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Abstract. We consider subdivisions of bounded convex sets G in two subsets E
and G \ E. We obtain several inequalities comparing the relative volume 1) with
the minimum relative diameter and 2) with the maximum relative diameter. In the
second case we obtain the best upper estimate only for subdivisions determined by
straight lines in planar sets.
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1. Introduction

Relative geometric inequalities are inequalities in which we compare relative geometric mea-
sures, i.e., functionals that give geometric information on the subsets (E and G\E) deter-
mined by the subdivision of an original set G.

The first relative geometric inequalities that appeared in the literature were the so called
relative isoperimetric inequalities. These inequalities compare the relative area with the
relative perimeter:

If G is an open convex set in the Euclidean plane R2 and E is a subset of G with non-empty
interior and rectificable boundary such that both E and its complement G\E are connected,
we define:

- the relative boundary of E as ∂E ∩G,
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- the relative perimeter of E, P (E, G), as the length of the relative boundary, and

- the relative area of E as:

A(E, G) = min{A(E), A(G\E)}.

With the above assumptions we say that a relative isoperimetric inequality is an inequality
of the type:

A(E, G)

P (E, G)α
≤ C,

where C and α are positive numbers.

This problem can be extended to higher dimensions in the following way: Let G be an open
and convex set of Rn. A relative isoperimetric inequality holds if there exist two positive
constants α and C such that

min{V (E), V (G \ E)}
P (E, G)α

≤ C, (1)

where V (E) is the volume of E and P (E, G) is in this case an appropriate (n−1)-dimensional
measure of the relative boundary of E.

Many results have been obtained about relative isoperimetric inequalities (see for instance
[2],[9]).

There are also results comparing the relative perimeter with other geometric magnitudes
different from the relative area. For results comparing the relative perimeter with the relative
diameter and the relative inradius see [4].

In this paper we want to study relative isodiametric inequalities, in which we compare the
relative volume with the relative diameters of a subset of a bounded convex set. First we
need to define these notions:

Let G ⊂ Rn be a bounded open convex set and E ⊂ G a subset of G such that E as well as
G \ E are connected and have non-empty interior. Let D(.) be the diameter functional.

(i) The relative volume is the minimum of the volume of E and the volume of its comple-
ment,

V (E, G) = min{V (E), V (G \ E)},

(ii) the minimum relative diameter is the minimum of the diameter of E and the diameter
of its complement,

dm(E, G) = min{D(E), D(G \ E)},

and

(iii) the maximum relative diameter is the maximum of the diameter of E and the diameter
of its complement,

dM(E, G) = max{D(E), D(G \ E)}.
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Relative isodiametric inequalities are those that give either an upper or a lower estimate of
the ratios:

V (E, G)

dm(E, G)n
or

V (E, G)

dM(E, G)n
.

We compare the relative volume with the nth-power of the relative diameters (n is the
dimension of the ambient space) because as this ratio is invariant under dilatations, we
obtain geometric information about the subdivision: The estimates do not depend on the
size of the sets but only on their shapes.

We are interested not only in obtaining relative isodiametric inequalities, but also in deter-
mining those sets (called maximizers or minimizers) for which the equality sign is attained.

For some of the cases that we are going to consider, we need the classical (absolute) isodia-
metric inequality:

Among all convex bodies in the n-dimensional Euclidean space with fixed volume, the ball
has the smallest diameter:

V

ωn

≤
(

D

2

)n

,

where ωn = πn/2

Γ(1+n/2)
is the volume of the n-dimensional unit ball and Γ is the Euler Gamma

function ([1]).

In the plane we can write this inequality as follows:

Let C be a planar closed convex domain with area A and diameter D. Then,

A ≤ 1

4
πD2

where the inequality holds if and only if C is a circle ([1]).

2. Relative isodiametric inequalities concerning the relative volume and the min-
imum relative diameter of a subset of a bounded convex set

The aim of this section is to maximize and minimize the ratio of the relative volume and the
nth-power of the minimum relative diameter of a subset E of G.

We begin with minimizing the given ratio, and in this case we have to consider two different
cases. First, we are going to study general subdivisions of G and later we are going to consider
the special case in which the subdivision is obtained by a hyperplane cut.

Proposition 1. Let G be an open bounded convex set and E a subset of G such that E and
G \ E are connected. Then,

V (E, G)

dm(E, G)n
≥ 0

is the optimal lower estimate.
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Figure 1

Proof. For any bounded convex set G we can consider a sequence of hypersurfaces {Si}∞i=1

as close as we want to the boundary of G, such that both ends of a diameter of G belong to
Si ∀i ∈ N, and the regions Ei bounded by Si have volume decreasing to zero.

