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Abstract. This paper deals with the densest packing of equal circles in a square
problem. Sharp bounds for the density of optimal circle packings have given. Sev-
eral known optimal and approximate circle packings contain optimal substructures.
Based on this observation it is sometimes easy to determine the minimal polyno-
mials of the arrangements.
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1. Four equivalent allocation problems

The paper deals with an unsolved allocation problem of the discrete geometry. First of all
let us see some equivalent problem settings.

Definition 1. P (rn, S) ∈ Prn is a circle packing with radius rn in [0, S]2, where Prn =
{((x1, y1), . . . , (xn, yn)) ∈ [0, S]2n | (xi − xj)

2 + (yi − yj)
2 ≥ 4r2

n; xi, yi ∈ [rn, S − rn] (1 ≤ i <
j ≤ n)}. P (rn, S) ∈ Prn is an optimal circle packing, if rn = max

Prn 6=∅
rn.

Problem Pn
1. Determine the optimal circle packings for n ≥ 2.

Definition 2. A(mn, Σ) ∈ Amn is a point arrangement with minimal distance mn in [0, Σ]2,
where Amn = {((x1, y1), . . . , (xn, yn)) ∈ [0, Σ]2n | (xi−xj)

2+(yi−yj)
2 ≥ m2

n; (1 ≤ i < j ≤ n)}.
A(mn, Σ) ∈ Amn is an optimal point arrangement, if mn = max

Amn 6=∅
mn.
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Problem Pn
2. Determine the optimal point arrangements for n ≥ 2.

Definition 3. P ′(R, sn) ∈ P ′
sn

is an associate circle packing with radius R in [0, sn], where
P ′

sn
= {((x1, y1), . . . , (xn, yn)) ∈ [0, sn]2n |(xi−xj)

2+(yi−yj)
2 ≥ 4R2; xi, yi ∈ [R, sn−R] (1 ≤

i < j ≤ n)}. P ′(R, sn) ∈ P ′
sn

is an optimal associate circle packing, if sn = min
P ′

sn 6=∅
sn.

Problem Pn
3. Determine the optimal associate circle packings for n ≥ 2.

Definition 4. A′(M, σn) ∈ A′
σn

is an associate point arrangement with the minimal distance
M in [0, σn], where A′

σn
= {((x1, y1), . . . , (xn, yn)) ∈ [0, σn]2 | (xi−xj)

2+(yi−yj)
2 ≥ M2 (1 ≤

i < j ≤ n)}. A′(M, σn) ∈ A′
σn

is an optimal associate point arrangement, if σn = min
A′

σn
6=∅

σn.

Problem Pn
4. Determine the optimal associate point arrangements for n ≥ 2.

Theorem 1. Problems Pn
1 , Pn

2 , Pn
3 and Pn

4 are equivalent, in the sense that if Problem Pn
i

can be solved for a fixed n and i values, then the other Problems Pn
i can be solved for all

1 ≤ i ≤ 4 values.

Proof. The centers of the circles in a packing P (rn, S) determine an optimal point arrange-
ment in a square of side length of S − 2rn [19]. By scaling-up an optimal arrangement of n
points in a square we obtain an optimal point arrangement in another square of arbitrary side
length. By drawing circles by radius mn

2
around the points in a point arrangement A(mn, Σ)

the packing will give an optimal associate circle packing in a Σ+mn side square. By scaling-
up an optimal associate circle packing provides an optimal associate circle packing with any
radius. The centers of the circles in a packing P ′(sn, R) determine an optimal associate point
arrangement in an sn − 2R side of square by a minimal distance of 2R. By scaling-up this
point arrangement gives an optimal associate point arrangement A′(σn, M). Drawing again
circles around the points with radius M

2
, the circle packing will be optimal in a σn + M side

of square, hence we return to an optimal circle packing P (rn, S). �

Proposition 1. The relations between the parameters mn, rn, sn and σn are given in the
Tables 1–2.

