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Abstract. As we know, there are examples of trefoil knots without tritangent
planes. Here we show that trefoil knots of the familiar shape always have such
planes. We relate this result to the search for the minimum number of vertices.
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1. Introduction

Freedman [3] conjectured that any regular closed knotted curve in 3-space has a tritangent
plane, i.e. a plane which is tangent at three points. But Montesinos Amilibia and Nuño
Ballesteros [7] gave an example of a trefoil knot without tritangent planes, and Morton [8]
found a similar trefoil knot where this property is easy to show. Both examples are (3, 2)-
torus curves, so at first sight they do not look like trefoil knots. In this paper we will show
that trefoil knots of the familiar shape always have at least two supporting tritangent planes.

If a wire model of such a knot touches a plane at two points, then one may turn it
until it rests on a third point. But it seems difficult to make this idea precise. Instead we
approximate the knot C by a polygon and apply Sperner’s Lemma to the boundary of its
convex hull, more precisely to its upper and lower parts so that we get two suitable triangles
in the boundary of the convex hull. If we approximate C, their planes converge to planes
supporting C at 3 points.

In Section 3 we relate this result to the search for minimum numbers of vertices and twistings.
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2. Existence of tritangent planes

Definition. We call a trefoil knot C a special trefoil knot if it is a continuous injective image
of S1 in R3 with the following properties:

(a) there is a projection Π into a plane such that ΠC has rotation number 2 (i.e. ΠC moves
around some point in the plane twice);

(b) the restriction of ΠC to C is injective except for exactly three double points;

(c) ΠC is locally convex, i.e. each point of C has a relative neighborhood which is supported
by a straight line.

A special trefoil knot and the projection as shown by Artin [1]

Instead of (c), we will work in the proof of Theorem 1 with the more technical condition (c*)
below which holds for special trefoil knots as can easily be seen. We think of the projection
plane as horizontal. The lower pre-images Li, i = 1, 2, 3, of the double points divide C into
closed subarcs Ci.

(c*) ΠCi ∩ ∂ conv ΠC 6= ∅
(Likewise we can use the upper pre-images.)

Besides Sperner’s Lemma we will use a simple Lemma which we need not prove here.

Lemma. Assume that Kj, j = 1, 2, . . . , are uniformly bounded convex sets in 3-space with
Kj ⊂ Kj+1. If Ej is a supporting plane of Kj and if the Ej converge to a plane E, then E
supports the closure of ∪j Kj.

Sperner’s Lemma in 3-space. (see e.g. Henle [6] p. 38) Let a triangle with vertices P1, P2, P3

and a triangulation be given and let the vertices be labelled in the following manner: Pi gets
label i, a vertex on the edge PiPj gets label i or j, and the interior vertices are labelled
arbitrarily. Then there is at least one subtriangle with labels 1, 2, 3.

Theorem 1. A special trefoil knot C has at least two planes which support C at three or
more points. (Of course they are tangent planes if C is a regular C1-curve.)

Proof. By (c*) we may choose a point Pi on each of the arcs Ci such that

ΠPi ∈ ∂ conv ΠC (i = 1, 2, 3).
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We approximate C by a sequence of polygons Qj (j = 1, 2, . . .) starting with the triangle
P1, P2, P3 and adding more and more points of C such that the maximum edge length tends
to zero. Because of their choice the Pi are vertices of conv Qj for all j. If necessary the facets
of the polytope conv Qj are subdivided into triangles. We now consider the upper part of ∂
conv Qj. It consists of the facets with normals pointing upwards, the projection plane again
being regarded as horizontal. This part may be considered as a triangulated triangle with
vertices P1, P2, P3. We get a Sperner labelling in the following manner: all vertices of Qj

which lie on Ci get label i, especially Pi gets label i. (If C1 ∩C2 is a vertex it gets label 1 or
2. There are no vertices of ∂ conv Qj which do not lie on one of the Ci.) Sperner’s Lemma
gives us a triangle labelled 1, 2, 3. Since it is part of ∂ conv Qj, the plane containing ∆j

supports Qj in at least 3 points, one on each of the Ci, i = 1, 2, 3. Since C1 × C2 × C3 is
compact, there is a subsequence such that the vertices of the ∆j converge to three points.
We have to show that no two of them coincide. By the Lemma the planes of the ∆j converge
to a supporting plane of conv C. Since the plane of ∆j supports the upper part of ∂ conv
Qj, the limit plane supports the upper part of ∂ conv C or its relative boundary. So it does
not meet one of the points L1, L2, L3, which lie on the lower side or in the interior of conv C.
Thus, the limit plane supports C at three distinct points, each lying in the relative interior
of the arcs Ci. In the same way we obtain a plane supporting C from below at three distinct
points. �

Remark. As noted above we used the weaker condition (c*) instead of (c). We could further
relax (b). But this seems not to be appropriate if we have in mind the questions described
in Section 3.

3. Vertices of trefoil knots

In this section vertex of a C3-space curve means a point where the torsion changes sign.
Sometimes it is also called flattening point, in German Henkelpunkt. Barner [2], p. 209,
describes a method how to find vertices: Let a plane tangent at two points roll along the
curve until both points coincide. This method, ascribed by him to Blaschke, is also the
essence of Sedykh’s proof of the four-vertex theorem for closed curves lying on the boundary
of their convex hull, see [10].

The attempt to use this method together with Theorem 1 in order to find vertices of
special trefoil knots was not successful, at least not without further assumptions about the
position of contact points with a tritangent plane. Nevertheless we express the following

Conjecture. A special trefoil knot in the sense of Section 2 with nonvanishing curvature has
at least four (or even six) vertices.

Weiner [11] gave an example of an unknotted closed curve looking similar to a special trefoil
knot. It has constant torsion and therefore no vertices. This may be a hint that even the
existence of two vertices may be difficult to show for special trefoil knots.

Consider the unit tangent vectors of a space curve C as a spherical curve Ĉ . The geodesic
curvature of Ĉ is τ/κ where τ is the torsion and κ(6= 0) the curvature of C. The vertices
of Ĉ, the extrema of τ/κ, are the points where the Darboux vector of C changes its sense
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of rotation. Therefore they were called Darboux-vertices of C in [5]. In [9] they were called
twistings. Theorem 1 implies that Ĉ crosses some great circle at least six times. With the
method used in [4] we can prove the following theorem.

Theorem 2. A special trefoil knot with nonvanishing curvature has at least four twistings.

It is not known if the number four can be attained. Since the proof is rather lengthy and
also since the conjecture above would imply Theorem 2 immediately, we will not present the
proof here.

Problems. Find the minimum numbers of vertices and twistings for special trefoil knots.
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