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Let Λ be a finite dimensional, connected, associative algebra with unit over a field k. Let n be
the number of isomorphism classes of simple Λ-modules. By mod Λ we denote the category
of finite dimensional left Λ-modules.

A module ΛT ∈ mod Λ is called a tilting module if
(i) the projective dimension pd ΛT of ΛT is finite, and

(ii) Exti
Λ(T, T ) = 0 for all i > 0, and

(iii) there is an exact sequence 0→ ΛΛ→ ΛT 1 → · · · → ΛT d → 0 with ΛT i ∈ add ΛT for all
1 ≤ i ≤ d.

Here add ΛT denotes the category of direct sums of direct summands of ΛT .
Tilting modules play an important role in many branches of mathematics such as repre-

sentation theory of Artin algebras or the theory of algebraic groups.

Let
m⊕

i=1

Ti be the decomposition of ΛT into indecomposable direct summands. We call

ΛT basic if ΛTi 6' ΛTj for all i 6= j. A basic tilting module has n indecomposable direct
summands.

A direct summand ΛM of a basic tilting module ΛT is called an almost complete tilting
module if ΛM has n− 1 indecomposable direct summands.

Let T (Λ) be the set of all non isomorphic basic tilting modules over Λ. We associate

with T (Λ) a quiver
−−→
K(Λ) as follows: The vertices of

−−→
K(Λ) are the tilting modules in T (Λ),

and there is an arrow ΛT ′ → ΛT if ΛT and ΛT ′ have a common direct summand which is an
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almost complete tilting module and if Ext1
Λ(T, T ′) 6= 0. We call

−−→
K(Λ) the quiver of tilting

modules over Λ. With K(Λ) we denote the underlying graph of
−−→
K(Λ). It has been recently

shown [7] that K(Λ) is the Hasse diagram of a partial order of tilting modules which was

basically introduced in [10]. From this it follows, that
−−→
K(Λ) has no oriented cycles.

If
−−→
K(Λ) is finite, then it is connected. Examples show that

−−→
K(Λ) may be rather com-

plicated. One measure for the complicatedness of a graph G is its genus γ(G). This is the
minimal genus of an orientable surface on which G can be embedded.

The aim of these notes is to show that there are finite quivers of tilting modules of
arbitrary genus. To be precise, we prove:

Theorem 1. For all integers r ≥ 0 there is a representation finite, connected algebra Λr

such that γ(K(Λr)) = r.

The proof of the theorem is constructive. For each r ∈ N we give an explicit example of
an algebra Λr and embed K(Λr) in an orientable surface of genus r. This gives an upper
bound for γ(K(Λr)). Then we use general results from graph theory to show that the bound
is sharp. This will be done in Section 3. In Section 1 we recall some basic facts about tilting
modules and embeddings of graphs. In Section 2 we introduce the algebras Λr and derive some

properties of
−−−→
K(Λr). For unexplained terminology and results from representation theory we

refer to [1], and from graph theory to [8].

Acknowledgement. Part of this work was done while the first author was visiting the
Centre of Advanced Studies in Oslo. She wants to thank the staff of the Centre for the warm
hospitality and the possibility to enjoy the stimulating atmosphere at the Centre.

1. Preliminaries

1.1. The construction of
−−→
K(Λ)

Let ΛM be a direct summand of a tilting module. A basic Λ-module ΛX is called a complement
to ΛM if ΛM ⊕ ΛX is a tilting module and if add M ∩ add X = 0. It was proved in [5] that
every direct summand of a tilting module has a distinguished complement ΛX which is
characterized by the fact that there is no epimorphism ΛE → ΛX with ΛE ∈ add ΛM . The
module ΛX is unique up to isomorphism, and it is called the source complement to ΛM .
There is the dual concept of a source complement. A complement ΛY to ΛM is called a
sink complement to a direct summand ΛM of a tilting module, if there is no monomorphism

ΛY → ΛE with ΛE ∈ add ΛM . In contrast to source complements, sink complements do not
always exist. If ΛM has a sink complement then it is unique up to isomorphism [6]. The
source and the sink complement to an almost complete tilting module ΛM coincide if and
only if ΛM is not faithful [4]. The following result is basically contained in [4], compare [6].

