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0. Introduction

Mainly by methods from linear algebra, we study the analogues of the classical triangle
centers (cf. [23]) for general simplices in Euclidean d-dimensional space Ed, d ≥ 2. We
focus on interpreting the significance of two or more of the classical centers coinciding. Also
we give several instructive constructions of examples. The centers under study include the
centroid, the circumcenter, the incenter, the orthocenter (or its proper higher dimensional
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generalization, the Monge point), and the Fermat-Torricelli point. We also consider two new
centers with clear geometric meanings. In the last section we examine classes of simplices
whose cevians through certain centers have equal lengths.

In dimension d = 2 it is a standard fact that if two classical centers coincide, then the
triangle is equilateral; see, e.g., [22].

In dimension d = 3, the parallel conclusion is that if two classical centers coincide, then
the tetrahedron is equiareal (i.e., it has faces of equal area implying that these faces are
even congruent), but not necessarily equilateral (regular). One noteworthy point is that the
orthocenter does not necessarily exist for d ≥ 3. But when it does, one can often make
much stronger conclusions, both for d = 3 and in higher dimensions. We hope to return to
this point in a subsequent paper, where we plan to make a detailed analysis of orthocentric
simplices.

In dimension d ≥ 4 the situation becomes yet more complicated. When two of the
classical centers coincide one can give a meaningful geometric description in terms of the
facial structure of the studied simplices. But various examples of various degrees of subtlety
show that in general, when two centers coincide, one cannot usually infer much about other
centers. After having done some of the work described here we learned of the not-well-known
papers of V. Devide (see [10] and [11]) where he also treated some of these problems. We
give our own proofs, however. We also resolve questions he posed but did not answer.

Some of the material discussed here exists in various forms in older, scattered literature.
We intend to give a unified presentation, collecting a number of related results, with proofs
as well as references to the known literature. We also would like to mention the papers [12],
[13], [33], [38] and [32], where special types of simplices are investigated, but only regarding
their facial structure and not in view of coincidence of certain centers; see also the survey
[30], § 9. Furthermore, in [2] some related results are given for simplices in normed linear
spaces.

1. Terminology and notation

A d-simplex S = [A1, . . . , Ad+1] in the Euclidean d-dimensional space Ed, d ≥ 2, with origin
0 is defined as the convex hull of d + 1 affinely independent points (or position vectors)
A1, . . . , Ad+1 in Ed. Thus the vectors Ai −Aj, 1 ≤ i ≤ d + 1, i 6= j, are linearly independent
for every j ∈ {1, . . . , d + 1}, and therefore the linear dependence relation

c1A1 + · · ·+ cd+1Ad+1 = 0

is unique up to multiplication by a scalar. The points A1, . . . , Ad+1 are called the vertices of
S. A line segment that joins two vertices of S is called an edge of S, and a j-simplex whose
vertices are any j + 1 vertices of S is said to be a j-face of S. The (d − 1)-simplex whose
vertices are all vertices of S except for Aj, j ∈ {1, . . . , d + 1}, is called the jth facet of S,
or the facet opposite to Aj. The d-simplex S is regular if all its edges have equal length,
it is equiareal if all its facets have the same (d − 1)-volume, and it is called equifacetal if
all its facets are congruent (i.e., isometric, see [12] for interesting new results on equifacetal
simplices). Moreover, we say that S is equiradial if all its facets have the same circumradius
(see (4) below for a definition of the circumradius).
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Every point P in the convex hull of A1, . . . , Ad+1 can be represented in the form

P =
v1A1 + · · ·+ vd+1Ad+1

v
, (1)

where vj is the d-volume of the d-simplex obtained from S by replacing Aj by P . So the
d-volume v of S is represented by v = v1 + · · · + vd+1. Note also that vj = 1

d
ajhj, where aj

is the (d − 1)-volume of the jth facet of S, and hj is the altitude from Aj to the jth facet,
see, e.g., [3], Theorem 9.12.4.4, page 260. The numbers

vj

v
in (1) are called the barycentric

coordinates of P with respect to A1, . . . , Ad+1.
The centroid G of the d-simplex S = [A1, . . . , Ad+1] is defined as the average

G =
A1 + · · ·+ Ad+1

d + 1
(2)

of its vertices.
The insphere of S is the sphere that is tangent to all d + 1 facets of S; its center is the

incenter I of S, and its radius is the inradius of S. Since I is equidistant to all the facets of
S, it follows that the jth barycentric coordinate of I is proportional to the (d − 1)-volume
of the jth facet, i.e., the incenter is algebraically defined by

I =
a1A1 + · · ·+ ad+1Ad+1

a1 + · · ·+ ad+1

, (3)

where ai is the volume of the ith facet of S. The circumsphere of S is the sphere passing
through all vertices of S, and the center C of that sphere is called the circumcenter of S.
Thus C is defined by the requirement that

||C − Ai|| = ||C − Aj|| for 1 ≤ i ≤ j ≤ d + 1 , (4)

where ||C − Ai|| is said to be the circumradius of S. Unlike the centroid and the incenter,
the circumcenter may lie outside of S.

