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Abstract. We show that an Fq2-maximal curve of genus 1
6
(q − 3)q > 0 is either a

non-reflexive space curve of degree q+1 whose tangent surface is also non-reflexive,
or it is uniquely determined, up to isomorphism, by a plane model of Artin-Schreier
type whenever q ≥ 27.
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1. Introduction

Throughout, let K = Fq2 be the finite field of order q2 where q is a power of a prime number,
and K̄ its algebraic closure. A projective, geometrically irreducible, non-singular algebraic
curve defined over K (or simply, a curve over K) of genus g > 0 is called K-maximal, if its
number of K-rational points attains the Hasse-Weil upper bound

q2 + 1 + 2qg.

Maximal curves are known to be very useful in coding theory [16], [37], correlations of shift
register sequences [31], exponential sums [32], and finite geometry [24]. They have been
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intensively studied by several authors, and the following papers contain background and
expository accounts: [36], [40], [15], [11], [10], [12], [7], [14], [28], [29].

The subject of this article is related with the following questions.

(I) Which are the positive integers that belong to the set

M = M(q2) := {g ∈ N : g is the genus of a K-maximal curve}?

(II) For each g ∈ M, how many non-isomorphic K-maximal curves of genus g do exist?

(III) For a K-maximal curve in a class of curves obtained from (II), write down an explicit
plane model.

Ihara [27] pointed out that the number of rational points of a curve whose genus is bigger than
the order of the base (finite) field cannot attain the Hasse-Weil upper bound. In particular,
for g ∈ M (see Subsection 2.1):

g ≤ g1 :=
1

2
(q − 1)q.

The following curve over K, which is the celebrated Hermitian curve, is a K-maximal curve
of genus g1

H : Y qZ + Y Zq = Xq+1. (1.1)

Rück and Stichtenoth [36] showed that this curve is the unique K-maximal curve, up to
isomorphism, of genus g1. Thus g1 ∈ M and in this case the answer to both questions (II)
and (III) are settled.

By a result of Serre, stated and proved in Lachaud’s paper [30, Proposition 6], any curve
covered by a K-maximal curve is also K-maximal. Thus a sufficient condition for a curve to
be K-maximal is to be a quotient curve of H with respect to a subgroup of the automorphism
group PGU(3, K) of H. In [13], [8], [9] genera of many quotient curves of H were computed
and in several cases plane models were given. As noted in [7, Section 4], [1] two such curves
may not be K-isomorphic even if they have the same genus, and hence the same number
of K-rational points. This shows that it is hard to deal with the questions stated above;
nevertheless, there exist further necessary conditions for g ∈ M.

Let g ∈ M, g < g1; then from [40], [11],

g ≤ g2 :=

⌊
1

4
(q − 1)2

⌋
.

We have that g2 ∈ M and it is only attained, up to isomorphism, by the non-singular model
over K of the following plane curves (see [10], [2], [29]).

• yq + y = x
1
2
(q+1), for q > 1 odd;

•
∑t−1

i=0 y2i
= xq+1, for q = 2t > 2.

In particular, for g = g2 the answer to both questions (II) and (III) stated above are deter-
mined. Now if g ∈ M, g < g2, then by [29]

g ≤ g3 :=

⌊
1

6
(q2 − q + 4)

⌋
.
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It turns out that g3 ∈ M since this number is realized by the non-singular model over K of
the following plane curves (see [13], [8], [9, Theorem 2.1]).

• yq+1 + x
1
3
(q+1) + x

2
3
(q+1) = 0, for q ≡ 2 (mod 3);

• yq − yx
2
3
(q−1) + ax

1
3
(q−1) = 0, for q ≡ 1 (mod 3), q > 1, and where a ∈ K such that

aq−1 = −1;

• yq + y + (
∑t−1

i=0 x3i
)2 = 0, for q = 3t > 1.

In this case (g = g3) the answer to question (II) is not known. By contrast, the fourth largest
genus g4 ∈ M might heavily depend on q. For example, let g ∈ N such that⌊

1

6
(q − 2)(q − 1)

⌋
≤ g < g3;

then in that interval only three values of g ∈ M are known to exist, namely:

(A) If q ≡ 2 (mod 3), q > 2, there exists a K-maximal curve of genus g3 − 1 (see [13], [9])
and thus g4 = g3 − 1; a plane model of such a curve can be found in [9]. Here the
answer to question (II) is also open;

(B) If q ≡ 2 (mod 3) and q ≥ 11, then g̃ := 1
6
(q − 2)(q − 1) ∈ M and the non-singular

model over K of the plane curve yq + y = x
1
3
(q+1) is the unique maximal curve, up to

isomorphism, whose genus is g̃ (see [29]). Thus in this case all the questions above have
been answered.

(C) If q = 3t > 3, there exists a K-maximal curve of genus g = 1
6
(q − 3)q, namely the

non-singular model X over K of the plane curve C = Ca defined by

t−1∑
i=0

y3i

= axq+1 , with a ∈ K such that aq−1 = −1 . (1.2)

Let a, b ∈ K such that aq−1 = bq−1 = −1; then the plane curves Ca and Cb are birational
equivalent over K by means of the map (x, y) 7→ (αx, y) with αq+1 = a

b
. Therefore the

non-singular model X does not depend on the parameter a.

We also point out the following.

(D) If q ≡ 1 (mod 3) and q ≥ 13, then g := 1
6
(q − 2)(q − 1) 6∈ M, see [29].

It is worthwhile to remark that each K-maximal curve mentioned above, is a quotient of the
Hermitian curve H by a certain subgroup of PGU(3, q2) (see the respective reference quoted
so far). At present, there is not known the existence of a K-maximal curve not covered by
H (see Remark 4.2).

In this paper we are concerned about question (II) for the number g = 1
6
(q − 3)q > 0

which, as we already pointed out, belongs to the set M. Our main result is the following.

Theorem 1. Let X be a K-maximal curve of genus g = 1
6
(q − 3)q > 0. Then

(1) either X is a non-reflexive space curve of degree q + 1 whose tangent surface is also
non-reflexive, or

(2) X is the non-singular model over K of the plane curve defined by equation (1.2) when-
ever q ≥ 27.
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Unfortunately this result is not satisfactory in the sense that we do not know of any example
of a maximal curve satisfying assertion (1) and if so, how many non-isomorphic classes of such
curves might exist? Nevertheless, its theoretical meaning provides some further connection
between curves having many rational points with those having quite pathological behavior;
cf. [23]. We remark that a similar result in characteristic two has been proved in [2] which
then was improved in [29].

