki groups, Salazar Neumann [45] for the PSL(2, q)

2Following usual conventions, the names of these authors are abbreviated to BDD.
3This group of authors is, logically, referred to as BDDKLS.
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groups and their rank 2 geometries). The RWPri geometries have also been studied for
small groups such as PSL(3, 4) in Gottschalk and Leemans [29] or the small alternating and
symmetric groups in Cara [14]. Atlases have also been collected [6, 7].
This interest in the RWPri and (2T)1 conditions brought us to look once again at the

classifications of BDDKLS and of the 2-transitive groups, in particular at the case left aside,
namely the 1-dimensional case.
Let us observe that Anne Delandtsheer obtained in [19] a complete classification of the

1-dimensional case using as extra assumption that the automorphism group acts transitively
on the unordered pairs of intersecting lines.
Section 2 presents the definitions and notation we use in this paper. In Section 3, we

proceed very fast through the classification of BDDKLS, assuming complete knowledge of
its introductory papers (see in particular the description of all known flag-transitive linear
spaces in BDD [10]). Similarly, the classification of 2-transitive permutation groups provided
by Kantor [33] is the basis for Section 4. We complete our study of flag-transitive and RWPri
linear spaces with Section 5, in which we consider the 1-dimensional spaces. We summarize
all our results in the Theorems 6.1 and 6.2 of Section 6.

2. Definitions and notation

2.1. Basic review of incidence geometry

Our main reference for incidence geometry is the Handbook of Incidence Geometry [5].
A linear space is an incidence structure made of points (elements of type 0) and lines

(elements of type 1) such that there is exactly one line incident with any two points, any
point is incident with at least two lines and any line has at least two points. Throughout
this work, we further assume that the set of points is finite. Two elements of the same type
are never considered to be incident. A flag of a linear space Γ is a set of pairwise incident
elements. The type of a flag F , that is denoted by t(F ), is the set of types of the elements of
F . We denote by Aut(Γ) the group of type-preserving automorphisms of Γ. Let G ≤ Aut(Γ)
be a group of automorphisms of Γ. We say that G is flag-transitive if it is transitive on flags
of the same type.
If F is a flag of an incidence structure Γ, we denote by ΓF the residue of F , i.e. the

incidence structure made of the elements of Γ incident with all elements of F .
We define GF to be the stabilizer in G of a flag F of Γ and KF to be the subgroup of GF

fixing ΓF elementwise. We write GF for the quotient GF/KF , i.e. the group induced by GF
on ΓF . Since in flag-transitive geometries stabilizers of flags of the same type are conjugate
subgroups in G, we prefer to write Gt(F ) or Gt(F ) instead of GF or GF .

2.2. The RWPRI and (2T)1 properties

We define notation and properties used throughout this paper. Some of them are rather fre-
quent: PPr stands for point-primitivity, (2iL)T for transitivity on pairs of intersecting lines
and (2P)T for transitivity on ordered pairs of points. Assume now G is the automorphism
group of a linear space Γ. Then, the action of G on Γ is said to be
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LOLPR (locally line-primitive) if G is transitive on the set of points of Γ and if, for
every point x of Γ, the stabilizer Gx acts primitively on the set of lines incident
with x;

LOPPR (locally point-primitive) if G is transitive on the set of lines of Γ and if, for
every line L of Γ, the stabilizer GL acts primitively on the set of points incident
with L;

LOPR (locally primitive) if G is both LoLPr and LoPPr. These three properties
appeared in a previous paper of BDD [9].

(2iL)T if G is transitive on ordered pairs of intersecting lines;

WPRI (weakly primitive) if there exists an element e of Γ such that Ge is a maximal
subgroup of G;

RWPRI (residually weakly primitive) if this action is weakly primitive and the action
of Ge is residually weakly primitive on Γe for any element e of Γ;

(2T)1 if G is 2-transitive on all rank 1 residues of Γ (i.e. all residues with elements of only
one type).

Lemma 2.1. (Dixon and Mortimer [22]) A transitive permutation group G is primitive on
its point-set if and only if the point-stabilizers are maximal subgroups of G. 2

Remarks.
– Lemma 2.1 explains the terminology for the RWPri property.

– The LoPr-property implies flag-transitivity. This is stated by BDD [10].

– A flag-transitive group acting on a linear space is primitive on its point-set. This is
a well-known result due to Higman and McLaughlin [4]. This fact, together with the
preceding remark, implies that a linear space is flag-transitive and RWPri if and only
if it is LoPr, and also that a flag-transitive (2T)1 linear space is always RWPri.

2.3. 1-dimensional affine groups

A permutation group G acting on a set of points Ω is called affine if Ω can be identified with
GF (pd) or equivalently with the point-set of AG(d, p) and if G ≤ AGL(d, p). If we denote by
AΓL(n, pd/n) the group of all semilinear transformations4 of AG(n, pd/n), then the group G is
called n-dimensional affine if n is the smallest positive integer such that G ≤ AΓL(n, pd/n).

3. Six families of linear spaces from BDDKLS

Historical introductions, constructions and some properties are given for each of those families
in [11] and [10]. We give a brief description of each case, and present the properties needed
to determine whether the space considered is RWPri, (2T)1 or does not have any of these
properties5.

4Semilinear transformations are defined using the field automorphisms. The general form of such a per-
mutation is x 7→ axσ + b where a, b ∈ GF (pd), a 6= 0, σ ∈ Aut(GF (pd)).
5Recall that (2T)1 implies RWPri for flag-transitive linear spaces.
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3.1. Projective spaces

We start with a proposition due to Cameron and Kantor.

Proposition 3.1. (Kantor [32, 34], Cameron and Kantor [13]) Assume Γ is a linear space
consisting of the points and lines of a projective space, and G ≤ Aut(Γ) acts flag-transitively.
Then, one of the following occurs:
– The point-set and line-set of Γ are those of PG(n, q) and we have the inclusions
PSL(n + 1, q) E G ≤ PΓL(n + 1, q), with n ≥ 2 and q a power of a prime p. This is
the classical case.

– Γ = PG(3, 2), with G ∼= A7.

