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Abstract. Let M be an isoparametric hypersurface with four distinct principal
curvatures in the unit sphere S ⊆ R2l with focal manifolds M+ and M−. Let
U be a vector space of symmetric (2l × 2l)-matrices such that each matrix in
U\{0} is regular, and assume that M+ is the intersection of S with the quadrics
{x ∈ R2l | 〈x,Ax〉 = 0}, A ∈ U. Then U is generated by a Clifford system and M is
an isoparametric hypersurface of Clifford type provided that dim M+ ≥ dim M−.
The proof of this theorem is based on properties of quadratic forms vanishing on
M+ and on a structure theorem for isoparametric triple systems, which we prove
in this paper.
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1. Introduction

Let M be an isoparametric hypersurface with four distinct principal curvatures in the
unit sphere S of the Euclidean vector space R2l such that for a suitable Cartan-Münzner
polynomial F we have M = S ∩ F−1(0), M+ = S ∩ F−1(1), and M− = S ∩ F−1(−1),
cf. [6], Theorem 4. If F is defined by means of a Clifford sphere Σ as in [2], 4.1, then
the focal manifold M+ is the intersection of S with the quadrics {x ∈ R2l | 〈x, Qx〉 = 0},
Q ∈ Σ, see [2], 4.2. In this paper we prove a partial converse to this statement: Let U

be a subspace of the vector space S2l of symmetric (2l × 2l)-matrices with the property
that each matrix in U\{0} is regular, and assume that M+ is the intersection of S with
the quadrics {x ∈ R2l | 〈x, Ax〉 = 0}, A ∈ U. Then U is generated by a Clifford sphere
and M is an isoparametric hypersurface of Clifford type provided that dim M+ ≥ dim M−.
The proof of this result is based on a structure theorem for isoparametric triple systems
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and on properties of quadratic forms vanishing on M+, see Theorem 2.1 and Proposition
3.1. Note that subspaces U with the property that each matrix in U\{0} is regular are
not rare at all: The n-dimensional subspaces with this property form an open subset in
the Grassmannian of n-dimensional subspaces of S2l. In particular, every subspace of
dimension dim RΣ which is sufficiently close to RΣ in the Grassmann topology has this
property.

Isoparametric triple systems were introduced by Dorfmeister and Neher in [1] and were
investigated in several subsequent papers. Theorem 2.1 is related to the main result of [1].
In [4], we used isoparametric triple systems in our proof that the incidence structures
associated with isoparametric hypersurfaces with four distinct prinicipal curvatures in
spheres are Tits buildings of type C2.

In this paper, we will not give a detailed introduction to the theory of isoparametric
hypersurfaces and the corresponding isoparametric triple systems. The reader is referred
to [6], [2], [1], [7], or to [3], [4], where we treated isoparametric hypersurfaces from an
incidence-geometric point of view. We will, however, present parts of these theories in the
following sections as far as the topics of the present paper are concerned.

2. Structure theorem for isoparametric triple systems

Let V denote a Euclidean vector space with unit sphere S. An isoparametric hypersurface
in S is a compact, connected smooth hypersurface of S with constant principal curva-
tures. Each isoparametric hypersurface gives rise to an isoparametric family of parallel
hypersurfaces. The sphere S is foliated by these parallel hypersurfaces and the two fo-
cal manifolds, see [6], Theorem 4. All these manifolds may be described by means of a
Cartan-Münzner polynomial, see [6], Theorem 2. More precisely, there exists a homoge-
neous polynomial function F : V → R such that the family of isoparametric hypersurfaces
is given by S∩F−1(ρ), −1 < ρ < 1, and the two focal manifolds are M+ = S∩F−1(1) and
M− = S∩F−1(−1). We set M = S∩F−1(0). Every isoparametric family has the geometric
property that a great circle S which intersects M orthogonally at one point intersects M
and the two focal manifolds orthogonally at each intersection point. Moreover, the points
of S∩M+ and S∩M− follow on S alternatingly at spherical distance π/g, where g denotes
the number of distinct principal curvatures of M , see [6], Section 6, cf. also [5], Proposition
3.2. We say that such a great circle S is normal to M .