Proposition 1. Let ΛM be a faithful almost complete tilting module. Let ΛX be a comple-
ment to ΛM which is not the sink complement to ΛM . Then

(1) there is a complement ΛY to ΛM which is not isomorphic to ΛX,

(2) there is an exact sequence η : 0→ ΛX → ΛE → ΛY → 0 with ΛE ∈ add ΛM ,
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(3) Exti
Λ(X, Y ) = 0 for all i > 0, and Exti

Λ(Y,X) = 0 for all i > 1,

(4) the module ΛY is uniquely determined by the property (2).

We call η the sequence connecting the complements ΛX and ΛY to ΛM . This result allows an

alternative definition of the quiver
−−→
K(Λ) which is more useful for calculations. The vertices

are the elements from T (Λ) as above. There is an arrow ΛT ′ → ΛT in
−−→
K(Λ) if ΛT ′ = ΛM⊕ΛX

and ΛT = ΛM ⊕ ΛY where ΛX and ΛY are indecomposable, and if there is an exact sequence
0→ ΛX → ΛE → ΛY → 0 with ΛE ∈ add ΛM .

If
−−→
K(Λ) is finite, then it is connected. Then the definition of

−−→
K(Λ) yields an algorithm to

construct
−−→
K(Λ). We write the tilting module ΛΛ as a direct sum of indecomposable modules

ΛΛ =
n⊕

i=1

ΛΛi. Then ΛΛi is the source complement to ΛΛ[i] =
⊕
j 6=i

ΛΛj. If ΛΛi is not the

sink complement to ΛΛ[i] we construct the exact sequence 0→ ΛΛi → ΛEi → ΛYi → 0 with

ΛEi ∈ add ΛΛ[i] connecting the complements ΛΛi and ΛYi to ΛΛ[i]. In this way we construct
all neighbors of ΛΛ. We now proceed analogously with the neighbors of ΛΛ and all vertices

we constructed. Since
−−→
K(Λ) is finite and connected and has no oriented cycles this algorithm

stops when we constructed all basic tilting modules over Λ.

1.2. Embeddings of graphs

Let G be a connected, finite graph with p vertices and q edges. We think of G as embedded
on a surface S. Then G forms a polyhedron of genus γ(G). From the Euler polyhedron
formula Beinecke and Harary [3] deduce the following lower bound for γ(G) which we shall
use in Section 3.

Proposition 2. If G is connected and has no triangles, then γ(G) ≥ 1
4
q − 1

2
(p− 2).

In general this bound is not sharp. As an example we consider the following graph G which
will become important in Section 3.

This graph has 18 vertices and 29 edges, hence the formula yields γ(G) ≥ −3
4
.
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But G is not even planar, namely it contains the subgraph

which is homeomorphic to

PSfrag replacements
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2′ 3′

1

2

3

This graph is isomorphic to the complete bigraph K3,3 :

PSfrag replacements

1′ 2′ 3′

1 2 3

. Kuratowski’s theorem [9]

implies γ(G) ≥ 1. Conversely, we draw G differently and shade some of its faces:
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We push a cylinder through the lower cube, close it under the upper square, adjust the
vertices and edges accordingly and obtain an embedding of G on a torus. To be precise, the



L. Unger, M. Ungruhe: On the Genus of the Graph of Tilting Modules 419

following figure shows an embedding of G on a torus:
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The parallel dotted lines have to be identified. Hence γ(G) = 1.

2. The algebras Λr and properties of
−−−→
K(Λr)

2.1. The algebras Λr

Let Λ1 be the path algebra of the quiver
−→
∆ 1 :

PSfrag replacements
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δ

bound by the relation αβ = γδ.

For all r > 1 let Λr be the path algebra of the quiver
−→
∆ r :
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2 3 r

bound by the relations αβ = γδ and rad2 = 0, i.e. the composition of two consecutive arrows

in
−→
∆ r \ {a} is zero.