– Γ is a projective plane of order m, m2 + m + 1 is a prime and G is a sharply flag-
transitive Frobenius group of order (m2 + m + 1)(m + 1). This is the 1-dimensional
case. 2

We first recall a result of Feit that restricts the last case of Proposition 3.1.

Proposition 3.2. (Feit [24]) Assume Γ and G are as in the third case of Proposition 3.1.
Then, the only Desarguesian spaces are PG(2, 2) and PG(2, 8). Moreover, any other example,
if it exists, must have m ≡ 0 mod 8, m not a power of 2 and dm+1 ≡ 1 mod (m2 +m+ 1)
for every d dividing m. 2

Remark. Using his powerful result, Feit showed that all projective planes with a flag-
transitive group of order ≤ 14, 400, 008 are Desarguesian (the problem is heavily reduced to
a number theory matter, which is much more suitable for computation). Feit asserted in
his paper that his result could easily be extended. With the help of the computer algebra
packages Magma [1] and GAP [27], we extended this bound up to m ≤ 1010.
We now prove the following results concerning RWPri projective spaces and (2T)1 pro-

jective spaces.

Proposition 3.3. Assume Γ is a linear space consisting of the points and lines of a projective
space, and G acts flag-transitively on Γ. If this action is also RWPri, then one of the
following occurs:
– Γ = PG(n, q) and PSL(n+ 1, q) E G ≤ PΓL(n+ 1, q).

– Γ = PG(3, 2) and G ∼= A7.

– Γ = PG(2, 2) and G ∼= 7 : 3.
Moreover, the action is (2T)1 only in the first two cases.

Proof. We consider each case of Proposition 3.1.
Classical case: Those spaces are typical examples of linear spaces satisfying (2T)1 and

RWPri.

Γ = PG(3, 2): We can look at the action of A7 described in Taylor [49]. We have the following
relations: G0 = G0 ∼= PSL(3, 2), G1 ∼= S3 and G01 ∼= S4. The action of both stabilizers
is 2-transitive, hence this action is (2T)1.
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1-dimensional case: This case is already reduced by Proposition 3.2. Assume now the action
is RWPri. This would imply that the action is also LoLPr, hence, since the group is
sharply flag-transitive, that the point-degree (m+ 1) is a prime.
Consider first the non-Desarguesian case. By Proposition 3.2, we get mm+1 ≡ 1
mod (m2 + m + 1). Moreover, m3 = m(m2 + m + 1) − (m2 + m + 1) + 1. Hence,
3|m + 1, a contradiction to m + 1 prime and m the order of a non-Desarguesian pro-
jective plane.
An easy verification for the Desarguesian case shows that only G = 7 : 3 on Γ =
PG(2, 2) has an RWPri action. 2

3.2. Affine spaces

We denote by q the power of a prime p (we assume q ≥ 3, and we let qn = pd) and by [Afn(q)]
(resp. [AG(n, q)]) the class of all geometries made of the points and lines of an affine space
(resp. Desarguesian affine space). Finally, if Γ ∈ [Afn(q)], G must be a subgroup of Aut(Γ).

3.2.1. Affine spaces of dimension at least 3

We consider here Γ ∈ [Afn(q)] with n ≥ 3. In this case, it is well-known that Γ ∈ [AG(n, q)].
Furthermore, BDDKLS showed that one of the following holds:

– G is 1-dimensional, but we delay the discussion of this case until Section 5.

– Γ = AG(4, 3) and the last term of the derived series of G0 is 2 · A5. Huybrechts [31]
noticed that this case is impossible.

– G is 2-transitive. This case was restricted further by Huybrechts, as we state now.

Proposition 3.4. (Huybrechts [31]) If G is 2-transitive on Γ ∈ [AG(n, q)], with n ≥ 3, then
G = pd : G0, where G0 ≤ ΓL(n, q) and one of the following holds:

1. SL(u, qn/u) E G0, for some integer u ≥ 1 dividing n.

2. Sp(u, qn/u) E G0, for some even integer u ≥ 4 dividing n.

3. G
′

2(q
n/6) E G0, for q even.

4. (n, q) = (6, 3), G0 ∼= SL(2, 13) and G0 ∼= PSL(2, 13).

5. (n, q) = (4, 3) and G0 = 2
4.A where A ∈ {5, D10, 5.4, A5, S5}.

6. (n, q) = (4, 3) and G0 = 4 · A5 or N · S5, with N ≤ 4. 2

Using this classification, we determine all RWPri affine spaces of dimension at least 3 for
which the automorphism group is 2-transitive but not 1-dimensional. Actually, we already
know by 2-transitivity that those spaces are LoPPr. Hence, the only property which remains
to be considered is LoLPr.
A preliminary lemma will be very useful to our proof:

Lemma 3.5. Let v be a positive integer and G be a permutation group. Consider the set S
of all affine spaces of v points on which G acts faithfully and flag-transitively. Assume Γ has
not the biggest line size in S. Then Γ is not LoLPr.
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Proof. Denote the affine space with biggest line size by Γ′ (this space exists, since line size
induces a total order on S, and the size of S is finite). Clearly, the lines of Γ′ induce a partition
of the lines of Γ. This partition is preserved under the action of G, since the automorphism
group of Γ′ is precisely G. Moreover, this partition is nontrivial by the non-degeneracy
assumptions on Γ′. Hence, Γ is not LoLPr. 2

Proposition 3.6. If G is flag-transitive on Γ ∈ [AG(n, q)], with n ≥ 3, then G = pd : G0,
where G0 � ΓL(n, q). Moreover, if G is 2-transitive, RWPri but not 1-dimensional, one of
the following holds:

1. SL(n, q) E G0, n ≥ 2 and (Γ, G) is (2T)1.

2. Sp(n, q) E G0, n ≥ 4, n is even and (Γ, G) is not (2T)1.

3. G
′

2(q) E G0, for q even and (Γ, G) is not (2T)1.

Proof. We discuss each case according to the list given in Proposition 3.4.