The first step to prove the theorem is to show that the curve X is embedded either in
P3(K̄), or in P4(K̄) as a curve of degree q + 1; see Lemma 3.1. This geometrical property
for the former case, implies that both the curve and its tangent surfaces must be non-
reflexive varieties by results of Homma [26] and Hefez-Kakuta [21]; we consider and survey
this possibility in Section 4. In the later case, the curve is extremal in the sense of Subsection
2.4, and so a remarkable observation due to Accola [3] allows us the use of arithmetical
properties of the Weierstrass semigroup at a certain point of the curve. In particular, we find
that X admits a plane model over K defined by equation (5.1) and the proof of assertion
(2) in the theorem is completed after we show that the plane curves in (5.1) and (1.2) are
birational equivalent over K: this is done in Section 5.

The geometrical facts used in this paper, which are summarized in Section 2, are based
on some properties of maximal curves from [10], [28], [29]; Stöhr-Voloch’s paper [38] (which
has to do with a geometric approach to the Hasse-Weil bound); Castelnuovo’s genus bound
[6] which can be extended to positive characteristic by Hartshorne [18, V, Theorem 6.4] and
Rathmann results [35]; the extremely interesting Accola’s paper [3] whose results are also
valid in positive characteristic due to the aforementioned references. In Section 3 we state
some specific results concerning K-maximal curves of genus 1

6
(q − 3)q.

2. Background

2.1. Maximal curves

For a K-maximal curve X of genus g > 0, the roots of h(T ) := T 2gL(T−1) = (T + q)2g are
all equal to −q, where L(T ) is the enumerator of the Zeta function of X over K (see eg. [37,
V.1]). It follows that (loc. cite)

q2 + 1 + 2qg = #X (K) ≤ #X (Fq4) = q4 + 1− 2q2g,

and whence we obtain the bound g1 mentioned in the introduction. Furthermore, the poly-
nomial h(T ) is the characteristic polynomial of the Frobenius morphism Φ̃ over K on the
Jacobian J of X , which is induced by the Frobenius morphism Φ on X . The morphism Φ̃
is semi-simple (see [33]) and thus Φ̃ + qI = 0 on J . We can state this property by using
divisors on X ; to do that we use the fact that f ◦ Φ = Φ̃ ◦ f , where f(P ) = [P − P0] is the
natural morphism that sends P0 to 0 ∈ J with P0 being a K-rational point of X . Therefore
the following linear equivalence of divisors on X arises:

qP + Φ(P ) ∼ (q + 1)P0 , ∀P ∈ X . (2.1)

This equivalence allows us to investigate thoroughly arithmetical and geometrical properties
of maximal curves by studying the complete liner series of degree q + 1 on X :

D = DX := |(q + 1)P0|
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(see [29] and the references therein). The linear equivalence (2.1) implies that the definition
of D is independent of the selection of the K-rational point P0, and as well that q + 1
belongs to the Weierstrass semigroup H(P ) at any K-rational point P . In particular, D is
base-point-free.

2.2. Stöhr-Voloch theory

In this subsection, we consider some results of Stöhr-Voloch’s paper [38] that have to do with
Weierstrass points and Frobenius orders of linear series. Although these results can be stated
for arbitrary linear series, we restrict ourselves to the case of the linear series D defined above.

Let N denote the (projective) dimension of D, and for P ∈ X let (ni(P ) : i = 0, 1, . . . )
denote the strictly increasing sequence that enumerates the Weierstrass semigroup H(P ) at
P . The linear equivalence (2.1) implies N ≥ 2 and

0 = n0(P ) < n1(P ) < · · · < nN−1(P ) ≤ q < q + 1 ≤ nN(P ). (2.2)

We already noticed that nN(P ) = q +1 if P ∈ X (K). From (2.1), one can easily deduce that
nN−1(P ) = q (∗) provided that P ∈ X \ X (Fq4); the study of property (∗) for the remaining
points is a non-trivial problem and indeed it is related with the very ampleness property of
D (see Lemma 2.2 below).

For P ∈ X and i a non-negative integer, we introduce certain sub-sets of D that provide
with geometric information about the curve X . Let Di = Di(P ) := {D ∈ D : vP (D) ≥ i}
(here D =

∑
P vP (D)P ). Since deg(D) = q + 1,

D ⊇ D0 ⊇ D1 ⊇ · · · ⊇ Dq ⊇ Dq+1.

We have that each Di is a sub-linear series of D, and the codimension of Di+1 in Di is at most
one. If Di % Di+1, i is called a (D, P )-order; thus by elementary Linear Algebra we have a
sequence of (N +1) (D, P )-orders. This sequence will be denoted by j0 < j1 < · · · < jN , (ji =
ji(P )); notice that j0 = 0 as D is base-point-free. In addition, there is just one hyperplane
HP ⊆ PN(K̄), say defined by

∑N
0 aiXi = 0, such that div(

∑N
0 aifi)+(q+1)P0 ∈ Dq+1 where

π = (f0 : f1 : · · · : fN) is a morphism associated to D. The hyperplane HP is the so-called
osculating hyperplane at P . The left hand-side of the equation that defines the hyperplane
is in fact the determinant L = L(X0, X1, . . . , XN) of the matrix whose rows are

(X0, X1, . . . , XN) , (Dji
t f0(P ), Dji

t f1(P ), . . . , Dji
t fN(P )) , i = 0, 1, . . . , N − 1, (2.3)

(see [38, Corollary 1.3]). Here t is a local parameter at P and Dji
t ’s are the Hasse derivatives

on K̄(X ) of order ji with respect to t; see [20] for general properties on these operators. In
the present work we only need Property 5.3 below.

It is a fundamental result the fact that the sequence of (D, P )-orders is the same for all
but finitely many points P [38, Theorem 1.5]. This constant sequence is called the order
sequence of D. It will be denoted by 0 = ε0 < ε1 < · · · < εN . The finitely many points P ,
where exceptional (D, P )-orders occur, are called the D-Weierstrass points. There exists a
divisor R, the ramification divisor of D, whose support is exactly the set of D-Weierstrass
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points:

R := div (det (Dεi
t fj)) + div(dt)

N∑
i=0

εi + (N + 1)(q + 1)P0.