The Fermat-Torricelli point F of S is defined to be the point whose distances to all the
vertices of S have minimal sum. Such a point exists and is unique, and setting

f(i) =
∑ (

Aj − Ai

||Aj − Ai||
: 1 ≤ j ≤ d + 1, j 6= i

)
it is known (see [26], Theorem 1.1, and [4], Theorem 18.3 and Reformulation 18.4, cf. further
also [9]) that if ||f(i)|| > 1 for all i ∈ {1, . . . , d+1}, then F is an interior point of S (floating
case), and that if ||f(i)|| ≤ 1 for some i then this i is unique and F = Ai (absorbed case).
In the floating case, F is characterized by the property

d+1∑
i=1

F − Ai

||F − Ai||
= 0 . (5)

For an interesting application of the Fermat-Torricelli point in classical geometry, namely an
extension of Napoleon’s theorem to a d-dimensional space, we refer to [31].
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The orthocenter O of a d-simplex S is, if it exists, the intersection of the d + 1 altitudes
of S. In stark contrast to the case d = 2, a d-simplex might not have an orthocenter when
d ≥ 3, see [1] for d = 3 and [19], [29] as well as [34] for higher dimensions.

The last center we want to define here is discussed only in the next section, i.e., for d = 3
(but we introduce it for d arbitrary). For each edge Eij = AiAj of S = [A1, . . . , Ad+1] there
is a unique hyperplane Hij containing the centroid Gij of the remaining d − 1 vertices and
perpendicular to Eij. These

(
d+1
2

)
hyperplanes have a common point, the Monge point M

of S. This point M is a reflection of C in G and coincides, if S is orthocentric, with the
orthocenter O, see also [34].

2. Tetrahedra whose centers coincide

Any 3-simplex (or non-degenerate tetrahedron) has the centers G, I, C,F , and M (for F see
[25], and for M see [1], Article 229, pp. 76-77). It follows immediately that the Monge point
of the tetrahedron S = [A, B, C,D] coincides with its orthocenter if S is orthocentric, and
that this is equivalent to

A ·B = C ·D , A · C = B ·D , A ·D = B · C , (6)

where “·” means the ordinary inner product. Only parts of the following theorem can be
found in the basic references [1], [7], [37], and [39], which collect geometric properties of
tetrahedra in the Euclidean 3-space.

Theorem 2.1. For a tetrahedron T ⊂ E3 the following conditions are equivalent.

1) The tetrahedron T is equifacetal.

2) The tetrahedron T is equiareal.

3) Every two opposite edges of T are equal.

4) The perimeters of the facets of T are equal.

5) The circumradii of the facets of T are equal, i.e., S is equiradial.

6) The centroid, the incenter, the circumcenter, the Fermat-Torricelli point and the Monge
point of T coincide.

7) Two of the five centers mentioned above coincide.

Proof. It is clear that 1) implies all the other statements, because the group of isometries of an
equifacetal tetrahedron [A, B, C,D] is transitive, as it contains the Klein 4-group consisting
of the permutations {(A B) (C D), (A C) (B D), (A D) (B C), e} (see [12], where this is proved
even for any dimension). That 2) implies 1) is the well-known theorem usually referred to
as Bang’s Theorem (cf. [16], [20], pp. 90–97, [5], [1], Article 306, p. 108). The implication
3) ⇒ 1) is trivial, 4) implies 3) by solving the corresponding system of linear equations, and
5) implies 1) by [17], Theorem 3. That 6) implies 1) follows from [17], Theorem 5, which
states that if any two of G, I, C, and F coincide, then the tetrahedron T is equifacetal. This
also follows from [1], Article 305, page 108, which states that if any two of G, I, C, and M
coincide, then T is equifacetal, cf. also [11]. Thus it remains to show that 7) implies 6), and
in view of [17], Theorem 5, and [1], Article 305, page 108, it suffices to show that if M and
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F coincide, then T is equifacetal. So assume that M = F = 0, and that 0 is in the interior
of T = [A, B, C,D]. Set

||A|| = 1

a
, ||B|| = 1

b
, ||C|| = 1

c
, ||D|| = 1

d
.

Then aA + bB + cC + dD = 0, yielding by multiplication with aA that if A ·B = A ·C = 0,
then (aA) · (dD) = −1, and so 0 would be on the line AD, contradicting the assumption that
0 is an interior point of T . Hence at most one of A ·B, A ·C, and A ·D is zero, and we may
assume that A ·B 6= 0 and A · C 6= 0. Taking norms of both sides of

aA + bB = −cC − dD ,

we obtain abA ·B = cdC ·D. Since 0 6= A ·B = C ·D, it follows that ab = cd, and similarly
ac = bd. Hence ab = cd = ac = bd, each being equal to

√
abcd. Therefore a = b = c = d, and

0 is the centroid G of T . Thus G coincides with the Fermat-Torricelli point of T , and by (5)
T is equifacetal. �

Remark 1. It should be mentioned that equifacetal tetrahedra can be used to give inter-
esting characterizations of Euclidean motions, see [28]. Also we mention here that equifac-
etal/equiareal tetrahedra are called isosceles tetrahedra by many authors, see, e.g., [1]. We
will not follow that usage, since we use the notion of isosceles simplices in another sense; see
the proofs of Theorems 3.3, 3.4, and in Section 4 below.

Motivated by 5. in Theorem 2.1 one might ask whether equality of the inradii of the
facets of a tetrahedron implies equifacetality. Also it should be interesting to check whether
all remains valid if more centers are added to the list in 6. of Theorem 2.1. Negative answers
to both these questions are supplied in Theorems 2.2 and 2.3 below.

Theorem 2.2. The inradii of the facets of a non-equifacetal tetrahedron, whose edges have
lengths 1, 1, 1, 1, 1, (3 +

√
33)/6, are equal.

Proof. To justify the existence of a tetrahedron whose edges are as given, and whose edge-
lengths are, more generally, even equal to 1, 1, 1, 1, 1, t with t ∈ (0,

√
3), we start with a

rhombus ABCD whose sides all have unit length and whose short diagonal is AC. Keeping
ABC fixed, we fold ABCD against AC, letting D move towards B. The tetrahedra Tt =
[A, B, C,D]t formed in this way have edges of length 1, 1, 1, 1, 1, t with t ranging in (0,

√
3).