Then, we conclude that:

lim
i→∞

V (Ei, G)

dm(Ei, G)n
=

0

D(G)n
= 0. �

Proposition 2. Let G be an open bounded convex set and E a subset of G obtained by a
hyperplane cut. Then,

V (E, G)

dm(E, G)n
≥ 0 (2)

is the optimal lower estimate.

Proof. We can distinguish two cases:

Case 1: G is strictly convex:
Let x be a regular point in the boundary of G, ∂G. Let ν(x) be the outward unit normal
vector of ∂G at x. Let Tx∂G be the tangent space of ∂G at x.

Let Π0 be a hyperplane parallel to Tx∂G intersecting G and let E0 be the intersection of
G with the upper half-space determined by Π0 and containing ν(x). We can choose Π0 and

E0 so that V (E0) ≤ V (G)
2

.
Applying the Schwarz symmetrization with respect to the line determined by ν(x) to E0

we obtain a new set E ′
0 of revolution with the same volume as E0; the image of the relative

boundary of E0 under Schwarz symmetrization is an (n− 1)-dimensional ball with radius r0.
This symmetrization does not increase the diameter, so D(E0) ≥ D(E ′

0).

Figure 2
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Then,

V (E0, G)

dm(E0, G)n
=

V (E0)

D(E0)n
≤ V (E ′

0)

(2r0)n
. (3)

We can choose a sequence of hyperplanes {Πi}∞i=1 parallel to Π0 and such that the intersection
of E ′

0 with the half-spaces determined by Πi and containing ν(x) be a contractive sequence of
convex sets {E ′

i}∞i=1 so that limi→∞ V (E ′
i) = 0 and such that the supporting hyperplanes at

the (n− 2)-spheres determined by the intersection of Πi with the boundary of E ′
0 provide a

sequence of cones {Ci}∞i=1 whose angles at their vertices are 2αi. We can choose this sequence
so that limi→∞ αi = π

2
.

Let ri be the radius of the (n−1)-ball which is the basis of the cone Ci. For each of these
cones Ci

V (E ′
i)

(2ri)n
≤ V (Ci)

(2ri)n
=

1
n
V (B(ri)

n−1)r cot αi

(2ri)n
=

π
(n−1)

2 cot αi

n2nΓ(n−1
2

+ 1)
. (4)

Taking the limit when i →∞,

lim
i→∞

π
(n−1)

2 cot αi

n2nΓ(n−1
2

+ 1)
= 0. (5)

Then, by (3),(4) and (5) we obtain that

0 ≤ lim
i→∞

V (Ei, G)

dm(Ei, G)n
≤ 0,

and so the inequality (2) is best possible.

Case 2: G is not strictly convex:
If G is not strictly convex there exists a straight line segment t in the boundary of G (Figure
3). If we consider a sequence of hyperplanes Πi parallel to t so that the volume of the subsets
Ei determined by the intersections of G with Πi decreases to zero, then,

lim
i→∞

V (Ei, G)

dm(Ei, G)n
≤ 0

(length(t))n
= 0. �

Figure 3

The following proposition provides an upper bound for the ratio of the relative volume and
the nth-power of the minimum relative diameter.
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Proposition 3. Let G be an open bounded convex set and E a subset of G such that E and
G \ E are connected. Then,

V (E, G)

dm(E, G)n
≤ πn/2

Γ(1 + n
2
)2n

.

Proof. Let Bn(r) be a ball with radius r contained in G (Figure 4) such that:

V (Bn(r)) ≤ V (G)

2
⇐⇒ r ≤

(
V (G)

2ωn

)1/n

.

Figure 4

As a consequence of the isodiametric inequality ([1]), for any subset E of G:

V (E)

D(E)n
≤ V (Bn(r))

(2r)n
,

where equality holds if and only if E = Bn(r). Then,

V (E, G)

dm(E, G)n
≤ πn/2

Γ(1 + n
2
)2n

. �

3. Relative isodiametric inequalities concerning the relative volume and the max-
imum relative diameter of a subset of a bounded convex set

The aim of this section is to maximize and minimize the ratio of the relative volume and the
maximum relative diameter of a subset E of G.

Proposition 4. Let G be an open bounded convex set in Rn and E a subset of G such that
E and G \ E are connected. Then,

V (E, G)

dM(E, G)n
≥ 0

is the best possible lower estimate.

Proof. Let G be an open bounded convex set in the Euclidean space. We can suppose without
loss of generality that 0 ∈ G. Let us consider the sequence {Ei}∞i=2 where each Ei = 1

i
G.
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Figure 5

If we compute the ratio of the relative volume and the nth-power of the maximum relative
diameter, the limit of this ratio is 0 when i →∞. In fact, the relative volume decreases to 0
and dM(Ei, G) = D(G \ Ei) is the diameter of G for all i:

lim
i→∞

V (Ei, G)

dM(Ei, G)n
=

0

D(G)n
= 0. �

Proposition 5. Let G be an open bounded convex set and E a subset of G obtained by a
hyperplane cut. Then,

V (E, G)

dM(E, G)n
≥ 0

is the best possible lower estimate.