In particular, the number of D-Weierstrass points (counted with multiplicity) is

deg(R) =
N∑

i=0

εi(2g − 2) + (N + 1)(q + 1).

Associated to D we also have a divisor S, the so-called Frobenius divisor over K, which in
some sense is closer related to the set of K-rational points of the curve. Let us assume that
each coordinate fi of π belongs to K(X ) (this can be done so since X is defined over K).

By (2.1), Φ(P ) ∈ HP for any point P ∈ X ; thus from (2.3), L(Φ(P )) = 0 and so
L ◦ Φ = 0. This suggests to study the following rational functions; for the sequence of non-
negative integers 0 ≤ ν0 < ν1 < · · · < νN−1, let L̃ be the determinant of the matrix whose
rows are:

(f q2

0 , f q2

1 , . . . , f q2

N ) , (Dνi
t f0, D

νi
t f1, . . . , Dνi

t fN) , i = 0, 1, . . . , N − 1. (2.4)

There exist some sequences ν0 < ν1 < · · · < νN−1 such that L̃ 6= 0 on X . The minimal of such
sequences with respect to the lexicographic order is called the Frobenius order sequence over
K of the curve; as a matter of fact, such a sequence is a subsequence of the order sequence
of D [38, Proposition 2.1]. There is a divisor associated to the Frobenius order sequence over
K which is analogue to the ramification divisor, namely

S := div(L̃) + div(dt)
N−1∑
i=0

νi + (q2 + N)(q + 1)P0;

we have that

deg(S) =
N−1∑
i=0

νi(2g − 2) + (q2 + N)(q + 1).

Properties concerning the divisors R and S (associated to D) that play a role in the present
work are collected below.

Lemma 2.1. (1) ([38, Proposition 1.4]) ji(P ) ≥ εi for each i and each P ∈ X .

(2) ([38, Theorem 1.5]) vP (R) ≥
∑N

i=0(ji(P ) − εi), and the equality holds if and only if

det
((

ji(P )
εj

))
6≡ 0 (mod p).

(3) ([38, Corollary 2.6]) νi ≤ ji+1(P )− j1(P ) for each i and each P ∈ X (K).

(4) ([38, Proposition 2.4]) For P ∈ X (K), vP (S) ≥
∑N−1

i=0 (ji+1(P )−νi), and equality holds

if and only if det
((

ji+1(P )
νj

))
6≡ 0 (mod p). For P 6∈ X (K), vP (S) ≥

∑N1

i=0(ji(P ) −
νi(P )).

(5) From (2.1), εN = νN−1 = q.
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(6) From (2.1), jN(P ) = q + 1 if P ∈ X (K), otherwise jN(P ) = q.

(7) j1(P ) = 1 for any P ∈ X : if P ∈ X (K) the assertion follows from items (3) and (6),
otherwise it follows from (2.1). In particular ε1 = 1.

(8) ([10], [23, Theorem 1]) N = 2 if and only if g = 1
2
(q − 1)q, and ν1 = 1 if N ≥ 3.

(9) If P ∈ X (K), from (2.1) and (2.2) the (D, P )-orders are jN−i(P ) = nN − ni = q + 1−
ni(P ) (i = 0, 1, . . . , N); in particular, nN−1(P ) = q by item (7). For P non-rational,
the elements nN−1(P )− ni(P ), (i = 0, . . . , N − 1, ) are (D, P )-orders.

We end this subsection mentioned the following key property of maximal curves.

Lemma 2.2. For a K-maximal curve X , the following statements hold.

(1) ([28, Theorem 2.5]) The linear series D is very ample; that is, every morphism π : X →
PN(K̄) associated to D is an embedding onto its image.

(2) ([10, Proposition 1.9]) Assertion (1) is equivalent to the fact that q ∈ H(P ) at any
P ∈ X .

2.3. Castelnuovo’s genus bound (for curves in projective spaces)

Let X be a curve of genus g and E a simple linear series on X meaning that X is birational
to π(X ) for some morphism π associated to E . Let d be the degree of E and r its (projective)
dimension. Then the genus g is upper bounded by the so-called Castelnuovo’s genus bound.
We have that

g ≤ c(d, r) :=
d− 1− ε

2(r − 1)
(d− r + ε) ≤


(d−1− 1

2
(r−1))2

2(r−1)
if r is odd,

(d−1− 1
2
(r−1))2− 1

4

2(r−1)
if r is even,

(2.5)

where ε is the unique integer such that 0 ≤ ε ≤ r−2 and d−1 ≡ ε (mod (r−1)). This result
was known to be true in characteristic zero and proved first by Castelnuovo [6] (see also [4,
p. 116]). As we already mentioned in the introduction, this result is also valid in positive
characteristic by works of Hartshorne and Rathmann. We notice that one expects to obtain
some information on the dimension r provided that g and d are known.

2.4. Extremal curves

We retain the setting and notation from the previous subsection. A curve X of genus g is
called extremal (with respect to E) if g = c(d, r). The following result is implicitly contained in
the proof of Castelnuovo’s genus bound (2.5) taking into account the Riemann-Roch theorem.
Our reference is Accola’s paper [3, p. 351, Lemma 3.5] whose results are also valid in positive
characteristic once again by Hartshorne’s [18, Theorem 6.4] and Rathmann’s [35, Corollary
2.8] works. Define the integer ε′ ∈ {2, . . . , r} by d = m(r − 1) + ε′.

Lemma 2.3. Let X be an extremal curve with respect to the linear series E of degree d and
dimension r. If m ≥ 2, then

(1) the dimension of 2E is 3r − 1;

(2) there exists a complete linear series E ′ of degree (ε′ − 2)(m + 1) and dimension (ε′ − 2)
such that (m− 1)E + E ′ is the canonical linear series on X .
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3. K-maximal curves of genus 1
6
(q − 3)q

Throughout, X denotes a K-maximal curve of genus g = 1
6
(q − 3)q > 0. The results of this

section have been summarized from the references [8] and [29]; we include the proofs for the
sake of completeness. Let D be the linear series of degree q +1 and dimension N on X which
was defined in Subsection 2.1.

Lemma 3.1. N ∈ {3, 4}.