P (rn, S) A(mn, Σ)

P (rn, S) 1 rn = Smn

2(mn+Σ)

A(mn, Σ) mn = 2Σrn

S−2rn
1

P ′(R, sn) sn = RS
rn

sn = 2R(mn+Σ)
mn

A′(M, σn) σn = M(S−2rn)
2rn

σn = MΣ
mn

Table 1. Relations between the parameters of the problems
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P ′(R, sn) A′(M, σn)

P (rn, S) rn = RS
sn

rn = MS
2(M+σn)

A(mn, Σ) mn = 2RΣ
sn−2R

mn = MΣ
σn

P ′(R, sn) 1 sn = 2R(M+σn)
M

A′(M, σn) σn = M(sn−2R)
2R

1

Table 2. Relations between the parameters of the problems

Proof. It follows from suitable scaling based on the technique described in [19]. �

2. Some historical comments

To find P (rn, 1) for a large n value is a great challenge in mathematics and computer sciences.
From 1960 [11] until nowadays several researchers tried to solve this problem in the traditional
way “by hand” and using computers too. As the structures of optimal packings are changing
step by step, the determination of optimal packings is hard. There are repeated pattern
classes among the structures of optimal packings but they do not cover every possible optimal
structures [5, 12, 19].

It is clear that the circle packing problem is at one hand a discrete geometrical problem
and on the other hand a global optimization problem. The earlier optimization models
(as a continuous, constrained global optimization problem, DC programming problem, all-
quadratic optimization problem, etc.) and other approaches (elimination methods “by hand”
and based on computer-aided methods, energy function minimization, SA and TA techniques,
billiard simulation, LP-relaxation, etc.) have given many approximate packings and some
proofs for the optimality [1, 2, 5, 7–10, 12–13, 15, 21].

Table 3 summarizes the known optimal packings with their authors. The optimal packings
are known up to n = 27 and the n = 36 case.

Year Authors Results for n
1965 J. Schaer and A. Meir [16, 17] 8, 9
1970 B. L. Schwartz [18] 6
1983 G. Wengerodt [22, 23, 24] 14, 16, 25
1987 K. Kirchner and G. Wengerodt [6] 36
1992 R. Peikert et al. [15] 10–20

1999 K. J. Nurmela and P. R. J. Österg̊ard [13] 7,21–27

Table 3. The authors of the known optimal packings

To find optimal packings and to prove the optimality of packings is a hard problem. Recently
several papers have published not only optimal packings but approximate packings too. Table
4 contains the most important improvements in the last decade. A more detailed history of
Problem Pn

i (1 ≤ i ≤ 4) is in [8, 15, 20, 21].
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Year Authors Results for n
1995 C. A. Maranas et al. [8] up to 30
1996 R. Graham and B. D. Lubachevsky [5] up to 61

1997 K. J. Nurmela and P. R. J. Österg̊ard [12] up to 50
2000 D. W. Boll et al. [1] 32, 37, 48, 50
2001 L. G. Casado et al. [2] up to 100
2002 M. Locatelli and U. Raber [7] up to 40
Sub. E. Specht and P. G. Szabó [21] up to 200

Table 4. The authors of approximate packings

3. The density of packings

Definition 5. Let X be a compact convex subset of [0, 1]2. The density of a circle packing
P (rn, 1) in X is

d(X, n′) =
n′r2

nπ

V (X)

(
=

n′m2
nπ

4(mn + 1)2V (X)

)
,

where n′ denotes the number of the circles (points) in X and V (X) is the area of X. Let us
denote by d([0, 1]2, n) the density of P (rn, 1).

Remark 1. The finding of P (rn, 1) is equivalent to the determination of the densest packing
of n equal circles in [0, 1]2.

Theorem 2. For every n ≥ 2

(3− 2
√

2)π ≤ d([0, 1]2, n) <
π√
12

,

where the bounds are sharp.

Proof. It is known that
√

2√
3n

< mn [21]. This lower bound implies a lower bound of the

density:
nπ

(2 +
4
√

12n2)2
< d([0, 1]2, n).

As the densities of optimal packings are known up to n = 27, it easy to check that up
to n = 13 circles the density of an optimal packing is greater or equal to d([0, 1]2, 2) =
(3− 2

√
2)π ≈ 0.539 (Table 5).

n approximate dn n approximate dn

2 0.5390120845 8 0.7309638253
3 0.6096448087 9 0.7853981634
4 0.7853981634 10 0.6900357853
5 0.6737651056 11 0.7007415778
6 0.6639569095 12 0.7384682239
7 0.6693108268 13 0.7332646949

Table 5. The density of packings up to n = 13 circles
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If n > 13 then after a short calculation the following inequality can be proved:

(3− 2
√

2)π <
nπ

(2 +
4
√

12n2)2
< d([0, 1]2, n).

