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Abstract. Consider a hexagonal unknot with edges of fixed length, for which we
allow universal joint motions but do not allow edge crossings. We consider the
maximum number of embedding classes that any such unknot may have. Until
now, five was a lower bound for this number. Here we show that there exists a
hexagonal unknot with at least nine embedding classes.

1. Introduction

Consider a hexagon in R? with fixed edge lengths® /1, ..., s, and for which we allow universal
joint motions but no edge crossings. In other words, we allow the vertices vy, ..., vg of the
hexagon to move freely as long as the edges do not cross or deform. Following the notation
of Cantarella and Johnston [3], we denote the space of this hexagon as Polg(¢1, ..., ls). The
general question that we study here is: how many connected components can Polg have, for a
suitable choice of (1, ...,0s?7 It is then natural to ask whether each connected component of
Polg corresponds to a separate knot type, or if some knot type (say the unknot, or trivial knot)
exists in separate components of space. Millet [4] showed that for regular hexagonal unknots
there is only one embedding class. The question remained open until Cantarella and Johnston
proved that there exist three connected components in Polg(100,63.5,22.7,5.6,22.7,63.5),
each belonging to the unknot?. In other words, they showed that there exist “stuck” unknots
which cannot be reconfigured into planar convex embeddings, if the edge lengths are chosen

"'We use #; to denote both the edge and its length.
2The numbers given are approximate.
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Figure 1. Classes 2 and 3, by Cantarella and Johnston (not drawn to scale)
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Figure 2. Classes 4 and 5, by Toussaint (not drawn to scale)

carefully. The first class includes the planar convex embedding. In fact, Aichholzer et al. [1]
proved that all planar convex embeddings belong to the same connected component. The
remaining two classes, which are left and right hand versions of the same polygon, are shown
in Figure 1.

Cantarella and Johnston suspected that these three classes were the only ones for the
unknot in Polg, but Toussaint [5] showed that there exist two more classes, for Polg(20, 13,
4,1,4,13). The two new classes are left and right hand versions of each other, and are shown
in Figure 2. In the following section, we show that four more classes can exist for appropriate
edge lengths.

2. A hexagonal unknot with nine embedding classes

We consider the space Polg(1,1,0.55,¢€,0.55 — ¢,1), where € < 0.01 (i.e. sufficiently small).
Here, we show that this space has at least nine connected components corresponding to the
unknot. In other words there are at least nine embedding classes of the unknot for our given
edge lengths.

The first class contains all planar convex embeddings. The next four are similar in shape
to those of Cantarella and Johnston and those of Toussaint. However, since we are using
different edge lengths it is necessary to verify that our classes of hexagons are still in different
connected components of space. The four new classes are shown in Figures 3 and 4.

Cantarella and Johnston showed that a sufficient condition for their classes to be in
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Figure 4. Classes 8 and 9 (not drawn to scale)

different connected components than the convex class is that (€3 + £4)% < €105 — (¢1)?/2. Our
chosen edge lengths satisfy this condition, so we can say that the proof of Cantarella and
Johnston holds for our hexagon. Of course, it is not enough just to show that every class is
in a different connected component than that containing the convex class.

Unfortunately, we can not do the same as above and borrow the proof for Toussaint’s
classes. A sufficient (but not necessary) condition used in this case is that 3 + {4 + {5 <
min{ls, ls}. Our hexagon is modified enough that this condition no longer holds. It seems
that we cannot avoid such a modification, in order to create the new classes.

Even though Toussaint’s proof cannot be used here, the intuition is quite the same. For
each class, there are a couple of motions that must be made in order to convexify the hexagon.
We will show that such motions are impossible to make, and conclude that it is impossible
not only to convexify a hexagon belonging to each class but also to reconfigure between the
non-convex classes.

Let us now fix a coordinate system in order to view all possible motions. Let ¢; be fixed
in the xy plane, and /g be constrained to the plane. Specifically, v; is at (0,0,0), vy is at
(1,0,0), and vs is at (v, vey,0) Where vg, 4+ v3, = 1. Our view will be along the normal of
the plane. Thus vertex vg may move only in a circle about v;. We choose to focus on class
9, as shown on the right of Figure 4. Intuitively we can see that to convexify this hexagon
we would have to pass vs over /4 and into the plane, or we would have to pass /5 over vy so
that vs could be placed in the plane.

We now proceed to describe certain constraints in the configuration of our polygon. The
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Figure 5. Alternate configuration of class 9 (not drawn to scale)

polygon shown in Figure 4 possesses certain properties, listed below:
1. v5. > 0, and vy, < 0. Thus we can define the point P = P, = (P, P,) to be the
intersection of ¢, with the plane. This also means that v, and vs are at a distance of
at most € from the plane.

2. P)>0,ande< P, <1—e

3. v3, > 0.

We will show that, while reconfiguring the polygon, it is impossible to change any single
property without causing an intersection or contradicting the validity of at least one other.
We will also show that we cannot change more than one of these properties simultaneously.
This implies that the properties are always true. Note that changing a property is done via
a continuous motion of the polygon. Thus for example, property 1 changes the moment that
vs, = 0 and/or vy, = 0. In case we attempt to set both of these vertices into the plane
simultaneously, the point P will be defined to be the last unique point of intersection of ¢4
with the plane.