Now let r = r(t) be the inradius of a triangle whose side-lengths are 1, 1, t. Then r = 2a
p
,

where a is the area and p the perimeter of the triangle. Heron’s formula (cf. [8], § 1.5) yields

f(t) := 4(r(t))2 =
16a2

p2
=

t2(2− t)

t + 2
,

and solving f(t) = f(1) we find that t = (3 +
√

33)/6, as desired. �

It is also interesting to find new natural centers whose coincidence with known ones does not
imply that a tetrahedron is equifacetal. For this purpose we set

J =
αA + βB + γC + δD

p
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for a tetrahedron T = [A, B, C,D], where α, β, γ, δ are the perimeters of the facets of T
opposite to A, B, C,D, respectively, and p = α + β + γ + δ. We call J the complementary
1-centroid of T .

Theorem 2.3. The incenter and the complementary 1-centroid of a tetrahedron coincide
iff the inradii of its facets are equal. Consequently, there exist non-equifacetal tetrahedra T
whose incenter and complementary 1-centroid coincide.

Proof. By (3) (replacing a1, . . . , a4, i.e., the areas of the faces of T , by a, b, c, d) and the
definition of the complementary 1-centroid the points I and J coincide iff

a

α
=

b

β
=

c

γ
=

d

δ
,

which is equivalent to the property that the inradii of the facets are equal, since 2a
α

is the
inradius of the facet opposite to A, etc.; the latter statement follows from Theorem 2.2. �

3. Higher-dimensional simplices whose centers coincide

The situation in 3-space does not have exact analogues in higher dimensions. In the following
we exhibit various related results for d-simplices if d ≥ 4 or, in some cases, if d ≥ 3.

Theorem 3.1. Let S = [A1, . . . , Ad+1] be a d-simplex. If any two of the centroid, the
circumcenter and the Fermat-Torricelli point of S coincide, then all three centers coincide.

Proof. From the definitions follows that

0 = G ⇔ A1 + · · ·+ Ad+1 = 0 ,

0 = F ⇔ A1

||A1|| + · · ·+ Ad+1

||Ad+1||
= 0 ,

0 = C ⇔ ||A1|| = · · · = ||Ad+1|| .

Since the dependence relation among A1, . . . , Ad+1 is unique up to multiplying by a scalar,
the proof is complete. �

We remark that the four statements of the following theorem were proven in [10]. However,
we give partially new, shorter proofs. Also we need an additional notion. Namely, we say that
a d-simplex S has well-distributed edge-lengths if all its facets have the same sum of squares
of all their

(
d
2

)
edge-lengths. (Another proposal would be to call such simplices equivariant.)

Theorem 3.2. For any d-simplex S the following statements hold true.

(i) The centroid G and the circumcenter C of S coincide iff S has well-distributed edge-
lengths.

(ii) The circumcenter C and the incenter I of S coincide iff C is interior and S is equiradial.

(iii) The incenter I and the centroid G of S coincide iff S is equiareal.

(iv) The points G, C, and I of S coincide iff two of the three conditions {S has well-
distributed edge-lengths; S is equiradial; S is equiareal} hold, in each case implying
the third.
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Proof. For the proof of statement (iv) we refer to [10], the other three equivalences will now
be verified by proofs, which are shorter than those given in [10]. To prove (i), we take 0 to
be the centroid of S, and we take the scalar product of A1 + · · · + Ad+1 = 0 with Ad+1 to
obtain ∑

1≤i≤d

(Ai · Ad+1) = −||Ad+1||2 .

Then we have ∑
1≤i<j≤d+1

||Ai − Aj||2

=
∑

1≤i<j≤d

||Ai − Aj||2 +
∑

1≤i≤d

||Ad+1 − Ai||2

=
∑

1≤i<j≤d

||Ai − Aj||2 +
∑

1≤i≤d+1

||Ai||2 + (d− 1)||Ad+1||2 − 2
∑

1≤i≤d

(Ai · Ad+1)

=
∑

1≤i<j≤d

||Ai − Aj||2 +
∑

1≤i≤d+1

||Ai||2 + (d + 1)||Ad+1||2

= Vd+1 +
∑

1≤i≤d+1

||Ai||2 + (d + 1)||Ad+1||2 ,

where Vk denotes the sum of the squares of the edge-lengths of the kth facet. (Note that the
last but one line is obtainable by the scalar product considered above.) Thus we have shown
that Vk + (d + 1)||Ak||2 does not depend on k. Therefore the simplex has well-distributed
edge-lengths iff the ||Ak||’s are equal, i.e., iff 0 is the circumcenter.

To see (ii), drop a perpendicular from C to the facet opposite to Ai, i ∈ {1, . . . , d + 1}.
The obtained intersection point is the circumcenter Ci of the ith facet. The distance of C
to any vertex of S is the circumradius R of S, and the distance from Ci to any vertex of S
different from Ai is the circumradius Ri of the ith facet. So the three points C, Ci, Aj (j =
1, . . . , d+1; i 6= j) form a right triangle, and R2 = Ri

2 + |CCi|2. But if I = C, then |CCi|2 = r2

(the squared inradius of S). Hence Ri
2 = R2 − r2, not depending on the choice of the facet,

and S is equiradial. On the other hand, if Ri
2 does not depend on the choice of the facet,

then the formula yields |CCi|2 = R2−Ri
2, also independent of the choice of the facet. Thus C

has to be the incenter of S, since by assumption C and I lie on the interior side of the facet.