Proof. The dimension N should be at least three by Lemma 2.1(8) and the hypothesis on g.
By means of contradiction, suppose that N ≥ 5. Then the Castelnuovo’s genus bound (2.5)
applied to D would imply

g =
1

6
(q − 3)q ≤ 1

8
(q − 2)2

so that q ≤ 3, a contradiction. �

Next result takes into account basic facts for the case N = 3. Let 0 < 1 < j2(P ) < q + 1 be
the (D, P )-orders for P ∈ X (K), and 0 < 1 < ε2 < q (resp. 0 < 1 < q) the order sequence
(resp. Frobenius order sequence over K) of D (cf. Subsection 2.2).

Lemma 3.2. If N = 3, the following statements hold.

(1) ε2 = 3;

(2) dim(2D) ≥ 9;

(3) there exists a K-rational point P such that n1(P ) = q − 2.

Proof. (1) We claim that ε2 ≤ 3, otherwise let S be the Frobenius divisor over K of D; for
P ∈ X (K) we have that vP (S) ≥ 5 by Lemma 2.1(4)(3)(1); thus

deg(S) = (1 + q)(2g − 2) + (q2 + 3)(q + 1) ≥ 5(q + 1)2(+5(2g − 2).

It follows that (q + 1)(q2 − 5q − 2) ≥ (2g − 2)(4q − 1); but 2g − 2 = 1
3
(q2 − 3q − 6) and thus

we would have q3 − q2 − 12 ≤ 0 and so q = 3, a contradiction.
So far, we have shown that ε2 ∈ {2, 3}. Suppose that ε2 = 2. Let R be the ramification

divisor of D and P ∈ X (K). Lemma 2.1(5)(6) gives vP (R) ≥ 1, and since deg(R) =
(3 + q)(2g − 2) + 4(q + 1) (cf. Subsection 2.2), the maximality of X gives

(3 + q)(2g − 2) + 4(q + 1) ≥ (q + 1)2 + q(2g − 2)

so that g ≥ 1
6
(q2 − 2q + 3) and the result follows.

(2) In a similar way to the case D, we can define the order sequence of the linear series
2D. We have that εi + εj (i, j = 0, 1, 2, 3) belong to the order sequence of 2D and thus this
sequence has at least nine elements, namely

0, 1, 2, 3, 4, 6, q, q + 1, q + 3, 2q.

(3) By Lemma 2.1(9) for any P ∈ X (K), the first non-negative Weierstrass non-gap at P
satisfies n1(P ) = q + 1− j2(P ). We claim that j2(P ) = 3 for at least one K-rational point of
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X . Since j2(P ) ≥ ε2 = 3 (see Lemma 2.1(1)), let us assume that j2(P ) ≥ 4 for any K-rational
point P . Then by Lemma 2.1(2) we would have

deg(R) = (4 + q)(2g − 2) + 4(q + 1) ≥ 2(q + 1)2 + 2q(2g − 2);

that is to say, 0 ≥ (q − 4)(2g − 2) + (q + 1)(2q − 2) > 0, a contradiction. �

Remark 3.3. Assertion (2) of the previous result will not be used in this paper. By applying
Castelnuovo’s genus bound to the linear series 2D, we have that 9 ≤ dim(2D) ≤ 11.

Now we shall point out some results for the case N = 4. The first observation is that the
curve is extremal with respect to D. In fact, since d−1 = q = 3(1

3
q) and r−1 = N −1 = 3 it

follows that ε = 0, and hence c(q +1, 4) = g = 1
6
(q− 3)q. For P ∈ X (K) and P ∈ X \X (K),

let 0 < 1 < j2 := j2(P ) < j3 := j3(P ) < q + 1 and 0 < 1 < j2 := j2(P ) < j3 := j3(P ) < q
be the (D, P )-orders respectively. Let 0 < 1 < ε2 < ε3 < q and 0 < 1 < ν2 < q be the order
sequence and the Frobenius order sequence over K of D respectively.

Lemma 3.4. If N = 4, the following statements hold.

(1) dim(2D) = 11;

(2) there exists a complete linear series D′ of degree 2
3
q and dimension two such that 1

3
(q−

6)D +D′ is the canonical linear series on X ;

(3) if j2 = 2, then j3 = 3;

(4) if P ∈ X (K) and j2 > 2, then j2 = 1
3
(q + 3), and j3 = 1

3
(2q + 3). In particular, the

Weierstrass semigroup at P is generated by 1
3
q and q + 1;

(5) if q ≥ 27 and P 6∈ X (K), then j2 = 2.

Proof. (1)–(2) We already observed that X is an extremal curve with respect to D; then
assertions (1) and (2) follow from Lemma 2.3(1)(2) taking into account that ε′ = 4 and
m = 1

3
(q − 1).

(3) Let P ∈ X (K). Then the following numbers are (2D, P )-orders

0, 1, 2, 3, 4, j, j + 1, j + 2, 2j, q + 1, q + 2, q + 3, q + j + 1, 2q + 2.

If j > 4, we would have the sequence 0 < 1 < 2 < 3 < 4 < j < j + 1 < j + 2 < q + 3 <
q+j+1 < 2q+2 and whence j = q by assertion (1). Therefore n1(P ) = q+1−j3 (cf. Lemma
2.1(9)); that is n1(P ) = 1; this a contradiction since we have assumed that g > 0. If j = 4,
then the following numbers would be (2D, P )-orders:

0, 1, 2, 3, 4, 5, 6, 8, q + 1, q + 2, q + 3, q + 5, 2q + 2;

which is again a contradiction by assertion (1). Now let P 6∈ X (K). Arguing as in the
previous case we show that if j 6= 4, then j = q − 1. Therefore the curve X is hyperelliptic
by (2.1) so that

#X (K) = q2 + 1 + 2qg ≤ 2(q2 + 1),

which gives g ≤ 1
2
(q − 1), a contradiction.
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(4) The elements of the following increasing sequence are (2D, P )-orders:

0 < 1 < 2 < j2 < j3 < j3 + 1 < q + 1 < q + 2 < q + 1 + j2 < q + 1 + j3 < 2q + 2.

(Here j3 < q, otherwise n1(P ) = 1.) The numbers j2 + 1, 2j2, j2 + j3, 2j3 are also (2D, P )-
orders. (Notice that j2 + 1 ≤ j3.)

Case j2 + 1 < j3. Hence in the above sequence we have 12 (2D, P )-orders and by assertion
(1), either j2 + j3 = q + 1, or j2 + j3 = q + 2; in particular, 2j3 = q + 1 + j2. In the former
case, 2j3 = q + 1 + j2 and so 3j2 = q + 1, a contradiction; in the latter case, j3 = 2j2 − 1 so
that j2 = 1

3
(q + 3) and j3 = 1

3
(2q + 3)/3.