The Auslander-Reiten quivers
−→
Γ Λr of Λr are as follows:

−→
ΓΛ1
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and for r > 1

−→
ΓΛr

PSfrag replacements

Pa

Pb

Pc

Pd

P1

P2

P3 Pr

Sb

Sc

Sd

S1

S2 S3 Sr−1 Sr

Ib

Ic

IdX Y

Here Sx denotes the simple module corresponding to the vertex x, the module Px is the
projective cover of Sx and Ix denotes the injective hull of Ix. Moreover, X is the radical of
Pd = Ia and Y = Ia/ soc Ia, where soc Ia is the socle of Ia.

For all 1 ≤ i ≤ r we identify an indecomposable Λi-module Λi
M with the corresponding

Λj-module Λj
M , j ≥ i, whose support is Λi. With this identification

−→
Γ Λi

is a full, convex

subquiver of
−→
Γ Λj

for all 1 ≤ i < j ≤ r.
We have gl dimΛi = i + 1 for all 1 ≤ i ≤ r, where gl dimΛ denotes the global dimension

of an algebra Λ. The simple module Sd is the unique indecomposable module of projective
dimension 2, the modules Id, S1, S2 are the unique indecomposable modules of projective
dimension 3, and for all 3 ≤ j ≤ r the module Sj is the unique indecomposable module of
projective dimension j + 1. These observations show:

Remark 1. Let 1 ≤ j ≤ r − 1. A non projective indecomposable module Λj
X lies in

mod Λj \mod Λj−1 if and only if pdΛj
X = j + 1.

2.2. Properties of the quiver
−−−→
K(Λr)

The following technical lemmas roughly describe the structure of the quiver
−−−→
K(Λr). Let

r be an integer, r ≥ 2, and let 1 ≤ i < j ≤ r. We decompose the projective module

Λj
Λj into Λj

Λj = Λj
Λi ⊕ Λj

Pij. Hence Λj
Pij is the maximal direct summand of Λj

Λj with
add Λj

Pij ∩ add Λj
Λi = 0.

Lemma 1. Let 1 ≤ i < j ≤ r, and let Λi
T and Λi

T ′ be tilting modules over Λi. Then

(a) Λj
T ⊕ Λj

M is a tilting module over Λj if and only if Λj
M = Λj

Pij.

(b) Λj
T ′⊕ Λj

Pij → Λj
T ⊕ Λj

Pij is an arrow in
−−−→
K(Λj) if and only if Λi

T ′ → Λi
T is an arrow

in
−−−→
K(Λi).

Proof. (a) Since Λj
Pij is projective, Extk

Λj
(Pij, T ) = 0 for all k > 0. Since no indecomposable

direct summand of Λj
T is a successor of an indecomposable direct summand of Λj

Pij in

the Auslander-Reiten quiver of Λj, it follows that Extk
Λj

(T, Pij) = 0 for all k > 0. Hence

Λj
T ⊕ Λj

Pij is a tilting module. The module Λj
Pij is the source and the sink complement to

Λj
T , hence the unique complement.

(b) There is an arrow Λj
T ′⊕Λj

Pij → Λj
T ⊕Λj

Pij if and only if Ext1
Λj

(T ⊕Pij, T
′⊕Pij) 6= 0

and if Λj
T ⊕ Λj

Pij and Λj
T ′ ⊕ Λj

Pij have a common direct summand which is an almost
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complete tilting module. Equivalently, Ext1
Λi

(T, T ′) 6= 0 and Λi
T and Λi

T ′ have a common
direct summand which is an almost complete tilting module, hence if and only if there is an

arrow Λi
T ′ → Λi

T in
−−−→
K(Λi). �

In particular, we may identify
−−−→
K(Λi) with the full convex subquiver of

−−−→
K(Λr), 1 ≤ i < r,

with vertices ΛrT ⊕ ΛrPir where Λi
T are the tilting modules over Λi. With this identification,

the building blocks of
−−−→
K(Λr) are the subquivers

−−−→
K(Λi) \

−−−−−→
K(Λi−1) of

−−−→
K(Λr) with 1 ≤ i ≤ r.