Cases 1 and 2: Here, we have G0 D SL(u, qn/u) or Sp(u, qn/u); it implies that G acts 2-
transitively on the following affine spaces of qn points: AG(n, q) and AG(u, qn/u). Using
Lemma 3.5, and considering the LoLPr-property, we deduce that u has to be equal to
n, and using our knowledge of linear and symplectic groups, that those two actions are
then LoLPr, henceRWPri. It remains to check the (2T)1 property on these two cases.
For the first case, the action of G0 D SL(u, qn/u) is 2-transitive on the lines intersecting
0 and so we have the (2T)1 property. For the second case, the group G0 D Sp(u, qn/u)
is a rank 3 group and hence its action is not 2-transitive on the lines intersecting 0.

Case 3: We know that n has to be a multiple of 6. Say n = 6t. Using Proposition 3.4, we
observe that the derived group G

′

2(q
t) can always act 2-transitively on both AG(6t, q)

and AG(6, qt). When t 6= 1, the second space has bigger line-size than the first one.
This implies that all RWPri spaces occuring in this case must be 6-dimensional affine
spaces (or equivalently, we must have n = 6).
The action described here is closely related to generalized polygons and in particular
to the Split Cayley hexagon H(q) (see Van Maldeghem [52]). If we fix a point and
consider the action of this stabilizer at infinity, the action is the automorphism group
of a particular embedding of the Split Cayley hexagon, i.e. the perfect symplectic
embedding. This embedding can be achieved when the characteristic of the field is 2 and
the field is perfect. Then, there is an embedding of H(q) into PG(5, q). This PG(5, q) is
now our hyperplane at infinity. As a general consequence of Tits’s theory of buildings,
we know that the action of G2(q) is primitive on the points of this embedding. On the
other hand, the action of G2(q) at infinity cannot be 2-transitive, since the hexagon
contains non-collinear points. Hence this case does not satisfy the (2T)1 property.

Cases 4, 5 and 6: A simple computation of the order of the point-stabilizers shows that all
the groups are too small to act primitively on the set of lines intersecting in a given
point. 2
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3.2.2. Affine planes

Desarguesian affine planes

Proposition 3.7. (Foulser [25, 26]) Let Γ be AG(2, q), with q a prime power, and let G be
a group acting flag-transitively on Γ. Then G = pd : G0 and one of the following holds:

1. G0 ≤ ΓL(1, q2), hence G is 1-dimensional,

2. SL(2, q) E G0 and PGL(2, q) E G0,

3. q = 9 and G0 ∼= S5, or q ∈ {9, 11, 19, 29, 59} and G0 ∼= A5, or q ∈ {5, 7, 11, 13} and
G0 ∼= S4, or q ∈ {5, 11} and G0 ∼= A4. 2

The 1-dimensional automorphism groups will be discussed in Section 5. We now discuss the
remaining cases in relation with the RWPri and (2T)1 properties.

Proposition 3.8. Let Γ be AG(2, q), with q a prime power, and let G be a non-1-dimensional
flag-transitive group with a RWPri action on Γ. Then G = pd : G0 and one of the following
holds:

1. SL(2, q) E G0 and PGL(2, q) E G0,

2. q = 9 and the action of the stabilizer of a point p on the lines intersecting in p is either
A5 or S5.

Moreover, this action is (2T)1 only in the first case.

Proof. In the second case of Proposition 3.7, the action is trivially (2T)1 and RWPri.
Now we concentrate on the third case of proposition 3.7 and restrict it as stated. Since

(Γ, G) is LoLPr, G0 is primitive of degree q+1 on the set of lines containing 0. If G0 ∼= A4 or
S4, the only primitive actions have degree at most 4, hence this case is ruled out. If G0 ∼= A5,
the only primitive actions have degree at most 10 hence we get q = 9 and so case 2 of our
statement holds. 2

We show that the second restriction is best possible.

Proposition 3.9. Let Γ be AG(2, 9) and let G be a group acting flag-transitively on Γ with
G0 ∼= S5 or G0 ∼= A5. Then (Γ, G) is RWPri.

Proof. Foulser [25, 26] classifies these groups and obtains ten of them namely three with
G0 ∼= A5 and seven with G0 ∼= S5. He shows that there is a mimimal one, say F , appearing
as a subgroup in each other. Hence we need only work with F that Foulser denotes by
34 : G∗60 and whose structure is 3

4 : 2 ·A5 where 34 : 2 is the group of translations and point-
symmetries. Clearly A5 is acting at infinity inside PΓL(2, 9) but actually inside PSL(2, 9)
because A5 is simple. Therefore F is contained in the affine group of the plane.
We need information on a 2-Sylow subgroup K of F . The order of K is 8 and it has a central
involution i which is in the center of F0 and which fixes a unique point 0. The quotient of
K by {1, i} is elementary abelian. Since K restricted to the line at infinity fixes two points
there, K must leave two lines on 0 invariant and so K cannot be elementary abelian. Hence
K has some element f of order 4. At infinity, f is an involution and fixes two points. Thus
f 2 = i.
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Now we want to check that (Γ, F ) is RWPri. We first observe that it is LoLPr because
G0 ∼= A5 acts primitively on 10 points at infinity of the affine plane. Hence we need to check
LoPPr. Therefore we consider a line l containing the point 0 and its stabilizer Fl. We need
to show that Fl, the group of degree 9 induced by Fl on the nine points of l is primitive.
Assume it is imprimitive. Then there is a block B of imprimitivity containing 0 and two
further points a and b. We may assume without loss of generality that l is invariant under
the 2-Sylow subgroup K. Then f acts on {a, b} hence f 2 = i fixes 0, a, b a contradiction
since i is the symmetry with respect to 0. 2

Non-Desarguesian affine planes A short description of all the non-Desarguesian flag-
transitive affine planes, together with some of their properties, is available in BDD [10]. We
recall some of the facts concerning them. The Lüneburg planes are (2iL)T, but not LoPPr.
Therefore, they are not RWPri. The nearfield plane A9 together with its automorphism
group is (2P)T but not LoLPr and so is not RWPri. The Hering plane of order 27 is not
LoLPr hence not RWPri. As to 1-dimensional non-Desarguesian affine planes, we refer to
Section 5.

3.3. Hering spaces

Hering [30] constructed two nonisomorphic flag-transitive linear spaces on 36 points with line
size 32 whose automorphism group is 36 : SL(2, 13). As stated in BDD [10], this group acts
(2P)T, RWPri but not (2T)1.