Case j2 + 1 = j3. We show that this case cannot occur. If q + 2 < j2 + j3, 2j3 = q + 1 + j2

which is not possible; if q + 2 = j2 + j3 we would have that 1
2
(q − 1), 1

2
(q + 1) ∈ H(P ) by

Lemma 2.1(9): thus 1
2
(q−1), 1

2
(q+1), q−1, q, q+1 ∈ H(P ) and so N ≥ 5 by (2.2). Therefore,

j2 + j3 < q + 2. Since j2 + j3 = q + 1 implies 2j2 = q and q is odd, in addition we have that
j2 + j3 < q + 1. Then 2j2 ∈ {j3, j3 + 1} and hence j2 ≤ 2, a contradiction.

Finally, n1(P ) = 1
3
q ∈ H(P ) by Lemma 2.1(9) so that g = #(N \ H(P )) ≤ g1 := N \ H,

where H is the semigroup generated by 1
3
q and q + 1. By an elementary computation (see

eg. [34]) it turns out that g1 = g, and so H(P ) = H.

(5) By means of contradiction, suppose that there exists P 6∈ X (K) such that j2 > 2. Arguing
as in the proof of the previous assertion, we have to deal with the following two cases:

(5.1) Either j2 = 1
3
q and j3 = 2

3
q, or

(5.2) j2 = 1
2
(q − 1) and j3 = 1

2
(q + 1).

In Case (5.1), n1 := n1(P ) ∈ {2
3
q, 1

3
q} by Lemma 2.1(9); the (D, P )-orders are 0 < 1 < 1

3
q <

2
3
q < q and hence by assertion (1), the (2D, P )-orders are 0 < 1 < 2 < 1

3
q < 1

3
q + 1 < 2

3
q <

2
3
q + 1 < q < q + 1 < 4

3
q < 5

3
q < 2q. By applying Φ to (2.1) (cf. [18, IV, Example 26]), it

turns out that these numbers are also the (2D, Φ(P ))-orders. Now let f ∈ K̄(X ) such that
div(f − f(Φ(P ))) = D + eΦ(P ) − n1P , with e ≥ 1 and P, Φ(P ) 6∈ Supp(D). If n1 = 2

3
q

(resp. 1
3
q), 3e + 2 (resp. 3e + 1) is a (2D, Φ(P ))-order (resp. a (D, P )-order) by (2.1). By the

computations above concerning (2D, P )-orders, we have a contradiction.

In Case (5.2), we apply assertion (2) and find that 2j2 + 1 6∈ H(P ) whenever 2 ≤ 1
3
(q − 6);

that is, for q ≥ 27. It follows then that q 6∈ H(P ) which is a contradiction according to
Lemma 2.2. �

Corollary 3.5. With the notation above,

(1) for q ≥ 27, there exists P ∈ X (K) such that H(P ) is generated by 1
3
q and q + 1;

(2) let P be as in assertion (1), and x ∈ K(X ) such that div∞(x) = q
3
P. Then the morphism

x : X \ {P} → A1(K̄) is unramified, and x−1(α) ⊆ X (K) for any α ∈ K;

(3) the order sequence of D and the Frobenius order sequence over K of D are respectively
0, 1, 2, 3, q, and 0, 1, 2, q.

Proof. (1) By Lemma 3.4(4), it is enough to show that there exists P ∈ X (K) such that
j2 > 2. Suppose that j2 = 2 for any P ∈ X (K). Then by Lemma 2.1(6) and Lemma
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3.4(3)(5), the (D, P )-orders at P ∈ X (K) and P 6∈ X (K) are respectively 0, 1, 2, 3, q + 1 and
0, 1, 2, 3, q. Thus by Lemma 2.1(2) we would have

deg(R) = (6 + q)(2g − 2) + 5(q + 1) = #X (K) = (q + 1)2 + q(2g − 2),

so that 2g − 2 = 1
6
(q − 4)(q + 1); that is, q2 − 3q − 8 = 0, a contradiction.

(2) For α ∈ K, let Q ∈ X such that x(Q) = α. Write div(x − α) = eQ + D − q
3
P , e ≥ 1,

P, Q 6∈ Supp(D). We have to show that e = 1.

Case Q 6∈ X (K). From (2.1) follows that 0 < 1 ≤ e < 2e < 3e ≤ q are (D, Q)-orders. If
e > 1, e = 1

3
q and so qQ ∼ qP . We have then that qQ + P ∼ (q + 1)P ∼ qQ + Φ(Q); that is

to say, P ∼ Φ(Q). Since g > 0, P = Φ(Q) which is a contradiction as Q is not rational.

Case Q ∈ X (K). Arguing as above we have that 0 < 1 ≤ e < 2e < 3e < q + 1 are
(D, Q)-orders which clearly implies e = 1.

(3) From the proof above, we have that 0, 1, 2, 3 belong to the (D, Q)-orders at any point
Q 6= P of the curve. Then the result follows from Lemma 2.1(1)(3). �

Remark 3.6. For q = 9 we do not know whether or not there exists a K-rational point P
such that n1 = 3. The proof of this property for q ≥ 27 is based on Lemma 3.4(5). The proof
of this lemma does not work for q = 9; more precisely the case that we cannot eliminate is
the existence of a point P 6∈ X (K) whose (D, P )-orders are 0, 1, 4, 5, 9, and such that n1 = 4,
n2 = 8 and n3 = 9. In this situation, H(P ) would contain the semigroup H generated by
4, 8, 9, namely

{0, 4, 8, 9, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, . . . }.

How can we compute H(P ) \H (notice that N \H(P ) = g = 9) ? The answer is obtained
via Lemma 3.4(2): we have that there exists a complete linear series E of degree six and
dimension two such that D + E is the canonical linear series on X . Then it is easy to see
that H(P ) \H = {14, 19, 23} since we have that j + ` + 1 6∈ H(P ) with j (resp. ` ≤ 6) being
a (D, P )-order (resp. a (E , P )-order). The question is if a maximal curve of genus 9 defined
over F81 with the property above might exist.