To simplify the notation we denote by
−−−→
K(Λ1) \

−−−→
K(Λ0) the subquiver

−−−→
K(Λ1) of

−−−→
K(Λr). The

next lemma gives an algebraic description of the vertices in
−−−→
K(Λi) \

−−−−−→
K(Λi−1) of

−−−→
K(Λr) with

1 < i ≤ r.

Lemma 2. For all 1 < i ≤ r, the subquiver
−−−→
K(Λi) \

−−−−−→
K(Λi−1) of

−−−→
K(Λr) has as vertices all

tilting modules of projective dimension i + 1.

Proof. With the previous lemma, ΛrT ∈
−−−→
K(Λi) if and only if ΛrT = ΛrT

′ ⊕ ΛrPir with Λi
T ′

a tilting module over Λi. Using the lemma again, Λi
T ′ 6∈

−−−−−→
K(Λi−1) if and only if there is an

indecomposable, non projective direct summand ΛrX of ΛrT
′ with ΛrX ∈ mod Λi \mod Λi−1.

With the remark in 2.1, this holds if and only if pd Λi
X = i + 1. �

Next we study arrows in
−−−→
K(Λr) between vertices in different building blocks of

−−−→
K(Λr).

Lemma 3. Let 1 ≤ i < j ≤ r. Let ΛrT
′ ∈
−−−→
K(Λi) \

−−−−−→
K(Λi−1) and ΛrT ∈

−−−→
K(Λj) \

−−−−−→
K(Λj−1) be

tilting modules over Λr.

(a) There are no arrows ΛrT → ΛrT
′ in
−−−→
K(Λr).

(b) If there is an arrow ΛrT
′ → ΛrT in

−−−→
K(Λr) then pd ΛrT

′ = i + 1 and pd ΛrT = i + 2. In
particular, j = i + 1.

Proof. (a) Assume there is an arrow ΛrT → ΛrT
′ in
−−−→
K(Λr) with ΛrT

′ ∈
−−−→
K(Λi) \

−−−−−→
K(Λi−1) and

ΛrT ∈
−−−→
K(Λj) \

−−−−−→
K(Λj−1) and i < j. Then ΛrT

′ = ΛrT
′ ⊕ ΛrPir and ΛrT = ΛrT ⊕ ΛrPjr, where

Λi
T ′ and Λj

T are tilting modules over Λi respectively Λj. Note that ΛrPjr is a direct summand

of ΛrPir. Then 0 6= Ext1
Λr

(T ′, T ) = Ext1
Λr

(T ′, T ) = Ext1
Λj

(T ′, T ). Since ΛrT ∈
−−−→
K(Λj)\

−−−−−→
K(Λj−1)

there is an indecomposable direct summand Λj
X ∈ mod Λj \Λj−1 of Λj

T with Ext1
Λj

(T ′, X) 6=
0. This is a contradiction since Λj

X is not a predecessor of an indecomposable direct summand

of Λj
T ′ in

−→
Γ Λj

.

(b) Let ΛrT
′ → ΛrT in

−−−→
K(Λr) be an arrow in

−−−→
K(Λr) with ΛrT

′ ∈
−−−→
K(Λi) \

−−−−−→
K(Λi−1) and

ΛrT ∈
−−−→
K(Λj) \

−−−−−→
K(Λj−1). Let η : 0→ ΛrX → ΛrE → ΛrY → 0 be the corresponding sequence

connecting the complements ΛrX and ΛrY , where ΛrT
′ = ΛrX ⊕ ΛrM and ΛrT = ΛrY ⊕ ΛrM .

Since ΛrT ∈
−−−→
K(Λj) \

−−−−−→
K(Λj−1) it follows that ΛrY ∈ mod Λj \mod Λj−1, hence pd ΛrY = j +1.