For g = 4, there is a triple product {·, ·, ·} on V associated with the Cartan-Münzner
polynomial F . In this way, (V, 〈·, ·〉, {·, ·, ·}) becomes an isoparametric triple system, see
[1]. The focal manifolds are given by M+ = {x ∈ S | {x, x, x} = 3x} and M− = {y ∈
S | {y, y, y} = 6y}. For x, y ∈ V and λ ∈ R we put T (x, y) : V → V : z 7→ {x, y, z},
T (x) = T (x, x), and Vλ(x) = {z ∈ V | T (x)(z) = λz, 〈x, z〉 = 0}. If x ∈ M+ and
y ∈ M− then we have V = span{x} ⊕ V3(x) ⊕ V1(x) = span{y} ⊕ V0(y) ⊕ V2(y) (Peirce
decompositions). The dimensions of the Peirce spaces V3(x), V1(x), V0(y), and V2(y) are
given by m1 +1, m1 +2m2, m2 +1, and 2m1 +m2, respectively, where m1 and m2 denote
the multiplicities of the principal curvatures of M , see [1], Theorem 2.2. Furthermore, the
following identities hold (u0, v0, w0 ∈ V0(y), u3, v3, w3 ∈ V3(x)):
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(1) {u0, y, v0} = 0,
(2) {u0, v0, w0} = 2(〈u0, v0〉w0 + 〈v0, w0〉u0 + 〈w0, u0〉v0),
(3) {u3, x, v3} = 3〈u3, v3〉x,
(4) {u3, v3, w3} = 〈u3, v3〉w3 + 〈v3, w3〉u3 + 〈w3, u3〉v3.

These identities correspond to equations 2.3, 2.6, 2.10, and 2.13 in [1]. In particular,
we have S ∩ V3(x) ⊆ M+ and S ∩ V0(y) ⊆ M− by identities (2) and (4). The points
of M+ (of M−) with spherical distance π/4 from y (from x) are precisely the points in
S ∩ ((1/

√
2)y + V0(y)) (in S ∩ ((1/

√
2)x + V3(x)), respectively), cf. [4], Section 2 and 3.1.

Hence, on every great circle through x ∈ M+ and a point z3 ∈ S ∩ V3(x) ⊆ M+ there is a
point (1/

√
2)(x+ z3) ∈ M− and, in fact, such a great circle is normal to M , cf. [6], Section

6, and [4], Corollary 3.3. Analogously, every great circle through y ∈ M− and a point of
S ∩ V0(y) is normal to M . We are now ready to prove the following structure theorem:

2.1 Theorem. Let (V, 〈·, ·〉, {·, ·, ·}) be an isoparametric triple system. Let S be a great
circle of S normal to M which intersects M+ at the four points ±p,±q and M− at the four
points ±r,±s. Then V decomposes as an orthogonal sum

V = span{p, q, r, s} ⊕ V ′
3(p)⊕ V ′

3(q)⊕ V ′
0(r)⊕ V ′

0(s),

where V ′
3(p), V ′

3(q), V ′
0(r), V ′

0(s) are defined by V3(p) = V ′
3(p)⊕ span{q}, V3(q) = V ′

3(q)⊕
span{p}, V0(r) = V ′

0(r)⊕ span{s}, and V0(s) = V ′
0(s)⊕ span{r}.

Proof. The points of M+ and M− follow on S alternatingly at spherical distance π/4.
Hence we have 〈p, q〉 = 〈r, s〉 = 0, and without loss of generality we may assume that
r = (1/

√
2)(p + q) and q = (1/

√
2)(r + s).

First we want to justify the definition of V ′
3(p) by V3(p) = V ′

3(p) ⊕ span{q}. For
this purpose we have to show that q ∈ V3(p). We have 〈r, p〉 = 1/

√
2 and hence r ∈

S ∩
(
(1/

√
2)p + V3(p)

)
, as mentioned above. This implies that q ∈ V3(p) because of

r = (1/
√

2)(p + q). Analogously we see that the definitions of V ′
3(q), V ′

0(r), and V ′
0(s)

make sense.
Next we consider the action of the operators T (p, q) and T (r, s) on these subspaces

of V . For x ∈ V ′
0(s) we have T (r, s)(x) = {r, s, x} = 0 by identity (1). In the same way

we see that T (r, s) maps V ′
0(r) to {0}. Now let y ∈ V ′

3(q). As remarked above, we have
r = (1/

√
2)q + r3 and s = (1/

√
2)q + s3 with r3, s3 ∈ V3(q). Note that 〈r3, y〉 = 〈s3, y〉 = 0

and 〈r3, s3〉 = −1/2. Then the identities (3) and (4) imply that

T (r, s)(y) = {(1/
√

2)q + r3, y, (1/
√

2)q + s3} = (3/2)y − (1/2)y = y,

i.e. T (r, s) acts on V ′
3(q) as the identity. Analogously, T (r, s) acts on V ′

3(p) as −id. Hence
we have proved that T (r, s)|V ′

0 (r) = T (r, s)|V ′
0 (s) = 0, T (r, s)|V ′

3 (q) = id, and T (r, s)|V ′
3 (p) =

−id.
Using the above identities, it can be shown in the same way that T (p, q)|V ′

3 (p) =
T (p, q)|V ′

3 (q) = 0, T (p, q)|V ′
0 (r) = −id, and T (p, q)|V ′

0 (s) = id. Since the operators T (p, q)
and T (r, s) are self-adjoint, we get span{p, q, r, s} ⊕ V ′

3(p) ⊕ V ′
3(q) ⊕ V ′

0(r) ⊕ V ′
0(s) ≤ V .