4. Genus g = 1
6
(q − 3)q with N = 3

Let X be a K-maximal curve of genus g = 1
6
(q − 3)q > 0 with N = 3. By Lemmas 3.1(1)

and 2.1(5) the orders of D are 0, 1, ε2 = 3, q. What geometric phenomena does the invariant
ε2 reflect on X ? Several authors noticed that this invariant is related to the reflexivity or
not of the curve X and its tangent surface T (X ) which is a property in the dual theory of
curves. In our situation,

both X and T (X ) are non-reflexive varieties (4.1)

(which is in fact a geometric pathological behavior of a curve). In what follows we shall give
an expository account concerning assertion (4.1). Background on dual theory of varieties can
be found e.g. in [20], [22], [21], [25], [26], and [41].
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Let us assume that X ⊆ P := P3(K̄) (cf. Lemma 2.2) and denote by P∗ the dual
projective space of P. The conormal variety C(X ) of X is the Zariski closure in P × P∗ of
the set

{(P, H) ∈ (X ,P∗) : I(P ;X ·H) > 1},
where I(P ;X · H) denotes the intersection multiplicity of X and H at P . The dimension
of this variety is N − 1 = 2 and we have two natural projections, namely π : C(X ) → P
and π′ : C(X ) → P∗. The dual variety of X is the surface X ′ := π′(C(X )). The curve X is
called non-reflexive if C(X ) 6= C(X ′) (here C(X ′) is defined in a similar way as in the case
of a curve). We have that π′ : C(X ) → X ′ is a finite morphism; let i be the inseparable
degree of this map. Hefez and Kakuta [21] (see also [19]) proved a generalization of the so
called generic order of contact theorem of Hefez and Kleiman (see [22, Section 3.5]). In our
case their result computes i as being the highest power of three that divides ε2; that is to
say, i = 3. Then for the aforementioned Hefez and Kleiman result, the inseparability of the
morphism π′ is equivalent to the non-reflexivity of X .

Now let TP = TP (X ) denote the tangent line of X at P . The tangent surface T (X ) of
X is the Zariski closure in P of the set ∪P∈XTP . By using arithmetical properties of orders
sequences, Homma [26, Proposition 1.2] (see also [19]) computed the orders sequences that
space curves may have. In characteristic three we have four possibilities, namely either (i)
0, 1, 2, q̃, or (ii) 0, 1, q̃, q̃ + 1, or (iii) 0, 1, q̃, 2q̃, or (iv) 0, 1, q′, q′q̃ (here q′ and q̃ are powers of
three). In our situation, case (iv) holds true with q′ = 3 and q̃ = 1

3
q. Homma also shows that

each of these possibilities occur [26, p. 226]; however, his examples are all based on curves of
genus zero. Then Homma’s result Theorem 0.1 in [26](v) implies the non-reflexivity of the
tangent surface T (X ) (as well of the curve X ).

It would be interesting to relate the maximality of X to the non-reflexivity of T (X ). For
example a connection can be made by counting rational points; thus the matter is to find a
tight upper bound for #T (X )(K). This could be done if one could extend Voloch’s approach
[39] concerning upper bounds on the number of rational points on surfaces over prime finite
fields to surfaces defined in finite fields of arbitrary order. The generalized Voloch’s result
could also be used to establish insights on the existence of X as follows. Ballico [5] extended
Harris’ and Rathmanns results that have to do with space curves contained in surfaces of
certain degree (see [17] and [35] respectively). For q large enough, Ballico’s result implies
that X is contained in a surface S of degree three or four. What numerical phenomena does
the relation #X (K) ≤ #S(K) reflect?

To finish this section, we point out a couple of remarks that might have to do with the
existence of the curve X .

Remark 4.1. (Related to Weierstrass semigroups) Let P ∈ X (K) such that n1(P ) = q − 2
(cf. Lemma 3.2(3)). Hence the Weierstrass semigroup at P , H(P ), contains the semigroup
H generated by q − 2, q, q + 1, namely the semigroup

H = {(q − 2)i : i ∈ N0} ∪i∈N {(q − 2)i + j : j = 2, . . . , 3i}.

We have that g̃ := #(N \H) = 1
6
(q2 − q). Can we compute H(P ) \H? In order to do that

we have to choose 1
3
q elements from the set

{qi− 2i + 1 : i = 1, . . . ,
1

3
q} ∪

1
3
q−2

i=1 [(qi + i + 1, q(i + 1)− 2i− 1] ∩N.
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Which geometrical or arithmetical phenomena do these computations give forth on the curve
X ?

Remark 4.2. (Related with the existence of maximal curves covered by the Hermitian curve
(1.1)). This remark shows that, under an additional hypothesis, the existence of a maximal
curve X with N = 3 of genus g = 1

6
(q − 3)q will provide us with a non-trivial example of

a maximal curve. As we mention in the introduction, the existence of maximal curves not
covered by the Hermitian curve is an open problem. Moreover, it is not known any example
of a maximal curve which is covered by the Hermitian curve by a not Galois covering.

Suppose that the curve X is K-covered by the Hermitian curve, say via a covering π. We
show that π cannot be Galois because of the hypothesis on N and g. If π were Galois from
[9, Theorem 3.2] the degree of π has to be three; thus either X has a plane model as in (1.2)
and thus N = 4, or the genus of X would be 1

6
(q − 1)q.

5. The genus g = 1
6
(q − 3)q with N = 4

Throughout this section, X denotes a K-maximal curve of genus g = 1
6
(q− 3)q, q = 3t ≥ 27,

with N = dim(D) = 4. We show that X is the non-singular model over K of a plane equation
of type (1.2).

Let P ∈ X (K) be as in Corollary 3.5(1); that is to say, such that H(P ) is generated
by 1

3
q and q + 1. We have that D = |(q + 1)P | by (2.1). Let x, y ∈ K(X ) be such that

div∞(x) = 1
3
qP and div∞(y) = (q + 1)P ; then D is generated by the sections 1, x, x2, x3, y.