The lower bound is sharp, because d([0, 1]2, 2) = (3− 2
√

2)π.

Let us study the upper bound. First we prove that for every n ≥ 2

d([0, 1]2, n) <
π√
12

.

This statement is equivalent with

mn < f1(n) =
2 +

√
2
√

3n√
3n− 2

.

It is not to hard to prove this inequality using a corollary of Oler’s theorem [4]:

If X is a compact convex subset (with a perimeter of S(X)) of the plane, then the number of
points with mutual distance of at least 1 is at most

2√
3
V (X) +

1

2
S(X) + 1.

This statement gives the following upper bound for mn:

mn ≤ f2(n) =
1 +

√
1 + (n− 1) 2√

3

n− 1
.

After a calculation it can be proved that f2(n) < f1(n), for n ≥ 2.

Secondly, we show that there is a point arrangement series {Si}∞i=1, for which lim
i→∞

d(Si, ni) =
π√
12

, thus the upper bound of the density is also sharp.

The proof is constructive. Let us denote by [[p, q]] (where p2 ≤ 3q2, q2 ≤ 3p2) the following
lattice point arrangement class: Divide the parallel sides of the square for p and q equal
parts, to obtain pq rectangulars (see Figure 1 for p = 3, q = 5, n = 12). Put the first point
in the lower left edge of square and put the others in every second gridpoint [14].

Figure 1. The [[3,5]] lattice arrangement

Let us consider the following packing series {Si}∞i=1:

S1 = [[1, 1]], S2 = [[3, 5]],
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Si = 4Si−1 − Si−2,

using the operations

[[p1, q1]]± [[p2, q2]] = [[p1 ± p2, q1 ± q2]]

λ[[p, q]] = [[λp, λq]] (λ ∈ Z+)

(it is easy to prove that these operations are well-defined).

The limit density of the packing series {Si}∞n=1 is π√
12

, because Si = [[pi, qi]], n(Si) =

(pi+1)(qi+1)
2

, m(Si) =

√
p2

i +q2
i

piqi
, therefore

lim
i→∞

d(Si, n(Si)) = lim
i→∞

n(Si)π
m(Si)

2

4(m(Si) + 1)2

= lim
i→∞

π

4

(
1
pi

+ 1
) (

1
qi

+ 1
)

2

pi

qi
+ qi

pi

(1 + m(Si))2

=
π

4

1

2

4
√

3

3
=

π√
12

,

where n(Si) denotes the number of the points in Si, and m(Si) is the minimum distance
between the points in Si. �

Remark 2. It is easy to prove on the previous way that for every n ≥ 4

π

4
≤ d([0, 1]2, n),

and the density of square-lattice packings is always π
4
.

4. Optimal substructures

Definition 6. A circle packing/point arrangement in X ⊂ [0, 1]2 is an optimal substructure
if the density d(X, n′) is maximal in X, where n′ denotes the number of the circles/points in
X.

Figures 2 and 3 show two examples for optimal substructures where X is a square or a circle.
The optimality of packing of 19 equal circles in a circle was proved in [3].
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 24 circles in the unit square

radius   = 0.101381800432
distance = 0.254333095030

density  = 0.774963259758
contacts = 56

 15 circles in the unit square

radius   = 0.127166547515
distance = 0.341081377402

density  = 0.762056010927
contacts = 36

Figure 2. Optimal substructure in an optimal packing, where X is a square

 23 circles in the unit square

radius   = 0.102802323380
distance = 0.258819045103

density  = 0.763631032126
contacts = 56

 19 circles in the unit circle

radius =  0.116000000031
ratio  =  4.863703305156

density  = 0.803192144613
contacts = 48

Figure 3. Optimal substructure in an optimal packing, where X is a circle

It is interesting that the known optimal packings (and many approximate packings) contain
sometimes optimal substructures. For studying the connection between the packings a good
concept is the containment graph.

Definition 7. The containment graph for a fixed set X is a directed graph, where the nodes
are circle packing instances. There is a directed edge from A to B, if A is an optimal
substructure in B.