3.4. Witt-Bose-Shrikhande spaces

For any even prime power q = 2e, with e ≥ 3, we may define a Witt-Bose-Shrikhande space
W (q) [10]. This is a linear space of 2e−1(2e − 1) points and with line size equal to q/2. The
first space of this family, W (8), is rather special: it is isomorphic to the smallest Ree unital
UR(3) (see Section 3.6), and it is the only Witt-Bose-Shrikhande space with 2-transitive
automorphism group.
Kantor was the first to notice that PSL(2, q) acts flag-transitively on W (q), while it is

already stated in BDD [10] that the full automorphism group ofW (q) is PΓL(2, 2e). Let now
G = PGL(2, q). Huybrechts [31] showed that the stabilizer of a point-line flag is of order 2,
and that the stabilizer of a line is an elementary abelian group of order 2e. Hence, since this
inclusion G01 ≤ G1 is never maximal, the action of PGL(2, q) is never LoPPr. Huybrechts
also showed that no novelties appear as we pass to G = PΓL(2, q). This proves that even
the full automorphism group PΓL(2, q) of W (q) has no LoPPr, hence no RWPri action.

3.5. Hermitian unitals

In this section, q denotes any prime power. Assume you are given a non-degenerate hermitian
polarity π of PG(2, q2) (since all hermitian polarities are conjugate in Aut(PG(2, q2)), the
construction is equivalent for all π). Then, define the hermitian unital UH(q) in the following
way: the points of UH(q) are the absolute points of π and its lines the non-absolute lines of
π. The incidence is symmetrized inclusion. This space is a unital, i.e. it has q3 + 1 points
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and line-size q + 1. Moreover, there are q2(q2 − q + 1) lines, q2 through each point. When
q = 2, this construction actually gives AG(2, 3).
The full automorphism group of UH(q) is isomorphic to PΓU(3, q). This was first pub-

lished by O’Nan in [43] and Taylor found later a shorter proof [48]. Apparently, Tits knew
this independently, but his result is more general: he did not use the finiteness assumption
(see [50, 51]). A complete description of the automorphism group, its stabilizers and its ac-
tion in general is available in Huybrechts [31]. It is based on the matrix representation of the
elements of PGU(3, q). She shows that no novelties about group inclusions appear between
PSU(3, q) and PΓU(3, q).
This allows us to say that results about PΓU(3, q) stated in [10] are valid for PSU(3, q)

also, i.e. this space is (2P)T and (2iL)T. Hence, it is also (2T)1 and RWPri.

3.6. Ree unitals

The Ree unitals form another class of flag-transitive linear spaces. To any q = 3(2e+1)

(e ≥ 0), is associated a unital UR(q). Various constructions of these spaces exist (see [10] for
references), and they all use the Ree group 2G2(q). Actually, the full automorphism group of
the unital is Aut2G2(q), and the action of this group is (2P)T, but not LoLPr [10], hence
not RWPri.

4. Circles

We now discuss circles, namely linear spaces with lines of 2 points. Obviously, a group is
acting flag-transitively on a circle Γ if and only if it acts 2-transitively on the point-set of Γ.
These groups have been almost completely classified. We refer to Kantor [33] and recall the
result.

Proposition 4.1. (Kantor [33]) Assume (G,Ω) is a 2-transitive permutation group, with
|Ω| = v. Then one of the following holds.

A. G is an almost simple group listed below:

1. G = Av, G = Sv, v ≥ 5.

2. PSL(n, q) E G ≤ PΓL(n, q), v = (qn − 1)/(q − 1), n ≥ 2.

3. PSU(3, q) E G ≤ PΓU(3, q), v = q3 + 1, q > 2.

4. 2B2(q) E G ≤ Aut(2B2(q)), v = q2 + 1, q = 22e+1, e > 0.

5. 2G2(q) E G ≤ Aut(2G2(q)), v = q3 + 1, q = 32e+1, e ≥ 0. 6

6. G = Sp(2n, 2), v = 22n−1 ± 2n−1, n ≥ 3.

7. G = PSL(2, 11), v=11.

8. G =Mv, v = 11, 12, 22, 23, 24 or G = Aut(M22), v = 22.

9. G =M11, v = 12.

6The G = 2G2(3)-case is special: it is the only case where G has no simple normal subgroup N such that
N is 2-transitive.
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10. G = A7, v = 15.

11. G = HS (Higman-Sims group), v = 176.

12. G = Co3 (Conway’s third group), v = 276.

B. G is of affine type, i.e. G has an elementary abelian normal subgroup T of order v = pd

regular on Ω and G = T : G0 where G0 ≤ GL(d, p). Moreover, one of the following
occurs:

1. G0 ≤ ΓL(1, v).

2. G0 D SL(n, q), qn = pd, n ≥ 2.

3. G0 D Sp(n, q), qn = pd, n even, n ≥ 4.

4. G0 D G
′

2(q), q
6 = pd, q even.

5. G0 ∼= A6 or A7, v = 24.

6. G0 D E, where E is an extraspecial group of order 2d+1 and v = 34, 32, 52, 72, 112 or
232.

7. G0 D SL(2, 5), v = 92, 112, 192, 292 or 592.

8. G0 ∼= SL(2, 13), v = 36.

All groups given above are necessarily 2-transitive, except possibly in the following cases:

Case B1: The complete list is not known. This explains why the classification is not com-
plete yet, and why later work concerning flag-transitive linear spaces always had diffi-
culties with the 1-dimensional case.

Cases B6 and B7: The exact list is known and can be found in Foulser [25].

We now state a result which will be very useful while studying RWPri circles.

Lemma 4.2. Let (Γ, G) be a thick linear space, with G acting 2-transitively on the point-set
of Γ. Let Ω denote the circle obtained from the point-set of Γ. Then (Ω, G) is flag-transitive
but it is never LoLPr.

Proof. This is just a restatement of Lemma 3.5 in the particular case of circles. 2

We now give the complete lists of the RWPri circles and the (2T)1 circles.