Now we show (iii). By (2) and (3) we see that 0 is the centroid of S iff A1 + · · ·+ Ad+1 = 0,
and that 0 is the incenter of S iff v1A1 + · · ·+ vd+1Ad+1 = 0, where vi is the (d− 1)-volume
of the ith facet of S opposite to Ai. Since the dependence relation among A1, . . . , Ad+1 is
unique up to multiplying by a scalar, (iii) is obtained.

Regarding (iv) we mention that if two of (i), (ii) and (iii) hold, then either C = G or C = I,
in each case yielding C as interior point. �

M. Hajja and P. Walker [17] have shown that a tetrahedron satisfying F = I must be equifac-
etal, see also Theorem 2.1. It follows that an orthocentric tetrahedron (i.e., a tetrahedron
with orthocenter) in which F = I must be regular. A similar statement holds in dimension
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2. One may conjecture that in any dimension an orthocentric simplex with F = I must
be regular. This certainly is consistent with dimensional analysis: the space of orthocentric
d-simplices is (d + 1)-dimensional. The equality F = I amounts to d equations, one for
each coordinate. That leaves one degree of freedom, which can be accounted for by scaling.
Since now we will show that a d-simplex, d ≥ 4, with F = I need not be equifacetal, any
proof of the conjecture must somehow mix the two hypotheses together more than is done
in dimension 3.

Theorem 3.3. For any d ≥ 4, a d-simplex whose incenter I and Fermat-Torricelli point F
coincide need not to be equifacetal.

Proof. We say that a d-simplex is isosceles if it has a vertex P such that all edges emanating
from P have the same length. (Note that this definition generalizes the standard notion in
dimension 2, but differs from the use of the term for d = 3 in some other sources, such as
in [1]; see Remark 1 in Section 2 above.) So we denote an isosceles d-simplex S with base T
and opposite vertex P by S = [T, P ]. We will assume that T is equifacetal. It is known that
non-regular equifacetal simplices exist in abundance arbitrarily near any regular simplex. As
an equifacetal simplex, T has a unique center, which we arrange to lie at the origin 0 ∈ Ed−1,
where T ⊂ Ed−1 ⊂ Ed. We also assume that P = (0, h).

Let R and r denote the circumradius and inradius of T . It is known that R ≥ (n− 1)r,
with equality if and only if T is regular. Suppose T = [A1, . . . , Ad]. Since T is equifacetal,
we know that

∑d
i=1 Ai = 0, since the centroid is 0, and also that |A1| = · · · = |Ad|, since

the circumcenter is 0. By symmetry all centers of S, such as the incenter and the Fermat-
Torricelli point, have the form (0, z). Let F = (0, f) and I = (0, i). Now, provided S is not
too short, the Fermat-Torricelli point F of S is characterized by the condition (5) (where we
note that P−F

||P−F|| = (0, 1)).

Now ||Ai −F|| =
√

R2 + f 2, so this sum yields

d(0,−f)/
√

R2 + f 2 = (0,−1) or df =
√

R2 + f 2 .

Hence

(d2 − 1)f 2 = R2 or f =
R√

d2 − 1
.

In particular f and hence F do not depend on h, provided h is big enough, at least. (Otherwise
F = P .) The condition we need is just that

h >
R√

d2 − 1
.

Now as h increases from 0 toward ∞, i increases from 0 toward r. So we can choose h so that
i = R√

d2−1
provided that R√

d2−1
< r. But we know that R ≥ (d − 1)r, with equality iff T is

regular. So the possible region of success is

(d− 1)r < R <
(√

d2 − 1
)

r .
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When h = R√
d2−1

, then i is certainly much less than R√
d2−1

, since the incenter lies in the
interior of S. As h increases, i also increases toward r. If we choose T to be equifacetal but
not regular, very near the regular (d − 1)-simplex (as in [12], using d ≥ 4), then R is close
to, but larger than (d− 1)r, hence less than (

√
d2 − 1)r. For this purpose, it is convenient to

rescale each simplex under consideration so that r = 1 for all (d− 1)-simplices considered. �

Theorem 3.4. For any d ≥ 4, there are equiradial d-simplices which are not equiareal.

Proof. We first show that if S = [T, P ] is an isosceles d-simplex with vertex P , base T (i.e.,
facet opposite to P ), and edge-length h at P , then the circumradius RS of S is given by

RS =
h2

2
√

h2 −RT
2
.

To see this, let CS and CT denote the circumcenters of S and T , respectively, and note that CS

lies on the line PCT , which is perpendicular to T . Let k denote the distance between CS and
CT . Let V be a vertex of T . Now, applying the Pythagorean theorem to the triangles PCT V
and CSCT V , with right angles at CT , we have (RS±k)2 +RT

2 = h2 and RS
2−RT

2 = k2. (Use
a plus sign if CS lies between P and CT , and a minus sign if CT lies between P and CS.) One
may solve the second equation for k and substitute the result in the first equation, getting(

RS ±
√

RS
2 −RT

2
)2

+ RT
2 = h2 .