There is an example of a containment graph in Figure 4.
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4 15

823

24 (2)
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3 11

914 24 (1)

6

18

10
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1612 5

19

13
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25

21 22

20

36

17 (1,2)

Figure 4. The containment graph, where X is a square with parallel sides with the unit
square for the known optimal packings. There are two and three different included optimal
packings for n=17 and 24, respectively.

Sometimes, when a packing contains optimal substructures, it is easy to calculate the minimal
polynomial based on the minimal polynomial of the substructures. In the following section
we introduce the concept of the generalized minimal polynomial of packings and we use it to
calculate the traditional minimal polynomials of the arrangements.

5. Generalized minimal polynomials

Definition 8. pI
n(x) is a generalized minimal polynomial, where x ∈ {r, m, s, σ} and I ∈

{S, Σ, R, M} respectively, and the first positive root of the polynomial pI
n(x) is xn, and the

degree of pI
n(x) is minimal. We use the Pn(x) = p1

n(x) notation too.

Remark 3. If pI
n(x) is a generalized minimal polynomial, then cpI

n(x) is also a minimal
polynomial, where c 6= 0 real number.

Proposition 2. The relations between the minimal polynomials are described in Table 6.

pS
n(r) = pΣ:=S−2r

n (m := 2r) pΣ
n (m) = pR:=Σ+m

n (s := m
2
)

pR:=S
n (s := r) pM :=Σ

n (σ := m)

pM :=S−2r
n (σ := 2r) pS:=Σ+m

n (r := m
2
)

pR
n (s) = pM :=R−2s

n (σ := 2r) pM
n (σ) = pS:=M+σ

n (r := σ
2
)

pS:=R
n (r := s) pΣ:=M

n (m := σ)

pΣ:=R−2s
n (m := 2s) pR:=M+m

n (s := σ
2
)

Table 6. Relationships between the minimal polynomials
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Proof. It is based on Proposition 1, with a short calculation. �

Example 1. Let us calculate pS
11(r) if we know that

P11(m) = m8 + 8m7 − 22m6 + 20m5 + 18m4 − 24m3 − 24m2 + 32m− 8.

It is easy to check that pΣ
n (m) = Pn(m)Σdeg Pn , so pΣ

11(m) =m8 +8m7Σ−22m6Σ2 +20m5Σ3 +
18m4Σ4 − 24m3Σ5 − 24m2Σ6 + 32mΣ7 − 8Σ8.

Using the pS
n(r) = pΣ:=S−2r

n (m := 2r) relation

pS
11(r) = pΣ:=S−2r

11 (m := 2r) = (2r)8 + 8(2r)7(S − 2r) − 22(2r)6(S − 2r)2 + 20(2r)5(S −
2r)3 + 18(2r)4(S − 2r)4 − 24(2r)3(S − 2r)5 − 24(2r)2(S − 2r)6 + 32(2r)(S − 2r)7 − 8(S −
2r)8 = −18176r8 + 45056r7S − 63360r6S2 + 56192r5S3 − 30432r4S4 + 9920r3S5 − 1888r2S6

+192rS7 − 8S8.

Divided by −8 the previous generalized minimal polynomial is

pS
11(r) = 2272r8−5632r7S+7920r6S2−7024r5S3+3804r4S4−1240r3S5+236r2S6−24rS7+S8.

5.1. Calculation of minimal polynomials from the minimal polynomials of sub-
structures

Proposition 3. Let us consider a point arrangement in [0, 1]2. Let us suppose, there are
N ≥ 2 optimal substructures of the previous arrangement in a square of sides Σ1, Σ2, . . . ,
ΣN . If fΣ(x) is a polynomial and there exist 1 ≤ i, j ≤ N such that Σj = fΣ(Σi), then the
minimal polynomial pΣ

n (m) can be calculated from the minimal polynomials of the optimal
substructures in the following way:

pΣ
n (m) = Res(pΣj

n1
(m), pf(Σj)

n2
(m), Σj) =

det(Syl(pΣj
n1

(m), pf(Σj)
n2

(m), Σj)).