Proof. We consider a sequence of hyperplanes {Πi}∞i=1 parallel to a diameter of G, and such
that the volume of the subsets Ei determined by the intersections of G with Πi decreases to
zero (Figure 6). Then we can see that:

lim
i→∞

V (Ei, G)

dM(Ei, G)n
= lim

i→∞

V (Ei, G)

D(G)n
= 0. �

Figure 6

The problem of maximizing the ratio of the relative area and the maximum relative diameter
is attached to the so-called “fencing problems”. Such problems consider dividing a region into
two parts of equal volume (area) by a hypersurface (continuous curve); such hypersurfaces
are called fences.

We are going to state two results about fencing problems that we shall use in the isodiametric
inequality which we are going to prove.
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Theorem A. ([7]) Let K be a planar, bounded, and centrally symmetric convex set with area
A. For every subdivision of K into two parts (E, K \E) of equal area by a continuous curve,
the maximum relative diameter satisfies the following inequality:

dM(E, K) ≥ C
√

A,

where C ∼= 0.8815.

The equality is attained for the subdivision of the shaded optimal body described in the
Figure 7.

Figure 7

Theorem B. ([8]) In the class of planar convex sets with area A the minimum of dM , with
respect to straight line cuts, is attained on a centrally symmetric convex set.

Proposition 6. Let G be a planar bounded convex set and E a subset of G obtained by a
straight line cut, then:

A(E, G)

dM(E, G)2
≤ 1.2869... .

Proof. Let l be the straight line dividing G into two regions E and G \E, and suppose that
A(E) ≤ A(G \ E). Let us consider two different cases: 1) dM(E, G) = D(G \ E) and 2)
dM(E, G) = D(E).

1) If dM(E, G) = D(G\E) and A(E) < A(G\E), we translate l till another line l′ determining
a new division of G into two other regions E ′ and G \ E ′ in such a way that one of the two
following situations occurs:

1.1) A(E ′) = A(G \ E ′) and dM(E ′, G) = D(G \ E ′).

Then A(E ′, G) = A(E ′) > A(E) = A(E, G) and dM(E ′, G) < dM(E, G) (Figure 8) and E ′

determines a fencing problem. Hence,

A(E, G)

dM(E, G)2
≤ A(E ′)

dM(E ′, G)2
≤ 1.2869...,

where the last inequality follows from theorems A and B.
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Figure 8

Figure 9

1.2) A(E ′) < A(G \ E ′) and dM(E ′, G) = D(E ′) = D(G \ E ′).

In this case we have A(E, G) = A(E) ≤ A(E ′) = A(E ′, G) and dM(E, G) ≥ dM(E ′, G), so

A(E, G)

dM(E, G)2
=

A(E)

D(G \ E)2
≤ A(E ′)

D(E ′)2
, (6)

but D(E ′) = D(G \ E ′), so we have also

A(E, G)

dM(E, G)2
≤ A(G \ E ′)

D(G \ E ′)2
. (7)

We consider now the intersection points P and Q of l′ with ∂G.

Figure 10

Let E ′′ be either E ′ or G \ E ′, where the supporting lines at P and Q make internal angles
whose sum is smaller or equal than π. Let us consider the symmetric set of E ′′ with respect
to the middle point O of the segment PQ. Let this set be E ′′′.
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Figure 11

E ′′ ∪E ′′′ is a centrally symmetric convex set where the area is 2A(E ′′) (Figure 11). It is easy
to see that

D(E ′′′) = D(E ′′) = dM(E ′, G) = D(E ′) = D(G \ E ′).

Then, from inequalities (6) and (7),

A(E, G)

dM(E, G)2
≤ A(E ′′)

D(E ′′)2
≤ 1.2869...,

where the last inequality holds as a consequence of Theorem A.

2) Suppose that dM(E, G) = D(E).

Figure 12

Then,
A(E, G)

dM(E, G)2
=

A(E)

D(E)2
,

and also
A(E, G)

dM(E, G)2
≤ A(G \ E)

D(G \ E)2
.

Let E ′ be either E or G \ E, where the supporting lines at P and Q realize internal angles
whose sum is smaller or equal than π. By a similar argument to that used in the case 1.2 we
conclude that

A(E, G)

dM(E, G)2
≤ A(E ′)

D(E ′)2
≤ 1.2869... �

The n-dimensional version of this proposition seems to be very challenging.
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