Expanding and collecting terms yields ±2RS

√
RS

2 −RT
2 = h2−2RS

2. Squaring both sides,
we have

4RS
4(RS

2 −RT
2) = h4 − 4h2RS

2 + 4RS
4 ,

hence 4(h2 − RT
2)RS

2 = h4, which yields the desired formula for RS. Now we show that
for any d ≥ 4 there is an isosceles d-simplex with an equilateral (or a regular) base that is
equiradial but not equiareal. Let T be a regular (d− 1)-simplex, normalized for convenience
to have edge-length 1, say. For isosceles d-simplices of the form [T, P ], where P has distance h
to each of the vertices of T , we need to calculate what values of h yield equiradial d-simplices.
Certainly, h = 1 works in any dimension, producing the regular d-simplex. But when d ≥ 4,
there is a second value of h yielding the desired examples. Note that all facets F of T have
the same circumradius. We seek an edge-length h such that R[F,P ] = RT or

h2

2
√

h2 −RF
2

=
12

2
√

12 −RF
2
,

which has two solutions. The first is h2 = 1, yielding (as mentioned already) the regular
d-simplex. The second is given by

h =
RF√

1−RF
2
.

In order that this value of h gives rise to an honest isosceles simplex, it is necessary and
sufficient that h > RT , that is

RF√
1−RF

2
>

1

2
√

1−RF
2
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or

RF >
1

2
.

Since RF , being the circumradius of the regular (d − 2)-simplex of edge-length 1, increases
with d, and since RF = 1

2
for d− 2 = 1, it follows that RF > 1

2
iff d− 2 > 1, i.e., iff d ≥ 4. �

Remark 2. The simplex constructed in Theorem 3.4 has an exterior circumcenter, which
is equivalent to saying that h2 < 2RT

2. To see this, let Rd denote the circumradius of the
regular d-simplex having unit edge-length. Then it is easy to see that

Rd
2 =

d

2(d + 1)
.

Since

h2 =
R2

d−2

1−Rd−2
2 , RT

2 = Rd−1
2 ,

it follows that

h2 =
d− 2

d
, RT

2 =
d− 1

2d
,

and therefore h2 < 2RT
2, as desired.

Remark 3. One can have an alternative and intuitive view of the latter construction of
equiradial d-simplices that are not equiareal for d ≥ 4. Namely, consider the regular (d− 1)-
simplex T of edge-length 1 inscribed in its circumsphere of radius RT . Now each facet F of
T is also a facet of a second isosceles (d − 1)-simplex inscribed in the same sphere, hence
having the same circumradius as T . These “ears” can be folded up to form the desired d-
simplex provided the length of the external edges is large enough or, equivalently, that the
height of the “ears” is large enough. One can easily check that d ≥ 4 suffices to complete the
construction. �

We continue with a characterization of regular simplices by two coinciding centers, one of
which still has to be defined. Namely, the 1-center of S = [A1, . . . , Ad+1] is the center of the
(d−1)-sphere which is tangent to all edges AiAj of S if it exists (in general it does not exist).

Theorem 3.5. If the 1-center of a d-simplex S exists and coincides with the circumcenter
of S, then S is regular.

Proof. The circumcenter of S can be viewed as the intersection of the hyperplanes perpen-
dicular to the edges at their midpoints. On the other hand, the 1-center is the intersection of
hyperplanes perpendicular to the edges AiAj at points dividing any such edge into lengths ai

and aj such that |AiAj| = ai + aj, depending only on its endpoints. (Note that all tangential
segments from an exterior point of a (d − 1)-sphere to the respective touching points have
equal lengths.) The hyperplanes defining the 1-center are obviously parallel to the hyper-
planes defining the circumcenter. Thus, if the 1-center exists and coincides with the circum-
center, the two families of hyperplanes must coincide, and it follows that ai = aj = 1

2
|AiAj|

for all different i, j ∈ {1, . . . , d + 1}. Hence all edge-lengths of S are equal to 2ai, i.e., S is
regular. �
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Finally we mention three characterizations of regular simplices within the restricted family
of orthocentric simplices (since these statements are related to our considerations). The first
one was proved in [35]: An orthocentric d-simplex is regular iff its orthocenter and its Fermat-
Torricelli point coincide. In [14] it was shown that an orthocentric d-simplex is regular iff
its centroid and its orthocenter coincide, and [15] contains the observation that an equiareal
orthocentric d-simplex is regular.

4. Constructions in dimension 4

In view of further results restricted to dimension 4, we continue with the representation of a
tool that relates the geometry of a simplex S to the algebraic properties of a certain matrix
associated to S (see [21] and [27]). Namely, for a d-simplex S = [A1, . . . , Ad+1] in Ed one
defines the Gram matrix G(S) to be the symmetric, positive semidefinite (d + 1) × (d + 1)
matrix of rank d whose (i, j)th entry is the inner product Ai ·Aj (we mean the ordinary inner
product), cf. [21], p. 407. Given G(S), one can calculate the distances d(Ai, Aj) for every i, j
using the formula

(d(Ai, Aj))
2 = (Ai − Aj) · (Ai − Aj) .

According to the last part of Proposition 9.7.1 in [3], G(S) determines S up to an isometry
of Ed. Also one recovers S from G(S) via the Cholesky factorization G(S) = HH t, where the
rows of H are the vectors Ai coordinatized with respect to some orthonormal basis of Ed. In
fact, if G is a symmetric, semidefinite, real matrix of rank r, say, then there exists a unique
symmetric, positive semidefinite, real matrix of rank r with H2 = G, cf. [21], Theorem 7.2.6,
p. 405, and the symmetry of H implies G = HH t.