Proposition 4.3. Assume a group G acts flag-transitively on a circle Γ of v points. Then,
if (Γ, G) is RWPri, one of the following occurs:

1. G = Av, G = Sv, v ≥ 5. 7

2. PSL(2, q) E G ≤ PΓL(2, q), v = q + 1.

3. G = Sp(2n, 2), v = 22n−1 ± 2n−1 with n ≥ 3.

4. G = PSL(2, 11), v = 11.

5. G =Mv, v = 11, 12, 22, 23, 24 or G = Aut(M22), v = 22.

7As a matter of fact, the values v = 3 and v = 4 work as well but they are included in case 2 for small
values of q.
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6. G =M11, v = 12.

7. G = A7, v = 15.

8. G = HS (Higman-Sims group), v = 176.

9. G = Co3 (Conway’s third group), v = 276.

10. G = ea(2n) : G0, v = 2
n, G0 D SL(n, 2) with n ≥ 2.

11. G = ea(2n) : G0, v = 2
n, G0 D Sp(n, 2) with n even and n ≥ 4.

12. G = ea(24) : G0, v = 16, G0 ∼= A6 or A7.

Moreover, if (Γ, G) is (2T)1, G is 3-transitive and one of the following occurs:
1. G = Av, G = Sv, v ≥ 5. 8

2. G D PSL(2, q), v = q + 1 and G normalizes a sharply 3-transitive permutation group.

3. G =Mv, v = 11, 12, 22, 23, 24 or G = Aut(M22), v = 22.

4. G =M11, v = 12.

5. G = A7, v = 15.

6. G = ea(2n) : G0, v = 2
n, G0 D SL(n, 2) with n ≥ 2.

7. G = ea(24) : A7, v = 16.

Proof. We start with Proposition 4.1 and discuss each of its cases. Since we have the
assumption of 2-transitivity (line-size is 2), LoPPr is granted. Therefore, we only need to
check the LoLPr-property in order to select RWPri spaces.
A.1 This case obviously is RWPri and (2T)1.

A.2 n ≥ 3: We can apply Lemma 4.2 with Γ = PG(n − 1, q) and deduce that it is not
LoLPr.

n = 2: In order to apply Lemma 4.2, we would have to use Γ = PG(1, q), which
consists of only one line and is not a linear space in the sense of the present paper.
Therefore, we cannot apply this lemma, and have to distinguish the present case.
The action of G obviously is primitive on intersecting lines. Since the (2T)1-
property is equivalent to 3-transitivity for circles, we now wish to determine
the 3-transitive projective groups normalizing PSL(2, q) and acting on q + 1
points. In fact, as shown in [28], Theorem 2.1, each group normalizes a sharply
3-transitive permutation group. For most of the cases, this sharply 3-transitive
group is simply PGL(2, q). However, when q is an even power of an odd prime,
the 3-transitive group we are looking for may normalize the Mathieu-Zassenhaus-
Tits group instead (denoted by M in Theorem 2.1 of [28]).

A.3 Use Lemma 4.2 with Γ = UH(q).

A.4 Use Lemma 4.2 with Γ = Lü(q2).

A.5 Use Lemma 4.2 with Γ = UR(q).

A.6 Some information on this case is given in [5], but the main sources are Buekenhout
[2, 3]. Assume we fix a point, say x. Then Gx is O

±(2n, 2), which is of rank 3 on the
remaining points. The orbits of G(x,y) are of order 2(2

n−1 ∓ 1)(2n−2 ± 1) and 22n−2.

8See the footnote 7.
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This shows that the action of Sp(2n, 2) is 2-primitive, hence LoLPr and RWPri.
Since the stabilizer of a point is a rank 3 group, this action is not (2T)1.

A.7 Here, the stabilizer of a point p is A5. It acts transitively on the 10 lines intersecting
in p. Since A5 has only one transitive action on ten points, and that this action is
primitive, we deduce that this space is RWPri. However, A5 is far too small to act
2-transitively on the 10 lines intersecting in a point.

A.8 All of these groups are at least 3-transitive and so the stabilizer of a point is at least
2-transitive. Hence, the action is LoPr, and (2T)1.

A.9 Again, such a group is 3-transitive, and so the action is LoPr and (2T)1.

A.10 Thanks to the Atlas [15], the action of G0 = U3(5) : 2 on the 175 remaining points is
primitive but not 2-transitive.

A.11 Again, the Atlas shows G0 = McL : 2 and G01 = U4(3) : 2. Since this inclusion is
maximal, the action is LoLPr, hence RWPri. However, it is not (2T)1.

B.1 We will discuss this case in Section 5.

B.2 If q ≥ 3, we can apply Lemma 4.2, with an affine space as Γ. If q = 2, then the circle is
itself an affine space, and SL(n, 2) = GL(n, 2). Hence, a point-stabilizer is 2-transitive,
because n ≥ 2. We deduce from the 3-transitivity of G that this space is (2T)1.

B.3 Again, when q ≥ 3, it is not LoLPr. On the other hand, when q = 2, we have one of
the cases presented in Buekenhout [2, 3]. Since a point-stabilizer is a rank 3 group with
orbits of length 1, 2n−1 − 2 and 2n−1, we can show that the action of a point-stabilizer
is primitive but not 2-transitive on the lines intersecting in that point.

B.4 This space arises from the affine space AG(6, q) (see Section 3.2.1). Hence, by using
Lemma 4.2, we see that it is not LoLPr.

B.5 The maximal subgroups of A6 and A7 provided by the Atlas shows that both actions
are RWPri. Also, 24 : A7 is (2T)1, since this group is 3-transitive. Indeed, its point-
stabilizer occurs in the table of 2-transitive groups on position A.10.

B.6 Since G0 ≤ GL(d, p), we can apply Lemma 4.2 with Γ = AG(d, p) and reject all these
cases.

B.7 Same as B.6.

B.8 Same as B.6. 2

5. 1-dimensional spaces

Delandtsheer has studied these spaces in relation with the LoLPr property. We refer to [18]
for a full description of each of the known spaces, and state two results.

