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Abstract. This paper is a continuation of work done by the present author to-
gether with P. R. Hall [1]. We characterise the prime and equiprime radicals of
N0(G) for certain topological groups G. Various results are obtained concerning
primeness and strongly primeness for the sandwich near-ring N0(G, X, θ).
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1. Preliminaries

In this paper, all near-rings will be right distributive. All of the near-rings N considered in
this paper will also be zero-symmetric, that is x0 = 0 for all x ∈ N . (The identity 0x = 0
follows of course from the right distributivity.) The notation “A C N” means “A is an ideal
of N”. We refer to Pilz [12] for all undefined concepts concerning near-rings.

It is well-known (cf. McCoy [11]) that there are a number of equivalent definitions for
primeness in associative rings. These definitions do not coincide for zero-symmetric near-
rings. Consequently, a number of generalisations of primeness have appeared in the liter-
ature of near-rings. The classical notion is given in [12]: A near-ring N is called prime
(resp. semiprime) if A, B C N (resp. A C N), AB = 0 implies A = 0 or B = 0 (resp. A2 = 0
implies A = 0). N is called 3-prime (resp. 3-semiprime) if x, y ∈ N (resp. x ∈ N) xNx = 0
implies x = 0 or y = 0 (resp. xNy = 0 implies x = 0). An ideal I of N is called prime
(resp. 3-prime) if the factor near-ring N/I is prime (resp. 3-prime).

A radical map is a mapping ρ which assigns to evey near-ring N an ideal ρ(N) of N such
that (i) if f : N → R is a surjective near-ring homomorphism, then f(ρ(R)) ⊆ ρ(S) and (ii)
ρ(N/ρ(N)) = 0 for every near-ring N . If in addition (iii) ρ(ρ(N)) = ρ(N) and (iv) I C N ,
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ρ(I) = I implies that I ⊆ ρ(N) for all near-rings N , then ρ is called a Kurosh-Amitsur radical
(KA-radical). The prime radical P(N) (resp 3-prime radical P3(N)) is the intersection of
the prime (resp. 3-prime) ideals of N . It is clear that P and P3 are radical maps. Kaarli and
Kriis [8] have shown that P is not a KA-radical. It is not known whether P3 is a KA-radical,
but this is widely considered to be unlikely.

N is called equiprime (cf. Booth, Groenewald and Veldsman [2]) if a, x, y ∈ N , anx = any
for all n ∈ N implies a = 0 or x = y. An ideal I of N is called equiprime if the factor near-ring
N/I is equiprime. The equiprime radical of N , Pe(N), is the intersection of the equiprime
ideals of N . It is shown in [2] that Pe is a KA-radical, and is moreover ideal-hereditary, that
is Pe(I) = I ∩ Pe(N) for all ideals I of N .

Prior to the study of equiprime near-rings, the only well-known ideal-hereditary KA-
radicals in this class were the Jacobson-type radical J2 and the Brown-McCoy radical B.
Their scarcity lead Kaarli [7] to conjecture that all such radicals were based on either J2

or B. The study of equiprime near-rings leads to the discovery of a considerable number of
new ideal-herditary radicals (cf. [3]) which are independent of both J2 and B. It is well-
known that equiprime =⇒ 3-prime =⇒ prime =⇒ semiprime for near-rings, and that these
implications are strict. For further details on these generalisations of primeness to near-rings
and their associated radicals, the reader may consult Groenewald’s survey paper [5] and its
references.

Strongly prime rings were defined by Handelman and Lawrence [6]. There are two
generalisations of the concept to near-rings. A near-ring N is strongly prime [4] if 0 6= a ∈ N
implies that there exists a finite subset F of N such that aFx = 0 implies x = 0, for all
x ∈ N . N is strongly equiprime [3] if 0 6= a ∈ N implies that there exists a finite subset F
of N such that x, y ∈ N, afx = afy for all f ∈ F implies x = y. Clearly strongly equiprime
=⇒ strongly prime =⇒ prime and strongly equiprime =⇒ equiprime. These implications
are all strict and strongly prime =⇒ prime is strict even for associative rings. The radicals
associated with the classes of strongly prime and strongly equiprime near-rings are denoted
S and Se, respectively. We consider it unlikely that S is a KA-radical. However Se is an
ideal-hereditary KA-radical [3].