The Riemann-Roch space L(1
3
q(q + 1)P ) is generated by the set

{xq+1} ∪
1
3
q

i=0 {xjyi : j = 0, . . . , q − 3i},

which has 1
6
(q2 + 5q) + 2 elements. Now by the Riemann-Roch theorem, the K-dimension of

L(1
3
q(q + 1)P ) is 1

6
(q2 + 5q) + 1; on the other hand, v(xjyi) ≥ −1

3
q(q + 1) + 1 unless either

(j, i) = (q+1, 0), or (j, i) = (0, 1
3
q) (here v denotes the valuation at P ) and therefore Property

5.1 below implies the following relation between the rational functions x and y:

xq+1 +

1
3
q∑

i=0

Ai(x)yi = 0, (5.1)

where each Ai(x) ∈ K[x] with deg(Ai(x)) ≤ q − 3i, and A 1
3
q(x) = A 1

3
q ∈ K∗. Moreover, as

gcd(1
3
q, q + 1) = 1, K(X ) = K(x, y) and thus equation (5.1) is in fact a plane model over K

of X .
Let Di := Di

x be the i-th Hasse derivative on K̄(X ) with respect to the separating
variable x (recall that Dixj =

(
j
i

)
xj−i). In what follows we use the following properties on

valuations and Hasse derivative operators (see e.g. [37, Lemma I.1.10] and [20, Lemma 3.11]
respectively). Let f1, . . . , fm ∈ K̄(X ).

Property 5.1.

If f1 + · · ·+ fm = 0, then ∃ , i 6= j such that v(fi) = v(fj) = min{fk : k = 1, . . . , m}.
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Property 5.2.

v(
m∑

i=1

fi) = min{v(fi) : i = 1, . . . , m}, provided that v(fi) 6= v(fj) for i 6= j.

Property 5.3.

For f ∈ K̄(X ): Dif 3s

= (D
i

3s f)3s

if 3s|i, and Dif 3s

= 0 otherwise.

Lemma 5.4. (1) v(D1y) = −1
3
q2.

(2) Let Ai(x) be as in (5.1) such that Ai(x) 6= 0; then either i ≡ 0 (mod 3), or i = 1 and
A1(x) = A1 ∈ K∗.

(3) v(D3y) = −q2.

Proof. (1) By Lemma 3.5(2), the morphism x : X → P1(K̄) is totally ramified at P and
unramified outside P ; thus div(dx) = (2g − 2)P . Let t be a local parameter at P ; then

v(D1y) = v(
dy

dt
)− v(

dx

dt
) = −q − 2− (2g − 2) = −1

3
q2.

(2) By applying D1 to equation (5.1) we obtain:

xq + F + GD1y =0 , where

F :=

1
3
q−1∑
i=0

yiD1Ai(x) , G :=

1
3
q−1∑
i=1

iyi−1Ai(x).

Let i ∈ {1, . . . , 1
3
(q − 3)} be such that Ai(x) 6= 0. Then v(GD1y) < −1

3
q2 whenever i 6≡ 0

(mod 3) and i ≥ 2 (cf. assertion (1)). Thus from Properties 5.1 and 5.2, v(F ) = V (GD1y)
(∗), and so there exist integers 0 ≤ i0 ≤ 1

3
q − 1, 1 ≤ j0 ≤ 1

3
q − 1 such that v(yi0D1Ai0(x)) =

v(yj0−1Aj0(x)). Since gcd(1
3
q, q + 1) = 1, this is not possible unless i ≡ 0 (mod 3), or i = 0.

Next we show that A1(x) ∈ K∗. We have that G = A1(x) and that (∗) holds true provided
that v(G) > 0; then the result follows.

(2) The Frobenius orders of D are 0, 1, 2, q by Corollary 3.5(3). Then the minimality of this
sequence with respect to the lexicographic order implies the following relation between x and
y:

yq2 − y = (xq2 − x)D1y + (xq2 − x)2D2y + (xq2 − x)3D3y . (5.2)

Now from assertion (1) and Property 5.1, the above equation implies v(D2y+(xq2−x)D3y) =
−1

3
q3 − q2; so it is enough to show that

v(D2y) > −1

3
q3 − q2 . (∗∗)
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By assertion (2), equation (5.1) can be written as:

xq+1 + A1y +

1
9
q∑

i=0

A3i(x)y3i = 0.

Now apply D2 to this equation; then by means of Property 5.3 we find that

D2A0(x) + A1D
2y +

1
9
q∑

i=1

y3iD2A3i(x) = 0.

Then (∗∗) follows from Property 5.1 since v(D2A0(x))≥−1
3
q2+ 2

3
q, and v(

∑ 1
9
q

i=1 y3iD2A3i(x))≥
−5

9
q2 + 1

3
q. �

Next we generalize Lemma 5.4(2).

Lemma 5.5. With the notation above, let i, j be non-negative integers such that i ≥ 1 and
3ji ≤ 1

3
q. If A3ji(x) 6= 0, then either i ≡ 0 (mod 3), or i = 1 and A3j(x) = A3j ∈ K∗.

Proof. We apply induction on j. Lemma 5.4(2) takes care of the case j = 0. Inductive
hypothesis reduces equation (5.1) to the equation:

xq+1 + A0(x) +

j∑
k=0

A3ky3k

+

q

3j+2∑
k=1

A3j+1k(x)y3j+1k = 0.

By applying D3j+1
to this equation, taking into account that the D-orders are 0, 1, 2, 3, q

(cf. Corollary 3.5(3)), and by using Property 5.3 we obtain the following relation

A3j(D3y)3j

+ F + G(D1y)3j+1

= 0 , where

F :=

q

3j+2∑
k=0

y3j+1kD3j+1

A3j+1k(x) , G :=

q

3j+2∑
k=1

ky3j+1(k−1)A3j+1k(x) .

Let k ∈ {1, . . . , q
3j+2} be such that A3j+1k(x) 6= 0. Then Lemma 5.4(1)(3) implies

v(G(D1y)3j+1
) < −q23j = v((D3y)3j

) whenever k ≥ 2 and k 6≡ 0 (mod 3). Therefore
from Property 5.1, v(F ) = v(G(D1)3j+1

) (∗); arguing as in the case j = 0 (see the proof
of Lemma 5.4(2)) we find a contradiction unless k = 1 or k ≡ 0 (mod 3). To show that
A3j+1(x) = A3j+1 ∈ K∗ notice that (∗) holds true whenever v(G) < 0; since G = A3j+1(x),
the result follows. �

Therefore Lemma 5.5 reduces equation (5.1) to the equation:

xq+1 + A0(x) +
t−1∑
i=0

A3iy3i

= 0 , (5.3)

where A0(x) is a polynomial in x of degree at most q, and each A3i ∈ K∗.
Set A0(x) :=

∑q
i=0 aix

i.