Proposition 5.1. (Delandtsheer [19]) Let Γ be a finite linear space. If G ≤ Aut(Γ) is flag-
transitive and G ≤ AΓL(1, v), then
(i) G is LoLPr if and only if the point-degree r is a prime number,
(ii) G is not transitive on the unordered pairs of intersecting lines, except in the following
cases:
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1. S is the trivial 2 − (v, 2, 1) design with v = 3, 4 or 8 and G = AGL(1, 3), AGL(1, 4),
AΓL(1, 4), or AΓL(1, 8),

2. S = PG(2, 2) and G = AG2L(1, 7),

3. S = AG(2, 4) and G = AΓL(1, 16). 2

This result is very useful in order to classify LoPr hence RWPri 1-dimensional spaces.

Proposition 5.2. (Delandtsheer [18]) Assume Γ is a 1-dimensional space. Then, the point-
set of Γ is the point-set of an affine space AG(d, p), and G is a group of affine transformations
of this space. Moreover, the group G ≤ AΓL(1, pd) contains the translation group T ∼= pd

and two cases need to be distinguished, according to the fact that a line-stabilizer is trivial or
not. 2

5.1. Spread case

This case occurs when the stabilizer of a line in T , say TL, is not reduced to the identity
element. Actually, L is a point-orbit of TL, and so the lines of the linear space are subspaces
of dimension l (with l|d) of the affine space AG(d, p). Hence, the line-size k is pl. Lines
through a given point form a spread, i.e. they induce a spread of (l − 1)-subspaces on the
hyperplane at infinity PG(d− 1, q).
Our discussion of this case is in several steps. We first consider the property LoLPr

alone. Then, we consider it together with LoPPr, i.e. we look at the LoPr or RWPri
property. Then, we add the (2T)1 property.

5.1.1. Property LOLPR

In this section, we get strong conditions on spread 1-dimensional spaces with property
LoLPr. We first state a result of Number Theory, which is of particular importance in
this section.

Proposition 5.3. (after Ribenboim [44]) Let r be a prime, let x > 1, m ≥ 1, u ≥ 3 be
integers satisfying

xu − 1

x− 1
= rm. (1)

Then,
(a) The exponent u is a prime, equal to the order of x modulo r, and r ≡ 1 mod u.

(b) If x = sb, b ≥ 1, then b = ue, e ≥ 0, r ≡ 1 mod ue+1, and r is not a Fermat prime. 2

Remark. Equations of this type have been studied by various authors, the first one being
Suryanarayana [47]. For complete reviews of the literature on this equation, see also Edgar
[23] and Ribenboim [44].

We are now ready to state the result of this section.
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Proposition 5.4. Assume a 1-dimensional automorphism group G has a LoLPr action on
a linear space Γ of spread type. Then, Γ has pu

(e+1)
points and each line has pu

e
points, where

p and u are primes and e ≥ 0.

Proof. Using Proposition 5.1, we may easily select the spread 1-dimensional spaces with
property LoLPr. We put u = d/l and get that

r =
v − 1

k − 1
=
pd − 1

pl − 1
= p(u−1)l + p(u−2)l + · · ·+ pl + 1 (2)

must be a prime, and that this is sufficient.
When u ≥ 3, equation (2) is a particular case of equation (1): we may impose in equation

(1) the additional conditions m = 1 and x = pl, where p is a prime. When u = 2, the relation
r = pl + 1 shows that r is a Fermat prime. In both cases, v and k have the properties of our
statement. 2

5.1.2. Property RWPRI

Under the RWPri-condition, we prove the following statement.

Proposition 5.5. Assume a 1-dimensional automorphism group G has a RWPri action on
a linear space Γ of spread type. Then, the point-degree is a prime, Γ has pu

(e+1)
points and

each line has pu
e
points, where p and u are primes and e ≥ 0. Moreover, for any p and u

satisfying all those arithmetic conditions, there exists a RWPri affine space, AG(u, pu
e
).

Proof. Since RWPri implies LoLPr, the first part of our statement is already in Propo-
sition 5.4. We still need to show the existence. Assume p and u are primes, and that the
point-degree of AG(u, pu

e
) is also a prime. Then, this space is LoLPr by Proposition 5.1.

Moreover, its full automorphism group G is 2-transitive, hence (Γ, G) is LoPPr and RWPri.
2

However, we cannot be sure that there is only one space, namely AG(u, pu
e
), which is asso-

ciated with each set of parameters. Hence, the question is now:

Are all flag-transitive RWPRI spaces of spread type Desarguesian?

A positive answer would totally reduce the classification of flag-transitive linear spaces of
spread type to Number Theory.

5.2. Property (2T)1

We now look at the (2T)1 property, for which we prove the following proposition.

Proposition 5.6. There are only two (2T)1 1-dimensional linear spaces of spread type
9:

AG(2, 2) and AG(2, 4) with respective automorphism groups AΓL(1, 4) ∼= S4 and AΓL(1, 16).

9As we will prove in Section 5.3, the “spread case” restriction is not needed.
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Proof. Since (2T)1 implies LoLPr, the conditions obtained for the LoLPr-property in
Proposition 5.4 are a good start.
Since the stabilizer of a point x is 2-transitive on the lines intersecting in x, its order is

divisible by r(r − 1). Hence, we deduce the following relations:

r(r − 1) divides #Gx

implies (v−1)
(k−1)

(
(v−1)
(k−1) − 1

)
divides (v − 1)u(e+1)

⇔ (v−k)
(k−1)2 divides u(e+1)

implies k divides u(e+1)

⇔ pu
e

divides u(e+1)

And this last relation implies p = u, then ue ≤ e + 1, and finally 0 ≤ e ≤ 1. Let us look at
each case separately:
e = 0: We have v = pp, k = p. Since we assume (2T)1, we get r(r − 1)|((pp − 1)p), or

equivalently (p
p−p)
(p−1)2 |p. Then,

p(p−1)−1
(p−1)2 = 1, and this in turn implies p = 2. Now, Γ is

AG(2, 2) and the group AΓL(1, 4) is isomorphic to S4. This isomorphism grants us the
(2T)1 property.

e = 1: Then u ≤ 2, and u = p = 2. The value of u and p is then 2. Therefore, Γ is isomorphic
to AG(2, 4), and AΓL(1, 16) acts on Γ. It is then a short computation (for instance in
Magma ) to show that AΓL(1, 16) has a (2T)1 action. Moreover, none of its subgroups
has this type of action. Indeed, the 2-transitivity of a point-stabilizer implies that the
order of a (2T)1 group is divisible by 16.5.4, while the 2-transitivity of a line-stabilizer
forces the order to be a multiple of 20.4.3. This forces the order of such a group to be
a multiple of 960, which is precisely the order of AΓL(1, 16). 2

5.3. Nonspread case

From now on, any 1-dimensional flag-transitive linear space which is not of spread type is
called a nonspread linear space. This case is studied by Delandtsheer in [19, 18], along with
the only known examples of this class, the Generalized Netto Systems, an extension of a
family found by Netto [42, 41].