In the sequel G will denote a T1 (and hence completely regular) additive topological group.
The set of zero-preserving continuous self-maps of G forms a zero-symmetric near-ring with
respect to addition and composition of functions, and is denoted N0(G). If the topology on
G is discrete, N0(G) is the set of all zero-preserving self-maps of G, and is denoted M0(G)
in this case. It is easily shown that M0(G) is equiprime. In order to avoid trivial cases,
all topological groups will be assumed to contain more than one element. Composition of
functions will be denoted by juxtaposition, e.g. ab rather than a◦b (with the function b acting
first). For surveys of work done on near-rings of continuous functions, [9] and [10] can be
consulted.

2. Primeness in N0(G)

In [1] it was shown that N0(G) is equiprime if the topology on G is either 0-dimensional or
arcwise connected. In contrast, an example was given of a topological group such that N0(G)
is not semiprime. The main result of this section sharpens [1, Proposition 1.1].
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Lemma 2.1. Let H be the connected component of G which contains 0. If H is open, then
the quotient topology on G/H is discrete.

Proof. Let ϕ be the canonical mapping of G onto G/H and let T and T ∗ denote the topology
on G and the quotient topology on G/H, respectively. Let g ∈ G. Then ϕ−1({g + H}) =
g + H ∈ T since H ∈ T . Hence {g + H} ∈ T ∗. Hence T ∗ contains all one-point subsets of
G/H, and so is discrete. �

Proposition 2.2. Let G be a disconnected topological group, with open components which
are arcwise connected and which contain more than one element. Let H be the component of
G which contains 0, I := {a ∈ N0(G) | a(G) ⊆ H} and J := {a ∈ N0(G) | a(H) = 0}. Then
P(N0(G)) = Pe(N0(G)) = I ∩ J .

Proof. In the proof of [1, Proposition 1.1], it was shown that I C N0(G). It is clear that
J C N0(G). Let a ∈ J, b ∈ I, g ∈ G. Then (ba)(g) = b(a(g)) = 0 since a(g) ∈ H. Hence
JI = 0, so (I ∩ J)2 = 0 ⊆ P(N0(G)). Since P(N0(G)) is the intersection of the prime ideals
of N0(G), it is a semiprime ideal of N0(G). Hence

I ∩ J ⊆ P(N0(G)). (1)

We claim that N0(G)/I ∼= N0(G/H). We define θ : N0(G) → N0(G/H) as follows. Let θ(a) :
G/H → G/H be the mapping defined by (θ(a))(g+H) := a(g)+H for all a ∈ N0(G), g ∈ G.
Then θ(a) is well-defined, for let g1, g2 ∈ G be such that g1 + H = g2 + H. Then g1 and g2

are contained in the same coset of H in G, i.e. in the same connected component of G. By
continuity of a, a(g1) and a(g2) are in the same component, whence a(g1)+H = a(g2)+H, and
so θ is well-defined. It is clear that (θ(a))ϕ(g) = (ϕa)(g) for all g ∈ G, where ϕ : G → G/H
is the canonical homomorphism. Hence (θ(a))ϕ = ϕa. Let U be open in G/H. Then
ϕ−1((θ(a))−1)(U) = (θ(a)ϕ)−1(U) = (ϕa)−1(U) = a−1ϕ−1(U). By definition of the quotient
topology, ϕ−1(U) is open in G, and by the continuity of a, a−1ϕ−1(U) is open in G. Again by
the definition of the quotient topology, this implies that ((θ(a))−1)(U) is open in G/H. Hence
θ(a) is continuous. Moreover, (θ(a))(H) = (θ(a))(0 + H) = θ(0) + H = H since a(H) ⊆ H.
Hence θ(a) ∈ N0(G/H). Clearly θ is a near-ring homomorphism. Let b ∈ N0(G/H). Let
G/H = {Ci | i ∈ I} and choose a coset representative gi of Ci for each i ∈ I. In the
case Cj = H, choose gj = 0. Let b(Ci) = Cki