First let’s see if we can change only the third property. Consider the case where vs, < 0.
vg can be placed in the plane only if the angle at vy or the angle at v; opens to more than
m/3. This would mean that the distance from vs (or vg respectively) to ¢; becomes greater
than \/73 The distance to P is at least as great, since P, > 0. However, the distance from w3
(vg) to P can be at most the sum of the lengths /3 + ¢4 (or ¢5 + ¢4 respectively). These sums
are less than ‘/75 Thus, by contradiction, we conclude that v cannot be placed in the plane
if v, < 0. Allowing properties 1 and/or 2 to change simultaneously with property 3 does
not affect the arguments given above. At the “critical” moment that we attempt to place v
into the plane, we still have P, > 0, for example.

It remains to be seen if we can change only the third property, when vz, > 0. Even
reaching a configuration where vz, > 0 requires a subtle motion. It can be done by bringing
P sufficiently close to ¢, which allows us to obtain vs, < 0. Then ¢, can move in a clockwise
motion as viewed from the normal to the plane. The final configuration is shown in Figure 5.
During the motion described above, we have 0 < v3, < 1. Thus the x-coordinates of both
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endpoints of /3 are within this range. This means that if /3 is to avoid intersection with ¢,
it is in fact necessary to have vy, < 0. Keeping in mind that vy, < 0 (property 1), we see
that it is impossible to place v3 in the plane without causing an intersection between ¢3 and
¢1. We conclude that vs always remains above the plane, as long as properties 1 and 2 are
true. Again, allowing properties 1 and/or 2 to change at the same time (i.e. allowing P, = ¢
and/or vy, = 0) doesn’t affect our arguments. Thus property 3 cannot change, either on its
own, or at the same time as properties 1-2.

We now focus on the second property: To obtain P, < 0, we must first have P, < 0
or P, > 1. This is because of the position of ¢;. So we would be requiring that vy, < € or
vge > 1 — €. The same holds for vs,. In other words, vy, and vs would have to approach to
within a distance € from the halfline x = 0,y > 0,z = 0 or the halfline x =1,y > 0,z = 0.
By examining the triangle vyvsvg (which can be made to approach arbitrarily close to the
plane if € is small enough) and using elementary trigonometry, we can see that the former
case is impossible. On the other hand, for v4 to approach the halfline x =1,y > 0,2 = 0, we
would need the angle vjvyv3 to reach /3. As shown previously, this cannot be done when
v3y < 0. We also established that if vs, > 0, as shown in Figure 5, then vs, < 0. This means
that the angle v;v9v3 cannot open to 7/3, by the same logic used when dealing with changing
property 3. Thus we must always have 0 < P, < 1 and P, > 0. Once again, the argument
given is not affected by allowing property 1 to change simultaneously.

Finally, we can examine the first property: Given property 2, we cannot place vs into the
plane because this would cause an intersection between the polygonal arc Pvsvg and ¢;. Also,
we cannot place v into the plane because the arc vsvy P would intersect ¢;. More specifically,
if vg, > 0, bringing vs to the plane would cause an intersection between ¢, and /;, since
P, > 0. If v3, <0, the intersection would be between ¢; and either {3 or ¢, depending on the
value of vy,. We conclude that vy (v5) must always be below (above) the plane.

Having established property 1, we know that class 9 cannot be reconfigured to classes
2,5,7,8. Now consider class 6: ¢ passes above the polygonal arc Pvsvg, whereas in class 9 it
passes beneath the arc. In both cases, {5 is above the plane. We know that starting from class
9 we cannot position vs into the plane. This implies that if we are to reconfigure between
these classes, v3 must pass under /5. This cannot be done, due to the angle restrictions
mentioned while handling property 1. In fact, if this were possible, then vz could be placed
in the plane. The same applies for class 3. Finally, the only difference between classes 4 and
9 is in the crossing of /3 and (g, as we view along the normal to the plane. To change this
crossing, the point (), defined earlier, would have to move to an intermediate position such
that ), < vey. This involves passing vs under /5, which cannot be done, as we have just seen.

We can now say that class 9 cannot be reconfigured to any of the other classes shown.
If we ignore the small difference in the lengths of /3 and /5, which does not play a role in
the proofs given above, then the four new classes are either left /right hand versions or rigid
transformations of each other. Thus the arguments given for class 9 hold for classes 6-8. As
for our modified examples of Toussaint’s classes, the proofs are similar. This leads us to the
following theorem:

Theorem 2.1. For suitable choices of edge lengths, there are at least nine connected compo-
nents belonging to the unknot in Polg.



434 G. Aloupis et al.: More Classes of Stuck Unknotted Hexagons

3. Remarks

Although we show that there are at least four more embedding classes for Polg we note that
our examples are not very “stable”, in the sense that the slightest change in the length of
either £y or g would result in the loss of four classes: those of Toussaint, and two new ones.
If we made both lengths larger, then we would only have the three classes of Cantarella and
Johnston. An open problem is therefore to find suitable edge lengths so that Polg has more
than five “stable” embedding classes.

As was mentioned by Cantarella and Johnston, these results can be extended to Pol,,
by replacing the shortest edge with a chain. Alternatively, a link or a knot can be placed to
obtain similar results.

Calvo showed that even if edge lengths can vary, there exist four components of trefoil
knots in Polg (two left-handed and two right-handed). In fact, no other type of knot can
be formed with only six edges [2]. It was tempting to see whether we could modify our
classes, by changing some crossings, to obtain more than four components corresponding
to the trefoil knot. The examples of Cantarella and Johnston cannot be transformed into
trefoils, and the remaining six non-planar unknots produce only four trefoil classes, due to
symmetry conditions. It remains an interesting open problem to determine if more than four
trefoil embeddings exist in Polg when edge lengths are fixed.
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