Proposition 5.7. (Delandtsheer [18]) Assume we have a geometry Γ with point-set Ω =
AG(d, p) together with a group G ≤ AΓL(1, pd) acting flag-transitively on Γ. Assume further
that G contains the translation group T ∼= pd and that TL = 1 for any line L of Γ. Then, the
following conditions apply on the number of lines b and the line size k:

1. pd|b, where b = pd(pd − 1)/k(k − 1), hence (p, k) = 1.

2. p ≥ 3. 2

We now prove the following result.
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Proposition 5.8. Assume Γ is a linear space of nonspread type and G is a 1-dimensional
automorphism group with a RWPri action on Γ. Then, Γ = PG(2, 2) and G = 7 : 3.
Moreover, this action is not (2T)1.

Proof. We use Proposition 5.1, i.e. we look for nonspread spaces having prime point-degree.
The point-degree r is (pd − 1)/(k − 1). Using the first property stated in Proposition 5.7,
we see that k|r. Since r has to be a prime, we deduce that k = r, hence Γ is a projective
space and pd − 1 = k(k − 1). Let l = k − 1. The equation becomes l2 + l + 1 = pd. This
shows that Γ is a projective plane. We discussed that case in Section 3.1, and we showed that
the only 1-dimensional RWPri projective plane is PG(2, 2) with the Frobenius group 7 : 3.
Moreover, the stabilizer of a line in this space being cyclic, we may reject the (2T)1-property.

2

6. Conclusions on linear spaces

We now summarize the results of Sections 3 to 5. We give in Theorem 6.1 the list of linear
spaces satisfying RWPri, then in Theorem 6.2 the list of linear spaces satisfying (2T)1.
In these tables, q denotes a power of a prime p (with qn = pd).

Theorem 6.1. Let Γ be a finite linear space of v points. Let G be a group acting flag-
transitively and faithfully on Γ. If Γ is RWPri then one (at least10) of the following occurs:

1. The 1-dimensional spread case11: G ≤ AΓL(1, v), with v = p(u
(e+1)) and k = p(u

e).
Moreover, the point-degree and u are primes.

2. Γ = PG(n, q), v = qn+1−1
q−1 , PSL(n+ 1, q) E G ≤ PΓL(n+ 1, q) with n ≥ 2.

3. Γ = PG(3, 2), v = 15 with G ∼= A7.

4. Γ = PG(2, 2), v = 7 with G ∼= 7 : 3.

5. Γ = AG(n, q), v = pd = qn, G = pd : G0 with SL(n, q) E G0, q ≥ 3 and n ≥ 2.

6. Γ = AG(n, q), v = pd = qn, G = pd : G0, with Sp(n, q) E G0, q ≥ 3 and n ≥ 4.

7. Γ = AG(6, q), v = pd = q6, G = pd : G0 with G
′

2(q) E G0 and q even.

8. Γ = AG(2, 9), v = 81, G is one of the 3 (resp. 7) groups acting at infinity as A5 (resp. S5)
and presented in Foulser [25].

9. Γ is one of the two Hering spaces built using 1-spreads in PG(5, 3), v = 36, G = 36 :
SL(2, 13).

10. Γ is a hermitian unital UH(q), v = q
3 + 1, PSU(3, q) E G ≤ PΓU(3, q).

11. Γ is a circle:

(a) G = Av, G = Sv, v ≥ 5. 12

10As far as we know, there is one non-empty intersection. Indeed, since UH(2) is isomorphic to AG(2, 3)
and since the normalizer of PSU(3, 2) 'M9 is AGL(2, 3), cases 5 and 10 share AGL(2, 3) and ASL(2, 3).
11Desarguesian affine spaces occur here, but we do not know of the existence of non-Desarguesian affine
spaces.
12As a matter of fact, the values v = 3 and v = 4 work as well but they are included in case 11b for small
values of q.
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(b) PSL(2, q) E G ≤ PΓL(2, q), v = q + 1.

(c) G = Sp(2n, 2), v = 22n−1 ± 2n−1 with n ≥ 3.

(d) G = PSL(2, 11), v = 11.

(e) G =Mv, v = 11, 12, 22, 23, 24 or G = Aut(M22), v = 22.

(f) G =M11, v = 12.

(g) G = A7, v = 15.

(h) G = HS (Higman-Sims group), v = 176.

(i) G = Co3 (Conway’s third group), v = 276.

(j) G = ea(2n) : G0, v = 2
n, G0 D SL(n, 2) with n ≥ 2.

(k) G = ea(2n) : G0, v = 2
n, G0 D Sp(n, 2) with n even and n ≥ 4.

(l) G = ea(24) : G0, v = 16, G0 ∼= A6 or A7.

Proof. The proof of this theorem is divided in three parts:
Thick case: Here, we go through the list of BDDKLS as stated in Proposition 1.1 and dis-

cussed in Section 3. We simply check each case for the RWPri condition.
In the first case of Proposition 1.1, Γ is a projective space. We apply Proposition 3.3,
and get cases 2 to 4 of our statement.
If (Γ, G) are as in the second case of Proposition 1.1, we need to consider two subcases.
For affine spaces of dimension at least 3, we apply Proposition 3.6 and get cases 5, 6
or 7 of this statement. For affine planes, we use Proposition 3.8 and results of BDD
[10] (see end of Section 3.2.2) about non-Desarguesian planes and get cases 5 and 8 of
our statement.
If (Γ, G) is either a Hering space, a Witt-Bose-Shrikhande space, a Ree unital or a
Hermitian unital, we can apply BDD [10] as seen in Sections 3.3, 3.4, 3.6 and 3.5.
Hering spaces and Hermitian unitals give us cases 9 and 10 of this statement. There is
no RWPri Witt-Bose-Shrikhande space, nor any RWPri Ree unital.