for each i ∈ I. We define a : G → G as
follows: If g ∈ Ci and, let b(g) := gki

. It follows from the fact that constant functions
are continuous and that the components of G are open that a is continuous. Moreover
a(0) = 0, since b(H) = H and by our choice of coset representative for H. Hence a ∈ N0(G).
Thus θ : N0(G) → N0(G/H) is onto, so N0(G/H) ∼= N0(G)/ ker θ. Clearly, ker θ = I,
so N0(G/H) ∼= N0(G)/I. Moreover, the topology on G/H is discrete by Lemma 2.1, so
N0(G/H) = M0(G/H) and hence is equiprime. Hence I is an equiprime ideal of N0(G) and
so

Pe(N0(G)) ⊆ I. (2)

Now let a ∈ N0(G) and let λ(a) be the restriction of a to H. Since a maps H into itself,
λ(a) ∈ N0(H). It is also clear that λ : N0(G) → N0(H) is a near-ring homomorphism.
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Moreover, if b ∈ N0(H), let a be defined by

a(g) :=

{
b(g) if g ∈ H
0 if g ∈ G\H .

Since G has open components, a is continuous and so is in N0(G). Moreover, b = λ(a), so
λ : N0(G) → N0(H) is onto. It is clear that ker λ = J and hence N0(H) ∼= N0(G)/J . Since
H is arcwise connected, it follows from [1, Proposition 3.2] that N0(H) is equiprime and so
J is an equiprime ideal of N0(G). Consequently

Pe(N0(G)) ⊆ J. (3)

Combining (1), (2), (3) and the fact that P(N0(G)) ⊆ Pe(N0(G)) we obtain

I ∩ J ⊆ P(N0(G)) ⊆ Pe(N0(G)) ⊆ I ∩ J

and the proof is complete. �

3. Sandwich near-rings

Let X and G be a topological space and a topological group respectively, and let θ : G −→ X
be a continuous map. The sandwich near-ring N0(G, X, θ) is the set {a : X −→ G | a is
continuous and aθ(0) = 0}. Addition is pointwise and multiplication is defined by a ·b := aθb.
It is clear that N0(G, X, θ) is a zerosymmetric near-ring with respect to these operations. If
the topologies on X and G are discrete N0(G, X, θ) consists of all mappings a : X → G
satisfying aθ(0) = 0. In this case we denote the near-ring by M0(G, X, θ). In this section we
will assume that both G and X have more than one element. The closure of a subset A of
X will be denoted cl(A).

Lemma 3.1. Let X and G be a completely regular topological space and an arcwise connected
topological group, respectively. If N0(G, X, θ) is 3-semiprime, then cl(θ(G)) = X.

Proof. Suppose that cl(θ(G)) 6= X. Let x ∈ X\ cl(θ(G)). Since X is completely regular,
there exists a continuous map α : X → [0, 1] such that α(cl(θ(G))) = 0 and α(x) = 1. Let
0 6= g ∈ G. Since G is arcwise connected, there exists a continuous map β : [0, 1] → G
such that β(0) = 0 and β(1) = g. Let a := βα. Then a is continuous, and a(y) = 0 for all
y ∈ cl(θ(G)). Moreover a(x) = g, so a 6= 0. Clearly a ∈ N0(G, X, θ). Let n ∈ N0(G, X, θ). If
y ∈ X, then aθn(y) = 0, since θn(y) ∈ θ(G) ⊆ cl(θ(G)). Hence a·n = 0, whence a·n·a = 0 for
all n ∈ N0(G, X, θ). Since a 6= 0, N0(G, X, θ) is not 3-semiprime, and the proof is complete.
�

Proposition 3.2. Let X and G be a completely regular topological space and an arcwise
connected topological group, respectively, and let θ : G → X be a continuous map such that
θ−1θ(0) = {0}. Then the following are equivalent:

(a) cl(θ(G)) = X.
(b) N0(G, X, θ) is 3-prime.
(c) N0(G, X, θ) is 3-semiprime.
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Proof. (a)=⇒(b): Let c := θ(0) and let 0 6= a, b ∈ N0(G, X, θ). Then there exist x, y ∈ X
such that a(x) 6= 0, b(y) 6= 0. We may assume without loss of generality that x ∈ θ(G).
For by continuity of a, there exists an open set U of X containing x, such that a(z) 6= 0
for all z ∈ U . Since cl(θ(G)) = X, U ∩ θ(G) 6= ∅. Hence we may choose x ∈ U ∩ θ(G)
such that a(x) 6= 0. Let g ∈ G be such that x = θ(g). Note that g 6= 0, since by the
definition of N0(G, X, θ) this would imply that a(θ(0)) = 0, i.e. a(x) = 0, which contradicts
our assumption that a(x) 6= 0.

Since b(y) 6= 0 and θ−1θ(0) = {0}, θb(y) 6= c. Let d := θb(y). Since X is completely
regular, it is T1. Hence the set F := {c} is closed and d /∈ F . Again since X is completely
regular, there exists a continuous map α : X → [0, 1] such that α(F ) = 0 and α(d) = 1.
Since G is arcwise connected, there exists a continuous map β : [0, 1] → G such that β(0) = 0
and β(1) = g. Let n := βα. Clearly, n is continuous. Moreover, n(θ(0)) = n(c) = βα(c) =
β(0) = 0. Hence n ∈ N0(G, X, θ). Also n(d) = g. Furthermore, aθnθb(y) = aθn(d) =
aθ(g) = a(x) 6= 0. It follows that a · n · b 6= 0. Hence N0(G, X, θ) is 3-prime.

(b)=⇒(c): Obvious.

(c)=⇒(a): Follows from Lemma 3.1. �

The condition θ−1θ(0) = {0} cannot be omitted from the hypothesis of Proposition 3.2, as
the following example shows.

Example 3.3. Let X := G := R, both with the usual topology. Define θ : X → G by

θ(x) =


x− 1 x ≥ 1

0 −1 < x < 1
x + 1 x ≤ 1.

Then θ is continuous and surjective whence it holds trivially that cl(θ(G)) = X. Let a(x) :=
sin x for all x ∈ X. Then 0 6= a ∈ N0(G, X, θ) and aθnθa(x) = 0 and hence a · n · a = 0 for
all n ∈ N0(G, X, θ). Thus N0(G, X, θ) is not 3-semiprime.

Proposition 3.4. Let X and G be a completely regular topological space and an arcwise
connected topological group, respectively, and let θ : G → X be a continuous, injective map.
Then the following are equivalent:

(a) cl(θ(G)) = X.
(b) N0(G, X, θ) is equiprime.
(c) N0(G, X, θ) is 3-semiprime.

Proof. (a)=⇒(b): Let a, b, c ∈ N0(G, X, θ) be such that a 6= 0 and b 6= c. Then there
exist x, y ∈ X such that a(x) 6= 0 and b(y) 6= c(y). As in the proof of Proposition 3.2 it
may be shown that there exists 0 6= g ∈ G such that x = θ(g). Since b(y) 6= c(y) and θ
is injective, θb(y) 6= θc(y). Let x0 := θ(0), x1 := θb(y) and x2 := θc(y). Either x1 6= 0 or
x2 6= 0. Assume the latter. Since X is T1 the set F := {x0, x1} is closed, where x0 := θ(0)
and x2 /∈ F . Since X is completely regular, there exists a continuous map α : X → [0, 1]
such that α(F ) = 0 and α(x2) = 1. Since G is arcwise connected, there exists a continuous
map β : [0, 1] → G such that β(0) = 0 and β(1) = g. Let n := βα. Clearly, n is continuous.
Moreover, n(θ(0)) = n(x0) = βα(x0) = β(0) = 0. Hence n ∈ N0(G, X, θ). Also n(x1) = 0
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and n(x2) = g. Furthermore, aθnθb(y) = aθn(x1) = aθ(0) = 0 and aθnθc(y) = aθn(x2) =
aθ(g) = a(x) 6= 0. It follows that a · n · b 6= a · n · c. Hence N0(G, X, θ) is equiprime.