A 4-simplex S = [A, B, C,D, E] whose circumcenter and centroid coincide (with circum-
radius 1 and the origin as circumcenter, say) is thus determined by unit vectors A, B, C,D, E
satisfying A + B + C + D + E = 0. The Gram matrix G(S) is then a symmetric, positive
semidefinite matrix of rank 4 having the form

G(S) =


1 x y z •
• 1 Z Y •
• • 1 X •
• • • 1 •
• • • • 1

 , (7)

where x = A · B, y = A · C, z = A ·D, X = C ·D, Y = B ·D, Z = B · C, and the •’s are
defined by the symmetry of G(S) and the fact that the entries of every row add up to zero.
Thus, to construct a simplex S = [A, B, C,D, E] whose circumcenter and centroid coincide
(at 0, say), we need to construct a matrix G(S) of the form described in (7) and satisfying the
conditions formulated after (7). We then define A, B, C,D, E to be the rows of the matrix
H that satisfies HH t = G. To the assumption that the resulting simplex S have 0 as its
incenter we add the extra requirement that all facets of S have the same 3-volume. Denoting
the 3-volume of the facet [A, B, C,D] by VE, we have 4VE = det MEM t

E, where ME is the
matrix whose rows are the vectors B − A, C − A, D − A. In terms of x, y, z, X, Y, Z this is
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written as

4VE
2 = det

 (B − A) · (B − A) (B − A) · (C − A) (B − A) · (D − A)
• (C − A) · (C − A) (C − A) · (D − A)
• • (D − A) · (D − A)



= det

 2− 2x 1− x− y + Z 1− x− z + Y
• 2− 2y 1− y − z + X
• • 2− 2z

 ,

where the •’s are to be filled in by symmetry. Defining VA, VB, VC , VD analogously and
recalling that E = −A−B − C −D, we get

MD =

 B − A
C − A
E − A

 =

 B − A
C − A

−2A−B − C −D



4VD
2 = det

 2− 2x 1− x− y + Z 1− x + y + z − Z − Y
• 2− 2y 1− y + x + z −X − Z
• • 4 + 2x + 2y + 2z

 . (8)

The matrices MC , MB, MA (and 4VC
2, 4VB

2, 4VA
2) are obtained from MD (and 4VD

2) by
applying the permutations (z y)(Z Y )(z x)(Z X)(y X)(Y x), respectively. Thus a simplex
S = [A, B, C,D, E] corresponds to a symmetric, positive semidefinite matrix G(S) as in (7)
each of whose rows adds up to zero with

4VE
2 = 4VD

2 = 4VC
2 = 4VB

2 = 4VA
2 . (9)

Theorem 4.1. Let G be a symmetric matrix of the form (7) each row of which adds up to
zero, and let G0 be obtained from G by taking

y = Y = x , z = Z = X = −1

2
− x ,

where x is such that

−
√

5− 1

4
< x <

√
5− 1

4
(or, equivalently, 72◦ < cos−1 x < 144◦) . (10)

Let A, B, C,D,E be the row vectors of the matrix H defined by HH t = G0, and let S =
[A, B, C,D, E]. Then the centroid, the circumcenter, the incenter and the Fermat-Torricelli
point of S coincide.

Proof. The characteristic polynomial of G0 is T (T − r1)
2(T − r2)

2 with

r1, r2 =
5±

√
5(4x + 1)

4
,

as one can immediately check. By (10), r1 and r2 are positive, and therefore G0 is positive
semidefinite and of rank 4. Thus there exists a real matrix H of rank 4 with HH t = G0.
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The row vectors A, B, C,D, E of H are unit vectors since the diagonal entries of G0 are 1’s.
From the discussion above we still need only to check that VA = VB = VC = VD = VE, which
is immediate, with VA = 5

2

√
1− 2x− 4x2. This completes the proof. �

Remark 4. According to a Maple search, the simplices constructed in Theorem 4.1 are the
only 4-simplices whose incenter, circumcenter, and centroid coincide. One can easily check
that these simplices are equifacetal for all x in the specified interval, thus proving that the
three traditional centers of a 4-simplex S coincide if and only if S is equifacetal. One wonders
whether such a statement is valid in higher dimensions. �

Theorem 4.2. There exists an equiareal 4-simplex whose centroid, circumcenter and Fermat-
Torricelli point are pairwise distinct.

Proof. Let

G =


1 x x −1− 2x x
x 1 5x x x
x 5x 1 x x

−1− 2x x x 1 x
x x x x 1

 .

It is routine to check that the characteristic polynomial of G is g(T ) = (T − (2x + 2))(T −
(1− 5x))f(T ), where

f(T ) = T 3 − (2 + 3x)T 2 + (1 + x− 18x2)T − 2x(x2 − 8x− 1) ,

and that exactly one of the zeros of g(T ) represents 0 while the others are non-negative iff
x = 4−

√
17. Let S = [A, B, C,D,E] be the 4-simplex that corresponds to G for this value

of x. Thus, again A, B, C,D, E are the rows of the matrix H with G = HH t. Since the
diagonal of G consists of 1’s, the circumcenter of S is 0. And since the rows of G do not add
to zero, the centroid of S is not 0. From this and Theorem 4.1 it follows that the centroid,
the circumcenter and the Fermat-Torricelli point are pairwise distinct. It remains to check
equiareality. Again it is routine to show that the volumes of all facets of S are equal to
4− 20x− 4x2 + 20x3. �

On the other hand one might ask how the properties (i)–(iv) in Theorem 3.2 are connected
with each other. The following statements refer to this in 4-space.

Theorem 4.3. For the centroid G, the circumcenter C, and the incenter I of a 4-simplex,
the property {G = C} does not imply any of {C = I, I = G}, and the property {I = G} does
not imply any of {G = C, C = I}.