Circles: We apply Proposition 4.3 to deduce the list appearing in case 11.

1-dimensional: This is the first case of our statement. It is discussed in Section 5 and so
we distinguish two subcases. In the spread case, we apply Proposition 5.5. In the
nonspread case, Proposition 5.8 shows that there is only one RWPri linear space.
This linear space is case 4 of our statement. 2

We now present all (2T)1 linear spaces.

Theorem 6.2. Let Γ be a finite linear space of v points. Let G be a group acting flag-
transitively and faithfully on Γ. If Γ is (2T)1 then one (at least

13) of the following occurs:

1. Γ = AG(2, 4), with G = AΓL(1, 16).

2. Γ = PG(n, q), v = qn+1−1
q−1 , PSL(n+ 1, q) E G ≤ PΓL(n+ 1, q) with n ≥ 2.

3. Γ = PG(3, 2), v = 15 with G ∼= A7.

13See the footnote 10.
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4. Γ = AG(n, q), v = pd = qn, G = pd : G0 with SL(n, q) E G0, q ≥ 3 and n ≥ 2.

5. Γ is a hermitian unital UH(q), v = q
3 + 1, PSU(3, q) E G ≤ PΓU(3, q).

6. Γ is a circle and G is a 3-transitive permutation group:

(a) G = Av, G = Sv, v ≥ 5. 14

(b) G D PSL(2, q), v = q+1 and G normalizes a sharply 3-transitive permutation group.

(c) G =Mv, v = 11, 12, 22, 23, 24 or G = Aut(M22), v = 22.

(d) G =M11, v = 12.

(e) G = A7, v = 15.

(f) G = ea(2n) : G0, v = 2
n, G0 D SL(n, 2) with n ≥ 2.

(g) G = ea(24) : A7, v = 16.

Proof. In view of the remark in Section 2.2, we may assume that (Γ, G) is RWPri, and use
the list of Theorem 6.1 as a starting point. We now give the arguments to use for each case
of this list.
Case 1: We apply Proposition 5.6 and so we obtain type 1 of the present statement. Observe

that we could also have applied Proposition 5.1 to obtain this result.

Cases 2, 3 and 4: We apply Proposition 3.3 and so we obtain types 2 and 3 of the present
statement.

Cases 5, 6, 7 and 8: We apply Propositions 3.6 and 3.8 and get type 4 of the present state-
ment.

Cases 9 and 10: We use results stated in BDD [10] (see Sections 3.3 and 3.5) and get type 5
of this statement.

Case 11: We apply Proposition 4.3 and get type 6 of this statement. 2

Remark. If (Γ, G) is a flag-transitive linear space as in cases 1 to 11 of Theorem 6.1, we
convinced ourselves that (Γ, G) is indeedRWPri, which means that the converse statement of
Theorem 6.1 is true. If (Γ, G) is a flag-transitive linear space as in cases 1 to 6 of Theorem 6.2,
we convinced ourselves that (Γ, G) is indeed (2T)1, which means that the converse statement
of Theorem 6.2 is also true. The proofs are lenghty in view of the number of cases and not
given here in full detail. An exception is Proposition 3.9. Here is a shortcut showing that it
is sufficient to provide the details for a given Γ and a “minimal” G.

Lemma 6.3. If (Γ, H) and (Γ, K) are flag-transitive linear spaces such that H is a subgroup
of K and if (Γ, H) is RWPri (resp. (2T)1), then (Γ, K) is RWPri (resp. (2T)1).

Proof. It suffices to recall that a permutation group (Ω, X) containing a primitive (resp. 2-
transitive) subgroup (Ω, Y ) is primitive (resp. (2T)1). 2

14See the footnote 12.
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[19] Delandtsheer, A.: 2-designs with a group transitive on the pairs of intersecting lines.
Simon Stevin 66(1-2) (1992), 107–112. Zbl 0784.51006−−−−−−−−−−−−

[20] Delandtsheer, A.: Finite flag-transitive linear spaces with alternating socle. In: Proc.
Euroconference Algebraic Combinatorics and Applications, Lecture Notes in Computer
Science and Engineering, Springer-Verlag, Berlin 2001. Zbl pre01618176

−−−−−−−−−−−−−
[21] Dembowski, P.: Finite Geometries. Springer-Verlag, Berlin 1968. Zbl 0159.50001−−−−−−−−−−−−
[22] Dixon J.; Mortimer, B.: Permutation groups. Springer-Verlag, New York 1996.

Zbl 0951.20001−−−−−−−−−−−−
[23] Edgar, H.: The exponential Diophantine equation 1 + a + a2 + . . . + ax−1 = py. Amer.

Math. Monthly 81 (1974), 758–759. Zbl 0291.10019−−−−−−−−−−−−
[24] Feit, W.: Finite projective planes and a question about primes. Proc. Amer. Math. Soc.

108(2) (1990), 561–564. Zbl 0737.05022−−−−−−−−−−−−
[25] Foulser, D.: The flag-transitive collineation groups of the finite Desarguesian affine

planes. Canad. J. Math. 16 (1964), 443–472.

[26] Foulser, D.: Solvable flag-transitive affine groups. Math. Z. 86 (1964), 191–204.
Zbl 0144.01803−−−−−−−−−−−−

[27] The GAP group: The GAP 4 Manual. Release 4.2. Aachen and St Andrews 2000.

[28] Gardiner, A.; Praeger, C. E.; Zhou, S.: Cross ratio graphs. J. London Math. Soc. (2),
64(2) (2001), 257–272.

[29] Gottschalk, H.; Leemans, D.: Geometries for the group PSL(3, 4). Technical Report 30,
Martin-Luther-Universität 1999.

[30] Hering, C.: Eine nicht-desarguessche zweifach transitive affine Ebene der Ordnung 27.
Abh. Math. Sem. Univ. Hamburg 34 (1969/1970), 203–208.
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