(b)=⇒(c): Obvious.

(c)=⇒(a): Follows from Lemma 3.1. �

If θ is not injective, conditions (a), (b) and (c) of Proposition 3.4 need not to be equivalent.

Example 3.5. Let G := R and X := [0,∞), both with the usual topology and let θ(g) := g2

for all g ∈ G. Then θ : G → X is a surjection, so cl(θ(G)) = X holds trivially. Clearly θ is
not injective. Clearly this example satisfies the conditions of Proposition 3.2, so N0(G, X, θ)
is 3-semiprime. Now let b(x) = x and c(x) = −x for all x ∈ X. Then b, c ∈ N0(G, X, θ)
and θb(x) = θc(x) = x for all x ∈ X. Let 0 6= a ∈ N0(G, X, θ). If n ∈ N0(G, X, θ), then
aθnθb(x) = aθnθc(x) for all x ∈ X. Hence a ·n · b = a ·n · c for all n ∈ N0(G, X, θ), but a 6= 0
and b 6= c. Thus N0(G, X, θ) is not equiprime, so (a) and (c) of Proposition 3.4 hold, while
(b) does not hold in this case.

Proposition 3.6. Suppose that X is a 0-dimensional, T0 space and that θ : G → X is
injective and that cl(θ(G)) = G. Then N0(G, X, θ) is strongly prime if and only if the
topology on X is discrete.

Proof. Suppose that the topology on X is discrete. Then all mappings of X into G are
continuous. Hence N0(G, X, θ) = M0(G, X, θ). Moreover, θ(G) = cl(θ(G)) = X, i.e. θ is
surjective. It follows from [13, Proposition 9.1] that N0(G, X, θ) ∼= N0(G), where G has the
discrete topology. Hence by [1, Proposition 2.2(b)], N0(G, X, θ) is strongly prime.

Conversely, suppose that the topology on X is not discrete. Let c := θ(0). Then f(c) = 0
for all f ∈ N0(G, X, θ). Let U be a nonempty clopen set in X which does not contain c. Let
0 6= g ∈ G and let a : X → G be defined by

a(x) :=

{
g x ∈ U
0 x ∈ X\U .

Then a ∈ N0(G, X, θ) and a 6= 0. Let F := {f1, . . . , fn} be a finite subset of N0(G, X, θ).
Since X\U is clopen and fi is continuous (θfi)

−1(X\U) is clopen. Let Vi := f−1
i (X\U)\U .

Then Vi is clopen and c ∈ Vi. Let V :=
⋂n

i=1 Vi. Then V is clopen and c ∈ V . Since X is T0

and 0-dimensional, it is T2. Since X is not discrete, V is infinite. Let W be a clopen set in
X such that c /∈ W and W ∩ V 6= ∅. Then W ∩ V is a clopen set in X. Since c(θ(G)) = X,
θ(G) ∩W ∩ V 6= ∅. Let d ∈ θ(G) ∩W ∩ V and let h ∈ G be such that d = θ(h). ∈ V . Then
θfi(d) ∈ X\U for 1 ≤ i ≤ n. Define 0 6= b ∈ N0(G, X, θ) by

b(x) :=

{
h x ∈ U
0 x ∈ X\U .