Proof. The existence of a non-equiareal 4-simplex with coinciding centroid and circumcenter
was verified in [18]. Thus G = C ; C = I and G = C ; I = G. Theorem 4.2 above shows
that I = G ; G = C and I = G ; C = I. �

V. Devidé [11] asked whether there are 4-simplices which are both equiradial and equiareal,
but not equifacetal. In the following we will answer that question in the affirmative, by
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constructing a 1-parameter family of non-equifacetal 4-simplices that are both equiradial
and equiareal. Namely, we will consider isosceles 4-simplices (for this notion see the proof of
Theorem 3.3) whose bases are equifacetal 3-simplices T = [A1, A2, A3, A4] with three distinct
edge-lengths a, b, c, say. We denote such a tetrahedron by T = (a, b, c, a, b, c), where the
edges are written in the order a12, a23, a13, a34, a14, a24, with aij = |AiAj|. It is well-known
that opposite edges of T are congruent, and that equifacetal tetrahedra exist iff a, b, c are
the edge-lengths of an acute triangle, see, e.g., [1]. This is characterized by the conditions
a2 < b2 +c2, b2 < a2 +c2, and c2 < a2 +b2. Using the notation from the proof of Theorem 3.3,
T is the base of certain isosceles 4-simplices S = [T, P ], where P lies on a line perpendicular to
the affine hull of T at T ’s circumcenter. Thus P has to be equidistant to the four vertices of T ,
and so S = [T, P ] can be described, in terms of edge-lengths, by S = (a, b, c, a, b, c, h, h, h, h)
for an appropriate h. We will show how to choose a, b, c, h for getting 4-simplices that are
equiradial and equiareal, but not equifacetal. We also mention that these simplices cannot
be obtained as perturbations of regular simplices.

Lemma 4.4. Let D be an acute (or right) triangle with side lengths a, b, c and with circum-
radius R. Then

a2 + b2 + c2

8
≥ R2 ≥ a2 + b2 + c2

9
,

with the extreme values attained when D is right-angled and when D is equilateral.

Proof. Let 0 be the circumcenter of D. Applying the Law of Cosines to the triangles
BOC, COA, and AOB, and using the facts that ∠BOC = 2A, etc., we obtain

a2 + b2 + c2 = 6R2 − 2R2σ ,

where σ = cos 2A + cos 2B + cos 2C. We have σ = −4 cos A cos B cos C − 1 by [6], formula
682, page 166, and therefore

a2 + b2 + c2 = 8R2(1 + cos A cos B cos C) . (11)

Since D is acute, it follows that the minimum of cos A cos B cos C is 0, and is attained when
D is right-angled. Also, the maximum of cos A cos B cos C is 1/8, and is attained when
A = B = C. This follows from the fact that if x 6= y, then

2 cos x cos y = cos(x− y) + cos(x + y) < 1 + cos(x + y) = 2 cos2 x + y

2
.

Thus 0 ≤ cos A cos B cos C ≤ 1/8, with the extreme values attained at right-angled and
equilateral triangles. The rest follows from (11). �

Theorem 4.5. Let D = (a, b, c) be an acute triangle with side lengths a, b, c and with
circumradius R. Let T = (a, b, c, a, b, c) be the equifacetal tetrahedron having D as a facet,
and let S = (a, b, c, a, b, c, h, h, h) be the isosceles 4-simplex obtained by adjoining to T a
vertex at feasible distance h from each vertex of T . Then S is equiareal and equiradial iff S
is regular or

R2 =
3(a2 + b2 + c2)

25
and h2 =

a2 + b2 + c2

5
. (12)
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Consequently, there exist equiareal, equiradial 4-simplices that are not equifacetal.

Proof. Let K be the area of the triangle D and let Q = 16K2. It is well-known that

Q = 16K2 = 2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4)

R2 =
a2b2c2

(a + b + c)(−a + b + c)(a− b + c)(a + b− c)
;

see [22], page 69. Letting

u = a2 + b2 + c2 , v = a2b2 + b2c2 + c2a2 , w = a2b2c2 ,

we see that
Q = 4v − u2 , w = R2Q . (13)

We find it more convenient to work with the parameters u, R, and Q instead of a, b, and
c, and we freely use the relations in (13). Recalling that T is the equifacetal tetrahedron
(a, b, c, a, b, c), we let T ′ be the isosceles tetrahedron (a, b, c, h, h, h) and note that each facet
of S other than T is congruent to T ′.

By the well-known volume formula for d-simplices in terms of their edge-lengths (see,
e.g., [36], Problem 1.18, page 29), the volume V of the tetrahedron with edge-lengths
x, y, z, X, Y, Z is given by

288V 2 =


0 1 1 1 1
1 0 x2 y2 Z2

1 x2 0 z2 Y 2

1 y2 z2 0 X2

1 Z2 y2 X2 0

 .

In particular, with x = X = a, y = Y = b, z = Z = c the volume VT of T is determined by

288VT
2 = 4(b2 + c2 − a2)(c2 + a2 − b2)(a2 + b2 − c2)

= 4(u− 2a2)(u− 2b2)(u− 2c2) = 4(−u3 + 4uv + 8w)

= 4(u(4v − u2)− 8w) = 4(uQ− 8QR2) = 4Q(u− 8R2) ,

see [1], page 102. Similarly, with x = a, y = b, z = c, X = Y = Z = H the volume VT ′ of T ′

is determined by

288VT ′
2 = 4a2b2h2 + c2b2h2 − 2h2b4 + 4c2a2h2 − 2c4h2 − 2a4h2 − 2a2b2c2

= 2h2Q− 2w = 2h2Q− 2QR2 = 2Q(h2 −R2) .