Let ΛrZ ∈ mod Λr with Extj+1
Λr

(Y, Z) 6= 0. We apply HomΛr(−, Z) to η and obtain pd ΛrX =

j. Since ΛrT
′ ∈
−−−→
K(Λi) \

−−−−−→
K(Λi−1) and i 6= j we get j = i + 1, the assertion. �

As a consequence we obtain
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Lemma 4. Let r > 1.
(a) There is an arrow ΛrT

′ → ΛrT in
−−−→
K(Λr) with ΛrT

′ ∈
−−−→
K(Λ1) and ΛrT ∈

−−−→
K(Λ2) \

−−−→
K(Λ1)

if and only if ΛrT
′ = ΛrSd ⊕ ΛrM and ΛrT = ΛrId ⊕ ΛrM .

(b) Let 3 ≤ i ≤ r. There is an arrow ΛrT
′ → ΛrT in

−−−→
K(Λr) with ΛrT

′ ∈
−−−−−→
K(Λi−1) and

ΛrT ∈
−−−→
K(Λi) \

−−−−−→
K(Λi−1) if and only if ΛrT

′ = ΛrSi−1 ⊕ ΛrM and ΛrT = ΛrSi ⊕ ΛrM .

Proof. (a) Let ΛrT
′ → ΛrT be an arrow in

−−−→
K(Λr) with ΛrT

′ ∈
−−−→
K(Λ1) and ΛrT ∈

−−−→
K(Λ2)\

−−−→
K(Λ1).

Then pd ΛrT = 3 with Lemma 2 and pd ΛrT
′ = 2. Then ΛrSd is a direct summand of

ΛrT . Moreover, Lemma 1 shows that ΛrP1 ⊕ ΛrP2 is a direct summand of ΛrT . Hence
the sequence connecting the complements is the Auslander-Reiten sequence, which implies
that ΛrT

′ = ΛrSd ⊕ ΛrM and ΛrT = ΛrId ⊕ ΛrM . Conversely, if ΛrT
′ = ΛrSd ⊕ ΛrM and

ΛrT = ΛrId ⊕ ΛrM , the Auslander-Reiten sequence starting in ΛrSd lies in add(ΛrT ⊕ ΛrT
′).

Hence we obtain an arrow ΛrT
′ → ΛrT in

−−−→
K(Λr) with ΛrT

′ ∈
−−−→
K(Λ1) and ΛrT ∈

−−−→
K(Λ2)\

−−−→
K(Λ1).

(b) Let 3 ≤ i ≤ r and let ΛrT
′ → ΛrT be an arrow in

−−−→
K(Λr) with ΛrT

′ ∈
−−−−−→
K(Λi−1) and

ΛrT ∈
−−−→
K(Λi) \

−−−−−→
K(Λi−1). Then pd ΛrT = i + 1 and pd ΛrT

′ = i. Since 2 < i it follows that

ΛrSi−1 is a direct summand of of ΛrT
′ and ΛrSi is a direct summand of of ΛrT . Conversely, if

ΛrT
′ = ΛrSi−1 ⊕ ΛrM and ΛrT = ΛrSi ⊕ ΛrM then the Auslander-Reiten sequence starting in

ΛrSi−1 lies in add(ΛrT⊕ΛrT
′). This yields an arrow ΛrT

′ → ΛrT in
−−−→
K(Λr) with ΛrT

′ ∈
−−−−−→
K(Λi−1)

and ΛrT ∈
−−−→
K(Λi) \

−−−−−→
K(Λi−1). �

To summarize our observations in this section we obtain the following structure of
−−−→
K(Λr):

PSfrag replacements
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There are arrows from vertices in
−−−→
K(Λi) \

−−−−−→
K(Λi−1) to vertices in

−−−→
K(Λj) \

−−−−−→
K(Λj−1) if and only

if j = i + 1.