Proof. It follows immediately from the definition of the resultant. �

Example 2. Determine P34(m) based on pΣ1
23 (m) and pΣ2

4 (m).

m=0.20560464675956
r=0.08527034435052
d=0.77664906433227

n=34
c=80
f=0

m=0.20276360086322
r=0.08429071212235
d=0.78122721299871

n=35
c=80
f=0

Figure 5. Approximate circle packings for n = 34 and n = 35
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In this example
fΣ(x) = Σ− x and Σ = 1,

pΣ1
23 (m) = 16m4 − 16m2Σ2

1 + Σ4
1 pΣ2

4 (m) = m− Σ2 = m− 1 + Σ1

P34(m) = Res(pΣ1
23 (m), p1−Σ1

4 (m), Σ1) =

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 1

m− 1 1 0 0 0
0 m− 1 1 0 −16m2

0 0 m− 1 1 0
0 0 0 m− 1 16m4

∣∣∣∣∣∣∣∣∣∣
= m4 + 28m3 − 10m2 − 4m + 1.

Proposition 4. Let us consider the minimal polynomial Pn(m) and suppose that

mn =
amn′ + b

cmn′ + d
and mn′ =

b− dmn

cmn − a
,

where a, b, c, and d are real numbers. The minimal polynomial Pn′(m) can be calculated in
the following way:

Pn′(m) = Pn

(
am + b

cm + d

)
(cm + d)deg Pn .

Proof. It is easy too see that Pn

(
am+b
cm+d

)
(cm + d)deg Pn is a polynomial and mn′ is a root of

this polynomial. It is a minimal polynomial because if it would not be the case then there
would be another polynomial R, with R(mn′) = 0 and

deg R < deg Pn

(
am + b

cm + d

)
(cm + d)deg Pn .

But this is impossible since in this case

(deg R =) deg R

(
b− dm

cm− a

)
(cm− a)deg R < deg Pn,

which contradicts that Pn(m) is a minimal polynomial. �

Example 3. Let us determine P35(m).
a) Based on Proposition 3 using pΣ1

15 (m) and pΣ2
9 (m), we have

fΣ(x) = Σ− x and Σ = 1,

pΣ1
15 (m) = 2m4 − 4m3Σ1 − 2m2Σ2

1 + 4mΣ3
1 − Σ4

1, pΣ2
9 (m) = 2m− Σ2 = 2m− 1 + Σ1,

P35(m) = Res(pΣ1
15 (m), p1−Σ1

9 (m), Σ1) =

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 −1

2m− 1 1 0 0 4m
0 2m− 1 1 0 −2m2

0 0 2m− 1 1 −4m3

0 0 0 2m− 1 2m4

∣∣∣∣∣∣∣∣∣∣
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= 46m4 − 84m3 + 50m2 − 12m + 1.

b) Based on Proposition 4 using

P24(m) = m4 − 16m3 + 20m2 − 8m + 1

and the m35 = 2r24 relationship,

m35 = 2r24 =
m24

m24 + 1
, so m24 =

m35

1−m35

and

P35(m) = P24

(
m

1−m

)
(1−m)4 = 46m4 − 84m3 + 50m2 − 12m + 1.

5.2. Determining minimal polynomials in a different way

Sometimes the structure of an optimal packing is not symmetric and it does not contain an
optimal substructure. In this case a possible way to calculate the minimal polynomial is the
following: Let us define a quadratical system of equations to the packing where an equation
reflects the fact that distance of two points is mn. To determine the minimal polynomial we
have to eliminate all variables without mn. Using Buchberger’s algorithm (Gröbner basis)
or another technique based on the resultant and a symbolic algebra system (e.g. Maple,
Mathematica, CoCoA, Macaulay2, Singular, etc.) this can be done, but sometimes this is
also hard [15].

Example 4. Let us determine P10(m).

m=0.42127954398390
r=0.14820432256522
d=0.69003578526417

n=10
c=21
f=0 P_2(x_2,y_2) P_3(x_3,y_3)

P_5(x_5,y_5)

P_7(x_7,y_7)

P_4(x_4,y_4)

P_9(x_9,y_9) P_10(x_10,y_10)

P_1(x_1,y_1)

m m

m

m

m

m m

m

m m

mm

P_8(x_8,y_8) 

P_6(x_6,y_6) 

Figure 6. The optimal packing of 10 circles/points in the unit square

The corresponding quadratical system of equations is the following:

(x1 − x2)
2 + (y1 − y2)

2 = m2 (x1 − x4)
2 + (y1 − y4)