If x ∈ U, then aθfiθb(x) = aθfiθ(h) = aθfi(d) = 0, since θfi(d) ∈ X\U . If x ∈ X\U , then
aθfiθb(x) = aθfiθ(0) = aθfi(c) = aθ0) = a(c) = 0. Thus aθfiθb = 0, i.e. a · fi · b = 0,
1 ≤ i ≤ n, whence a · F · b = 0. Hence N0(G, X, θ) is not strongly prime. �

Corollary 3.7. Suppose that X is a 0-dimensional, T0 space and that θ : G → X is injective
and that cl(θ(G)) = G. Then N0(G, X, θ) is strongly equiprime if and only if X is finite.
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Proof. Suppose that X is finite. Since X is T0 and 0-dimensional, it is T2 and hence discrete.
As in the proof of Proposition 3.6, N0(G, X, θ) = M0(G, X, θ) and hence from [13, Proposition
9.1] N0(G, X, θ) ∼= M0(G). Now card G = card(θ(G)) ≤ card X. Hence G is finite. It follows
from [1, Proposition 2.2(c)] that N0(G, X, θ) is strongly equiprime.

Conversely, suppose that N0(G, X, θ) is strongly equiprime. Then N0(G, X, θ) is strongly
prime, and hence by Proposition 3.6, the topology on X is discrete. As in the proof of
Proposition 3.6 we have that N0(G, X, θ) ∼= N0(G), where G has the discrete (and hence
0-dimensional) topology. It follows from [1, Proposition 2.2(c)] that G is finite. Hence θ(G)
is finite, and since X is discrete, θ(G) = cl(θ(G)) = X and hence X is finite. �

Proposition 3.8. Suppose that X is a completely regular space, that G is arcwise connected
and, that the topology on G has a base B consisting of arcwise connected open sets. Then
N0(G, X, θ) is not strongly prime (and hence not strongly equiprime).

Proof. We consider the cases cl(θ(G)) = G and cl(θ(G)) 6= G separately. If cl(θ(G)) 6= G, it
follows from Lemma 3.1 that N0(G, X, θ) is not 3-semiprime and hence not strongly prime.

Suppose that cl(θ(G)) = G. Let c := θ(0). Let U be an open set in X containing c
whose closure cl(U) is not X. The X\cl(U) is nonempty and open. Since cl(θ(G)) = X,
(G\cl(U)) ∩ θ(G) contains an element, d, say. Let g ∈ G be such that d = θ(g). Since X is
completely regular, there exists a continuous function α : X −→ [0, 1] such that α(cl(U)) = 0
and α(d) = 1. Since G is arcwise connected, there exists a continuous function β : [0, 1] → G
such that β(0) = 0 and β(1) = g. Let a := βα. Then 0 6= a ∈ N0(G, X, θ) and a(U) = 0.

Now let F := {f1, . . . , fn} be a finite subset of N0(G). Let Vi := (θfi)
−1(U) for 1 ≤ i ≤ n

and V :=
⋂n

i=1 Vi. Note that c ∈ V . If V = X, aθfi = 0 for 1 ≤ i ≤ n so a · F · b = 0 for
any 0 6= b ∈ N0(G, X, θ) and we are done. Suppose that V 6= G. Let W be an element of B
such that 0 ∈ W ⊆ θ−1(V ). We have that W 6= {0}, since then G would be discrete. Since
G is arcwise connected, this would imply that G consists of one element, which contradicts
the assumption of this paper. Hence W\{0} is nonempty. Let h ∈ W\{0} and let e := θ(h).
Since X is completely regular, there exists a continuous function λ : X −→ [0, 1] such that
λ(c) = 0 and λ(e) = 1. Since W is arcwise connected, there exists a continuous function
µ : [0, 1] −→ W with µ(0) = 0 and µ(1) = h. Let b := µλ. Then 0 6= b ∈ N0(G, X, θ),
b(e) = h and b(X) ⊆ W ⊆ θ−1(V ). It follows that aθfiθb = 0 for 1 ≤ i ≤ n so a · F · b = 0,
but b 6= 0. Hence N0(G, X, θ) is not strongly prime. �
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