3. The proof of the theorem

3.1. An embedding of
−−−→
K(Λr)

We use induction on r to embed
−−−→
K(Λr) on a surface of genus r.
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Let r = 1. Direct calculation shows that
−−−→
K(Λ1) equals
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where the parallel dotted lines have to be identified. We saw in 1.2 that the underlying graph

K(Λ1)) of
−−−→
K(Λ1) has genus 1, hence can be embedded on a torus T1. The vertices of

−−−→
K(Λ1)

are the tilting modules

X1
1 = Pa ⊕ Pb ⊕ Pc ⊕ Pd, X1

2 = Pa ⊕ Pc ⊕ Ic ⊕ Pd, X1
3 = Pa ⊕ Pb ⊕ Ib ⊕ Pd,

X1
4 = Pa ⊕ Ib ⊕ Ic ⊕ Pd, X1

5 = Pb ⊕ Pc ⊕X ⊕ Pd, X1
6 = Pc ⊕ Sc ⊕X ⊕ Pd,

X1
7 = Pb ⊕ Sb ⊕X ⊕ Pd, X1

8 = Sb ⊕ Sc ⊕X ⊕ Pd, X1
9 = Pc ⊕ Ic ⊕ Sc ⊕ Pd,

X1
10 = Sb ⊕ Sc ⊕ Y ⊕ Pd, X1

11 = Sc ⊕ Ic ⊕ Y ⊕ Pd, X1
12 = Sb ⊕ Ib ⊕ Y ⊕ Pd,

X1
13 = Ib ⊕ Ic ⊕ Y ⊕ Pd, X1

14 = Pb ⊕ Ib ⊕ Sb ⊕ Pd, X1
15 = Pb ⊕ Pc ⊕ Sd ⊕ Pd,

X1
16 = Pc ⊕ Ic ⊕ Sd ⊕ Pd, X1

17 = Pb ⊕ Ib ⊕ Sd ⊕ Pd, X1
18 = Ib ⊕ Ic ⊕ Sd ⊕ Pd.

Let r = 2. The quiver
−−−→
K(Λ1) is the full convex subquiver of

−−−→
K(Λ2) with vertices Λ2X

2
i =

Λ2X
1
i ⊕Λ2P12, where Λ2P12 = Λ2P1⊕Λ2P2. The quiver

−−−→
K(Λ2)\

−−−→
K(Λ1) is the full convex subquiver

of
−−−→
K(Λ2) with vertices the tilting modules of projective dimension 3. Direct calculations show

that
−−−→
K(Λ2) \

−−−→
K(Λ1) isPSfrag replacements
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where we identify along the parallel horizontal, respectively vertical lines. It follows that−−−→
K(Λ2) \

−−−→
K(Λ1) can be embedded on a torus T2. The vertices of

−−−→
K(Λ2) \

−−−→
K(Λ1) are the tilting

modules

Y 2
1 = Pd ⊕ Id ⊕ Ic ⊕ Ib ⊕ P1 ⊕ S1, Y 2

2 = Pd ⊕ Id ⊕ Ic ⊕ Pc ⊕ P1 ⊕ S1,
Y 2

3 = Pd ⊕ Id ⊕ Ic ⊕ Pc ⊕ P1 ⊕ P2, Y 2
4 = Pd ⊕ Id ⊕ Ib ⊕ Ic ⊕ P1 ⊕ P2,

Y 2
5 = Pd ⊕ Id ⊕ Ic ⊕ Ib ⊕ S2 ⊕ S1, Y 2

6 = Pd ⊕ Id ⊕ Ic ⊕ Pc ⊕ S2 ⊕ S1,
Y 2

7 = Pd ⊕ Id ⊕ Ic ⊕ Pc ⊕ S2 ⊕ P2, Y 2
8 = Pd ⊕ Id ⊕ Ic ⊕ Ib ⊕ S2 ⊕ P2,

Y 2
9 = Pd ⊕ Id ⊕ Pb ⊕ Ib ⊕ S2 ⊕ S1, Y 2

10 = Pd ⊕ Id ⊕ Pb ⊕ Pc ⊕ S2 ⊕ S1,
Y 2

11 = Pd ⊕ Id ⊕ Pb ⊕ Pc ⊕ S2 ⊕ P2, Y 2
12 = Pd ⊕ Id ⊕ Pb ⊕ Ib ⊕ S2 ⊕ P2,

Y 2
13 = Pd ⊕ Id ⊕ Pb ⊕ Ib ⊕ P1 ⊕ S1, Y 2

14 = Pd ⊕ Id ⊕ Pb ⊕ Pc ⊕ P1 ⊕ S1,
Y 2

15 = Pd ⊕ Id ⊕ Pb ⊕ Pc ⊕ P1 ⊕ P2, Y 2
16 = Pd ⊕ Id ⊕ Pb ⊕ Ib ⊕ P1 ⊕ P2.