The claim follows because of dim V = 2 + 2m1 + 2m2. �
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3. Quadratic forms vanishing on a focal manifold

Every quadratic form on the Euclidean vector space R2l may be described by a uniquely de-
termined symmetric matrix. The subspace A(M+) = {A ∈ S2l | 〈x,Ax〉 = 0 for every x ∈
M+} of S2l corresponds to the vector space of quadratic forms vanishing on M+. This
subspace may be of interest in the classification of isoparametric hypersurfaces with four
distinct principal curvatures in spheres. The following proposition explains the structure
of A(M+).

3.1 Proposition. Let M+ and M− be the focal manifolds of an isoparametric hypersurface
with four distinct principal curvatures in the unit sphere S ⊆ R2l and let A(M+) = {A ∈
S2l | 〈x,Ax〉 = 0 for every x ∈ M+}. Then the following two statements hold:
(i) For every A,B ∈ A(M+) we have ABA ∈ A(M+).
(ii) For every A ∈ A(M+) we have A =

∑r
i=1 λi(Qλi

−Q−λi
) with Qλi

−Q−λi
∈ A(M+),

where the ±λi denote the non-zero eigenvalues of A and the Q±λi denote the orthogo-
nal projections onto the eigenspaces of these eigenvalues. Moreover, the eigenvalues λi

and λ−i have the same multiplicity µi ≥ m2 + 1, and their eigenspaces are contained
in RM−.

Proof. Let A,B ∈ A(M+) and x ∈ M+. The quadratic form b1 : R2l → R2l : z 7→ 〈z,Az〉
vanishes on M+. The differential D(b1)x vanishes on the tangent space TxM+, i.e. we have
〈Ax, u〉 = 0 for every u ∈ TxM+. By [4], 3.3, we have TxM+ = V1(x). We conclude that
Ax ∈ V3(x). Hence we get (1/‖Ax‖)Ax ∈ M+ provided that Ax 6= 0. In any case we have
〈Ax, B(Ax)〉 = 0. Since x ∈ M+ was chosen arbitrarily, we get 〈y, (ABA)y〉 = 0 for every
y ∈ M+. This proves (i).

Let A(1) ∈ A(M+)\{0}. For each λ ∈ R we denote by Qλ the orthogonal projection
onto the subspace Eλ = {x ∈ R2l | A(1)x = λx}. The distinct absolute values of non-zero
eigenvalues of A(1) are denoted by λ1, λ2, . . . , λr such that λ1 > λ2 > . . . > λr. Then we
have A(1) =

∑r
i=1 λi(Qλi

−Q−λi
). By (i), the sequence ((A(1)/λ1)2n+1)n∈N is contained

in A(M+). Hence we get limn→∞(A(1)/λ1)2n+1 = Qλ1 −Q−λ1 ∈ A(M+). We set A(2) =
A(1) − λ1(Qλ1 − Q−λ1) ∈ A(M+). Then we get limn→∞(A(2)/λ2)2n+1 = Qλ2 − Q−λ2 ∈
A(M+). By proceeding in this way, we obtain Qλi − Q−λi ∈ A(M+) for i = 1, . . . , r.
Choose i ∈ {1, . . . , r} arbitrarily. In order to complete the proof of (ii) it suffices to show
that λi and −λi are both eigenvalues of A(1) with the same multiplicity µi ≥ m2 + 1 and
that their eigenspaces are contained in RM−. Let xi denote an eigenvector of A(1) to an
eigenvalue with absolute value λi with ‖xi‖ = 1 . If this eigenvalue is positive, we put ε = 1,
otherwise ε = −1. Note that the quadratic form b2 : R2l → R : y 7→ 〈y, (Qλi − Q−λi)y〉
takes its maximum 1 (minimum −1) on S at xi for ε = 1 (ε = −1). Let S denote a great
circle of S through xi normal to M. By Theorem 2.1, we have for V = R2l

V = span{p, q, r, s} ⊕ V ′
3(p)⊕ V ′

3(q)⊕ V ′
0(r)⊕ V ′

0(s),

where ±p,±q (±r,±s) are the four intersection points of M+ (M−) with S. The map
b2|span{p,q,r,s} is a quadratic form on the two-dimensional vector space span{p, q, r, s}. It
vanishes at ±p,±q and hence takes its maximum 1 on S at ±r and its minimum −1 at ±s,
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or vice versa. Hence we get xi ∈ S ∩M−. Without loss of generality we may assume that
xi = r. Then we have b2(r) = ε and b2(s) = −ε. This implies that (Qλi

−Q−λi
)(r) = εr

and (Qλi
−Q−λi

)(s) = −εs. Now choose s′ ∈ V0(r)∩S arbitrarily. Then the great circle of S
through r and s′ is normal to M and we see as before that (Qλi