2 = m2

(x2 − x3)
2 + (y2 − y3)

2 = m2 (x2 − x5)
2 + (y2 − y5)

2 = m2

(x5 − x6)
2 + (y5 − y6)

2 = m2 (x3 − x6)
2 + (y3 − y6)

2 = m2

(x4 − x7)
2 + (y4 − y7)

2 = m2 (x5 − x7)
2 + (y5 − y7)

2 = m2

(x7 − x9)
2 + (y7 − y9)

2 = m2 (x7 − x10)
2 + (y7 − y10)

2 = m2

(x8 − x10)
2 + (y8 − y10)

2 = m2 (x6 − x8)
2 + (y6 − y8)

2 = m2
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The points P1, P2, P3, P4, P6, P8, P9, and P10 are on the side of the square thus x1 = x4 =
x9 = y2 = y3 = 0 and x6 = x8 = y9 = y10 = 1. It is easy to see that y4 = y1 +m, x3 = x2 +m
and y8 = y6 + m. P2P3P5P6 is a rhombus thus x5 = 1−m and y5 = y6. In the P4P7P9 and
P9P7P10 isosceles triangulars (thus the points P4, P7 and P10 are on a straight line) these
equalities hold: y7 = (1 + y1 + m)/2 and x7 = x10/2.

Using the previous observations all variables are eliminated with the exception of x2, x10, y1, y5

and m. The system of equations is then reduced to the form:

x2
2 + y2

1 = m2,

x2
10 + (1− y1 −m)2 = (2m)2,

(1− x10)
2 + (1− y5 −m)2 = m2,

(1− x2 −m)2 + y2
5 = m2,

(2− 2m− x10)
2 + (2y5 − 1− y1 −m)2 = (2m)2.

Let us determine the minimal polynomial with Maple 8 based on the Groebner package:

>with(Groebner):univpoly(m,[polynomials],{x2, y1, x10, y5, m});.
The obtained minimal polynomial P10(m) is given in the following subsection.

5.3. A list of the known minimal polynomials Pn(m) (2 ≤ n ≤ 100)

n = 2 m2 − 2
n = 3 m4 − 16m2 + 16
n = 4 m− 1
n = 5 2m2 − 1
n = 6 36m2 − 13
n = 7 m2 − 8m + 4
n = 8 m4 − 4m2 + 1
n = 9 2m− 1
n = 10 1180129m18 − 11436428m17 + 98015844m16 − 462103584m15

+1145811528m14 − 1398966480m13 + 227573920m12 + 1526909568m11

−1038261808m10 − 2960321792m9 + 7803109440m8 − 9722063488m7

+7918461504m6 − 4564076288m5 + 1899131648m4 − 563649536m3

+114038784m2 − 14172160m + 819200

n = 11 m8 + 8m7 − 22m6 + 20m5 + 18m4 − 24m3 − 24m2 + 32m− 8
n = 12 225m2 − 34
n = 13 5322808420171924937409m40 + 586773959338049886173232m39

+13024448845332271203266928m38 − 12988409567056909990170432m37

−66972175395892949739372512m36 − 271451157211281654252175360m35

+1438322342979585076139742976m34 − 335429895467663916497996800m33

−6543699259726848821592216832m32 + 9441371361011345362166468608m31

+10182180602633501397232254976m30 − 42246019864541071922661621760m29

+37620100408876038921186476032m28 + 28699095956807539331396009984m27

−102587608293645346411004952576m26 + 103509313296807875445571190784m25
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−23909360523055293307841740800m24 − 62735581440162634955836358656m23

+88454871551963142041952583680m22 − 53012494559549527012040245248m21

+2135173605242212884072628224m20 + 26378985900767549703436894208m19

−26497225761631816480192462848m18 + 12731474183761933022491836416m17

−398432339928038268662185984m16 − 4422001291286852186186711040m15

+3658751900977247115934695424m14 − 1429726216634427968279543808m13

+57770773621828718826618880m12 + 275582370688699861317976064m11

−171632310725283375512289280m10 + 46974915155899860050247680m9

+1760067432596599241441280m8 − 7491112055212411797372928m7

+3652998504696614282592256m6 − 1072642406499215430647808m5

+217086289997205686190080m4 − 30811405631471617048576m3

+2960075719794736758784m2 − 174103532094609162240m
+4756927106410086400

n = 14 13m2 − 16m + 4
n = 15 2m4 − 4m3 − 2m2 + 4m− 1
n = 16 3m− 1
n = 17 m8 − 4m7 + 6m6 − 14m5 + 22m4 − 20m3 + 36m2 − 26m + 5
n = 18 144m2 − 13
n = 19 242m10 − 1430m9 − 8109m8 + 58704m7 − 78452m6