The subquivers
−→
Q 1 :

X2
17 ←−−− X2

15y y
X2

18 ←−−− X2
16

and
−→
Q 2 :

Y 2
16 ←−−− Y 2

15y y
Y 2

4 ←−−− Y 2
3

bound squares on T1 respectively T2. In
−−−→
K(Λ2) they are joint as follows:

PSfrag replacements

α1
α2

α3

α4 X2
15

X2
16

X2
17

X2
18

Y 2
15Y 2

16

Y 2
3Y 2

3

We cut out the interiors of
−→
Q 1 on T1 and

−→
Q 2 on T2 and insert a cylinder connecting T1 and

T2. We obtain a surface of genus 2 on which
−−−→
K(Λ2) can be embedded:

PSfrag replacements

T1

T2

X2
15

X2
16

X2
17

X2
18

Y 2
15Y 2

16

Y 2
3Y 2

3
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Let r > 2. We abbreviate the injective Λr-module by ΛrPd ⊕ ΛrId by ΛrI and the projective-

injective Λr-module
r⊕

i=3

ΛrPi by ΛrP2r. Direct calculations show that
−−−→
K(Λr) \

−−−−−→
K(Λr−1) is

PSfrag replacements

Z1

Z2 Z3

Z4

Z5

Z6 Z7

Z8

with
Z1 = I ⊕ P2r ⊕ Sr ⊕ Ic ⊕ Pc ⊕ S1, Z2 = I ⊕ P2r ⊕ Sr ⊕ Pb ⊕ Ic ⊕ S1,
Z3 = I ⊕ P2r ⊕ Sr ⊕ Pb ⊕ Pc ⊕ P2, Z4 = I ⊕ P2r ⊕ Sr ⊕ Ic ⊕ Pc ⊕ P2,
Z5 = I ⊕ P2r ⊕ Sr ⊕ Ic ⊕ Ib ⊕ S1, Z6 = I ⊕ P2r ⊕ Sr ⊕ Pb ⊕ Ib ⊕ P2

Z7 = I ⊕ P2r ⊕ Sr ⊕ Pb ⊕ Ib ⊕ P2, Z8 = I ⊕ P2r ⊕ Sr ⊕ Ic ⊕ Ib ⊕ P2.

We assume by induction that
−−−−−→
K(Λr−1) is embedded on a surface Sr−1 of genus r−1 such that

a)

−→
Q 1 :

Z ′
5 ←−−− Z ′

1x x
Z ′

6 ←−−− Z ′
2

and
−→
Q 2 :

Z ′
4 −−−→ Z ′

8x x
Z ′

3 −−−→ Z ′
7

or

b)

−→
Q 3 :

Z ′
6 ←−−− Z ′

7x x
Z ′

2 ←−−− Z ′
3

and
−→
Q 4 :

Z ′
5 ←−−− Z ′

8x x
Z ′

1 ←−−− Z ′
4

bound squares on Sr−1. Here Z ′
i, 1 ≤ i ≤ 4, denotes the Λr−1-module which we obtain when

we replace the direct summand Sr of Zi by Sr−1 and the direct summand P2r by P2,r−1. For
r − 1 = 2, let P2,r−1 = 0.

Note that this assumption is satisfied for r − 1 = 2. We embedded
−−−→
K(Λ2) on a surface

S2 of genus 2 and the subquivers

Z ′
5 = Y 2

5 ←−−− Z ′
1 = Y 2

6x x
Z ′

6 = Y 2
9 ←−−− Z ′

2 = Y 2
10

and

Z ′
4 = Y 2

7 −−−→ Z ′
8 = Y 2

8x x
Z ′

3 = Y 2
11 −−−→ Z ′

7 = Y 2
12

bound squares on S2.