−Q−λi
)(s′) = −εs′. Hence,

we obtain V0(r) ⊆ E(−ε)λ. Analogously, we get V0(s) ⊆ Eελ. We choose orthonormal
bases of V ′

3(p), V ′
3(q), V0(r), and V0(s). In this way we get an orthonormal base of V ,

and we describe the quadratic form b2 by a matrix with respect to this base. The trace
of this matrix is equal to 0 since b2(x) = b2(y) = 0 (because of V0(r), V0(s) ⊆ RM+),
b2(z) = −ε〈z, z〉, and b2(w) = ε〈w,w〉 for x ∈ V ′

3(p), y ∈ V ′
3(q), z ∈ V0(r), w ∈ V0(s),

where dim V0(r) = dim V0(s) = m2 + 1. We conclude that also the trace of the matrix
Qλi − Q−λi is equal to 0. Hence, λi and −λi are eigenvalues of A(1) with the same
multiplicity µi ≥ m2 + 1. This completes the proof. �

4. Main theorem

In this section we apply the results of Proposition 3.1 in order to prove a characterization of
isoparametric hypersurfaces of Clifford type under the assumption that dim M+ ≥ dim M−.
This assumption is equivalent to m1 ≤ m2 because of dim M+ = m1 +2m2 and dim M− =
m2 + 2m1, see [6], proof of Theorem 4, cf. [4], 3.1. Note that this condition is satisfied for
all isoparametric hypersurfaces of Clifford type except for a small number of exceptions,
see [2], 4.3 and 7.

4.1 Theorem. Let M be an isoparametric hypersurface in S ⊆ R2l with four dis-
tinct principal curvatures and assume that the two focal manifolds M+ and M− satisfy
dim M+ ≥ dim M−. Let U denote a subspace of S2l such that U\{0} consists of regular
matrices. Then the following two statements are equivalent.
(i) M+ = {x ∈ S | 〈x,Ax〉 = 0 for every A ∈ U}.
(ii) The subspace U is generated by a Clifford system, and M is an isoparametric hyper-

surface of Clifford type associated with this Clifford system.

Proof. We have already mentioned that (ii) implies (i), see [2], 4.2 (ii). In order to
prove (i) ⇒ (ii), choose A ∈ U\{0} arbitrarily. Assume that A has at least two eigen-
values with different absolute values. Then, by Proposition 3.1, the matrix A has at
least four distinct eigenvalues, each of which has at least multiplicity m2 + 1. We con-
clude that 4(m2 + 1) ≤ 2l = 2(m1 + m2 + 1). This is equivalent to m2 + 1 ≤ m1 and
contradicts m1 ≤ m2. Hence, all eigenvalues of A have the same absolute value and
we obtain A2 = 〈A,A〉id with respect to the scalar product 〈B,C〉 = (1/2l) trace(BC)
on S2l. Since M+ is a submanifold of codimension at least 2 in S, the subspace U

is at least two-dimensional. We denote by {P0, P1, . . . , Pm} an orthonormal base of
U. Then we have P 2

i = id for i = 0, . . . ,m. Furthermore, for i, j ∈ {0, . . . ,m} with
i 6= j we have ‖(1/

√
2)(Pi + Pj)‖ = 1, hence (1/2)(Pi − Pj)2 = id, which implies that

PiPj + PjPi = 0. Therefore (P0, P1, . . . , Pm) is a Clifford system. By (i), we have
M+ = {x ∈ S | 〈x, Pix〉 = 0 for i = 0, . . . ,m}. Since families of isoparametric hyper-
surfaces are uniquely determined by one of their focal manifolds (cf. [5], 3.2, or [6], Section
6), we conclude that M is an isoparametric hypersurface of Clifford type associated with
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the Cartan-Münzner polynomial F : R2l → R : x 7→ 〈x, x〉2 − 2
∑m

i=0〈Pix, x〉2, cf. [2], 4.1,
4.2 (ii). This completes the proof. �
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57–71. Zbl 0417.53030−−−−−−−−−−−−

[7] Thorbergsson, G.: A survey on isoparametric hypersurfaces and their generalizations.
In: Dillen, F. J. E., Verstraelen, L. C. A.: Handbook of differential geometry, 963–995.
Elsevier Science B. V., 2000 Zbl 0979.53002−−−−−−−−−−−−

Received October 27, 2003

http://www.emis.de/MATH-item?0507.53038
http://www.emis.de/MATH-item?0443.53037
http://www.emis.de/MATH-item?1015.51003
http://www.emis.de/MATH-item?01868664
http://www.emis.de/MATH-item?0839.53044
http://www.emis.de/MATH-item?0417.53030
http://www.emis.de/MATH-item?0979.53002