−2918m5 + 43315m4 + 39812m3 − 53516m2 + 20592m
−2704

n = 20 128m2 − 96m + 17
n = 23 16m4 − 16m2 + 1
n = 24 m4 − 16m3 + 20m2 − 8m + 1
n = 25 4m− 1
n = 27 1600m2 − 89
n = 30 1202m2 − 252m + 13
n = 34 m4 + 28m3 − 10m2 − 4m + 1
n = 35 46m4 − 84m3 + 50m2 − 12m + 1
n = 36 5m− 1
n = 39 1732m2 − 68m− 17
n = 42 864m2 − 360m + 37
n = 52 7056m2 − 193
n = 56 1715m2 − 588m + 50
n = 99 28900m2 − 389

5.4. An experimental way to guess minimal polynomials using Maple 8

Recently M. Cs. Markót and T. Csendes [9, 10] have developed a reliable numerical computer
aided method to find the optimal solution of the circle packing problem. This approach is
based on interval arithmetic computations and gives high accuracy numerical results. They
studied the n = 28, 29, and 30 cases. If the precision of the computation is good enough,
sometimes the minimal polynomial can be guessed using e.g. Maple 8. Applying the

>Digits:=a;

>with(PolynomialTools):MinimalPolynomial(m,b);
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commands, where a is the accuracy of approximation of m, and b is the degree of the approx-
imating minimal polynomial. Table 7 summarizes the accuracy necessary to find the exact
minimal polynomial Pn(m).

n degree accuracy n degree accuracy
2 2 3 18 2 10
3 4 10 19 10 58
4 1 3 20 2 10
5 2 4 23 4 10
6 2 9 24 4 10
7 2 6 25 1 4
8 4 5 27 2 15
9 1 3 30 2 13

10 18 193 34 4 10
11 8 20 35 4 13
12 2 11 36 1 4
13 40 1217 39 2 13
14 2 7 42 2 13
15 4 7 52 2 14
16 1 4 56 2 14
17 8 19 99 2 17

Table 7. The necessary accuracy in digits to determine the exact minimal polynomial Pn(m)

6. Summary

In this work we investigated the relations between the parameters of four equivalent allocation
problems. We proved sharp constant bounds on the density of packings. Some new concepts
(optimal substructure, containment graph and generalized minimal polynomial) have been
introduced. Based on optimal substructures, we have calculated some new minimal polyno-
mials.
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[15] Peikert, R.; Würtz, D.; Monagan, M.; de Groot, C.: Packing Circles in a Square: A
Review and New Results. In: P. Kall (ed.), System Modelling and Optimization, 180
Lecture Notes in Control and Information Sciences, Berlin-Heidelberg etc., Springer-
Verlag, 45–54, 1992. Zbl 0789.52002−−−−−−−−−−−−

[16] Schaer, J.: The densest packing of nine circles in a square. Can. Math. Bull. 8 (1965),
273–277. Zbl 0144.44303−−−−−−−−−−−−

[17] Schaer, J.; Meir, A.: On a geometric extremum problem. Can. Math. Bull. 8 (1965),
21–27. Zbl 0136.42301−−−−−−−−−−−−

http://www.emis.de/MATH-item?01748533
http://www.emis.de/MATH-item?0927.52024
http://www.emis.de/MATH-item?0189.22903
http://www.emis.de/MATH-item?0851.05038
http://www.emis.de/MATH-item?0647.52002
http://www.emis.de/MATH-item?1019.90033
http://www.emis.de/MATH-item?0835.52016
http://www.emis.de/MATH-item?0880.90116
http://www.emis.de/MATH-item?0931.05019
http://www.emis.de/MATH-item?0938.52015
http://www.emis.de/MATH-item?0789.52002
http://www.emis.de/MATH-item?0144.44303
http://www.emis.de/MATH-item?0136.42301
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