256 M. Abdón, F. Torres: Fq2-maximal Curves of Genus 1
6(q − 3)q

Lemma 5.6. For an integer 0 ≤ i ≤ t− 1,

(1) ai 6= 0, only if i = 0, or i is a power or twice a power of 3;

(2) a2·3i = A3i

(
a2

A1

)3i

.

Proof. (1) Let 4 ≤ j ≤ q−1 be an integer; recall that Djy = 0 (cf. Corollary 3.5(3)). Suppose
that 3 - j; then by applying Dj to equation (5.3), aj = 0 by Property 5.3. Suppose now that

3|j and write j = 3k` with 3 - `. Then Djy3i
= (D

3k`

3i y)3i
= 0 for k ≥ i (cf. Property 5.3

again) and hence aj = 0 for ` ≥ 4.

(2) By assertion (1), A0(x) = a0 +
∑t−1

j=0 a3jx3j
+
∑t−1

j=0 a2·3jx2·3j
. Let i = 0, 1, . . . , t− 1. By

applying D2·3i
to equation (5.3), Property 5.3 implies that

D2·3i

A0(x) + A3i(D2y)3i

= 0.

If i = 0, the definition of D2 implies

D2y = − 1

A1

(
q∑

j=0

(
j

2

)
ajx

j−2

)
= − a2

A1

.

Let i ≥ 1. Then D2·3i
A0(x) = a2·3i and thus

a2·3i + A3i

(
− a2

A1

)3i

= 0.

�
This result reduces equation (5.3) to the following:

xq+1 + a0 +
t∑

i=0

a3ix3i

+
t−1∑
i=0

A3i

(
a2

A1

x2 + y

)3i

,

and thus, by means of the change of coordinates (x, y) 7→ (x, a2

A1
x2 + y), the curve X admits

a plane model over K given by

xq+1 + a0 +
t∑

i=0

a3ix3i

+
t−1∑
i=0

A3iy3i

= 0 . (5.4)

We can assume aq = a1 = a0 = 0. In fact, to obtain aq = 0 we use the change of coordinates
(x, y) 7→ (x − aq, y); to obtain a1 = 0 we use (x, y) 7→ (x, a

A1
x + y), where a := aq

q − a1; and

to obtain a0 = 0 we use (x, y) 7→ (x, y + α), where α ∈ K such that −ã =
∑t−1

0 A3iα3i
, with

ã := a0− a1aq − a3aq3 − · · ·− a3t−1aq3t−1 + aqq+1 (the existence of the element α is guaranteed
by Corollary 3.5(2)).

Lemma 5.7. For 2 ≤ j ≤ t− 1 an integer,
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(1) A3j =
(

A3

A1

)3j−1

A3j−1 ; in particular, A3j =
(

A3

A3
1

) 1
2
(3j−1)

A3j

1 ;

(2) a3j =
(

a3

A1

)3j−1

A3j−1 .

Proof. In all the computations below we use the following facts: Property 5.3, equation
(5.4) (with a1 = 0), and that the orders of D are 0, 1, 2, 3, q (cf. Corollary 3.5(3)). We have
D1y = − 1

A1
xq, and for j = 1, . . . , t− 1 (applying D3j

to equation (5.4))

a3j +

j∑
i=0

A3j

(
D3j−i

y
)3i

= 0 , that is

a3j + A3j−1

(
D3y

)3j−1

+ A3j(D1y)3j

= 0 .

The case j = 1 gives D3y = A3

A4
1
x3q − a3

A1
. Thus for j ≥ 2 we find that

a3j + A3j−1

(
A3

A4
1

x3q − a3

A1

)3j−1

= A3j

(
1

A1

xq

)3j

,

and the result follows by comparing coefficients. �

Corollary 5.8. With the notation above,

(1) A4
1 + A3(A 1

3
q)

3q = 0;

(2) a3j = 0 for j = 1, . . . , t− 1;

(3) Aq+3
1 + A3(A 1

3
q)

3 = 0.

Proof. We have already seen that D1y = − 1
A1

xq and D3y = A3

A4
1
x3q − a3

A1
(cf. proof of Lemma

5.7). By using these computations in equation (5.2), we have:

−(q + 1)q2 = v(yq2 − y) = v((xq2 − xq)3(
A3

A4
1

x3q − a3

A1

)) < v((xq2 − x)
xq

A1

) . (5.5)

Now v(yq2
) = v(−x3q(q+1)

(A q
3
)3q ) by equation (5.4); thus from (5.5) and Property 5.1 − 1

(A 1
3 q)

)3q = A3

A4
1
.

(2) By Lemma 5.7(2), it is enough to show that a3 = 0. Suppose that this is not the case; in
particular, a 1

3
q 6= 0 (loc. cite). Then if we rise equation (5.4) to the power 1

3
q, we can remove

the terms of higher degree by assertion (1); we have then that the valuation at P of the
left hand-side would be v(a 1

3
qx

q2
) = −1

3
q3, while the valuation at P of the right hand-side,

v(x3q2
) = −q3 which is a contradiction according to Property 5.1.

(3) Assertion (2) reduces equation (5.4) to the equation:

xq+1 +
t−1∑
i=0

A3iy3i

= 0 ; (5.6)

thus D2y = 0 (as follows from Property 5.3) and so equation (5.2) reads

yq2 − y = (xq2 − x)D1y + (xq2 − x)3D3y .
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After computing xq2 − x from equation (5.6) we replace it in the above equation and obtain
an equality of polynomials in y. Looking at the coefficient of the monomial yq, the result
follows. �

Now Lemma 5.7(1) makes it possible to re-write equation (5.6) as follows

xq+1 +
t−1∑
i=0

(
A3

A3
1

) 1
2
(3i−1)

(A1y)3i

= 0

and hence, by means of the change of coordinates (x, y) 7→ (x,−A1y), the curve X admits
the following plane model over K:

xq+1 =
t−1∑
i=0

(
A3

A3
1

) 1
2
(3i−1)

y3i

.

What can we say about the element A3

A3
1
∈ K∗? From Lemma 5.7(1) (with j = t − 1) and

Corollary 5.8(3),
(

A3

A3
1

) 1
2
(q−1)

= −1 meaning that there exists a ∈ K such that
(

A3

A3
1

)
= a2

(notice that aq−1 = −1). Therefore by means of the change of coordinates (x, y) 7→ (x, ay)
we conclude that the above equation is birational equivalent to the curve C in (1.2) and the
proof of the theorem is complete.
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