The quiver
−−−−−→
K(Λr−1) is the full convex subquiver of

−−−→
K(Λr) with vertices the tilting modules

over Λr of the form ΛrT ⊕ ΛrPr, where ΛrT is a tilting module over Λr−1. Note that there is

an arrow ΛrZ
′′
i = ΛrZ

′
i ⊕ ΛrPr → ΛrZi in

−−−→
K(Λr).
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Let us assume first that we are in the situation (a). We cut out the interiors of the

squares
−→
Q 1 and

−→
Q 2 and insert a handle

PSfrag replacements

Z ′′1
Z ′′2 Z ′′3

Z ′′4

Z ′′5Z ′′6 Z ′′7
Z ′′8

On this handle we embed
−−−→
K(Λr) \

−−−−−→
K(Λr−1) and the arrows joining Z ′′

i and Z ′
i:

PSfrag replacements

Z ′′1
Z ′′2 Z ′′3

Z ′′4

Z ′′5Z ′′6 Z ′′7

Z ′′8

Z ′1

Z ′2 Z ′3

Z ′4

Z ′5
Z ′6 Z ′7

Z ′8

This yields an embedding of
−−−→
K(Λr) on a surface Sr of genus r and the squares

Z ′
6 ←−−− Z ′

7x x
Z ′

2 ←−−− Z ′
3

and

Z ′
5 −−−→ Z ′

8x x
Z ′

1 −−−→ Z ′
4

bound squares on Sr.
We proceed analogously in case (b), and it follows that γ(K(Λr)) ≤ r.

3.2. A lower bound for γ(K(Λr))

If r = 1, then γ(K(Λ1)) = 1 as it was shown in 1.2. Hence we may assume that r > 1.

Consider
−−−→
K(Λr) \

−−−→
K(Λ1). We embedded this quiver on a surface of genus r − 1, hence

γ(K(Λr) \ K(Λ1)) ≤ r − 1. The graph K(Λ2) \ K(Λ1) has 16 vertices and 32 edges. For all
2 ≤ i ≤ r, the graphs K(Λi) \ K(Λi−1) have 8 vertices and 12 edges. Moreover, there are 8
edges joining vertices in K(Λi) \ K(Λi−1) with vertices in K(Λi+1) \ K(Λi), 2 < i < r. Hence
K(Λr)\K(Λ1) has p = 16+8(r−2) vertices and q = 32+20(r−2) edges. Since K(Λr)\K(Λ1)
has no triangles we may use the formula in 1.2 which gives γ(K(Λr)\K(Λ1) ≥ 1

4
q− 1

2
(p−2) =

r − 1, hence γ(K(Λr) \ K(Λ1)) = r − 1.

We saw above that there are 4 arrows α1, α2, α3, α4 joining vertices in
−−−→
K(Λ1) with vertices

in
−−−→
K(Λ2) \

−−−→
K(Λ1). Let

−−−→
K(Λr)

′ be the subquiver of
−−−→
K(Λr) which we obtain by deleting three

of these arrows, say α2, α3, α4. Then γ(K(Λr)) ≥ γ(K(Λr)
′). The blocks of K(Λr)

′, i.e.
the maximal connected subgraphs of K(Λr)

′ which are connected, non trivial and have no

cutpoints are K(Λ1),
α1◦—◦ and K(Λr) \ K(Λ1). Since the genus of a graph is the sum of the

genera of its blocks [2], we obtain that

γ(K(Λr)) ≥ γ(K(Λr)
′) = γ(K(Λ1)) + γ(◦—◦) + γ(K(Λr) \ K(Λ1)) = 1 + 0 + r − 1.

Hence γ(K(Λr)) = r. To finish the proof of the theorem we have to show that there is an
algebra Λ0 with γ(K(Λ0)) = 0. If Λ0 is the ground field, then K(Λ0) consists of a single
vertex, hence it has genus 0.
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