Thus equiareality of S, given by VT = VT ′ , is equivalent to the condition

h2 = 2u− 15R2 . (14)

Equiradiality of S is equivalent to the condition RT = RT ′ , where RT , RT ′ are the circumradii
of T and T ′, respectively. By [1], p. 102, RT is given by

RT
2 =

a2 + b2 + c2

8
=

u

8
. (15)
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For RT ′ , we use the formula obtained in the proof of Theorem 3.3, yielding

RT ′
2 =

h4

4(h2 −R2)
.

From this and (15) it follows that equiradiality is equivalent to the condition

2h4 = u(h2 −R2) . (16)

It is easy to verify that (12) satisfies both (14) and (16). Conversely, if (14) and (16) hold
then, eliminating h, we obtain

2(2u− 15R2)2 = u(2u− 15R2 −R2) ,

which simplifies into

0 = 3u2 − 52uR2 + 225R4 = (u− 9R2)(3u− 25R2) .

By Lemma 4.4, the solution u = 9R2 corresponds to the equilateral triangle a = b = c. In
view of (14) this corresponds to the case when h = a, i.e., to the case when S is the regular
4-simplex. The solution 3u = 25R2 corresponds, again in view of (14), to the case h2 = u/5.

To prove the last statement, note that if D = (a, b, c) runs over all acute triangles inscribed
in a circle of radius R, then, by Lemma 4.4 and continuity arguments, a2 + b2 + c2 will take
all values between 8R2 and 9R2. Thus, given any R > 0, there exists an acute triangle
whose side lengths a, b, c satisfy 25R2 = 3(a2 + b2 + c2). Finally, to guarantee the existence of
the isosceles 4-simplex (a, b, c, a, b, c, h, h, h, h), h can take any value that is greater than the
circumradius RT of T . Thus, in view of (15), the only restriction on h is given by

h2 >
a2 + b2 + c2

8
,

and the choice h2 = (a2 + b2 + c2)/5 falls within this restriction.

Remark 5. The simplex S = [T, h] constructed in Theorem 4.5 has an exterior circumcenter.
In fact, it follows from

h2 =
a2 + b2 + c2

5
, RT

2 =
a2 + b2 + c2

8

that
h2 < 2RT

2 < RT
2 + RS

2 ,

implying that the circumcenter of S cannot be interior.

Remark 6. Within the family of isosceles 4-simplices with an equifacetal base, the degree
of freedom in constructing an equiareal, equiradial, but non-equifacetal simplex is embodied
in our freedom in choosing an acute triangle whose side lengths a, b, c and circumradius R
satisfy the relation

R2 =
3(a2 + b2 + c2)

25
.

It would be interesting to investigate whether this freedom can be exploited in constructing
4-simplices that have, beside equiareality, equiradiality and non-equifacetality, additional
significant properties.
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5. Center coincidence and cevians

This section will refer to the relationship between coinciding centers on the one hand, and
the lengths of cevians associated with these centers on the other hand.

As already mentioned, the affine independence of the vertex set of S = [A1, . . . , Ad+1]
allows a unique (up to a constant) linear combination of the origin 0, i.e.,

0 = a1A1 + · · ·+ ad+1Ad+1 (17)

with
s = a1 + · · ·+ ad+1 6= 0 . (18)

Namely, otherwise we would have

0 = a1 (A1 − Ad+1) + · · ·+ ad (Ad − Ad+1)

with a1 = · · · = ad = 0 and hence ad+1 = 0, contradicting the non-triviality of (17). We shall
also assume that none of the vertices of S is 0, and that the lines through the vertices and 0
intersect the opposite facets. To say that the line joining Ad+1 and 0 intersects the opposite
facet is equivalent to the existence of numbers c1, . . . , cd+1 such that

c1A1 + · · ·+ cdAd = cd+1Ad+1 and c1 + · · ·+ cd = 1 .

From the uniqueness of (17) it follows that a1 + · · ·+ ad 6= 0. Therefore we may also assume
that

no d of the numbers a1, . . . , ad+1 add up to 0 . (19)

Under the assumptions (17), (18), and (19) we let A∗
j be the point where the line through

Aj and 0 intersects the jth facet of S. The line segment AjA
∗
j is usually called the cevian

through Aj relative to 0. Since

−ad+1Ad+1

a1 + · · ·+ ad

=
a1A1 + · · ·+ adAd

a1 + · · ·+ ad

,

and since the left hand side lies on the cevian and the right hand side lies on the facet, it
follows that

A∗
d+1 = − −ad+1Ad+1

a1 + · · ·+ ad

and

‖Ad+1 − A∗
d+1‖ =

|a1 + · · ·+ ad+1|
|a1 + · · ·+ ad|

‖Ad+1‖ .

Thus we have that

the d + 1 cevians through 0 are equal ⇔ |s|
|s− aj|

‖Aj‖ is independent of j , (20)

where s = a1 + · · ·+ ad+1.

Theorem 5.1. Let S = [A1, . . . , Ad+1] be a d-simplex. Then the following properties of S
are equivalent.
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1. The centroid G and the circumcenter C of S coincide.

2. The cevians through the centroid G have equal lengths.

3. The cevians through the Fermat-Torricelli point F have equal lengths.

4. The circumcenter C lies in S and the cevians through C have equal lengths.

Proof. Assume that the centroid is 0. Then aj = 1
d+1

for all j in (17). Using (20), we get the
following equivalences.

The cevians through the centroid of S are of equal lengths
⇔ d+1

d
||Aj|| is independent of j

⇔ ||A1|| = · · · = ||Ad+1||
⇔ 0 is the circumcenter

⇔ the circumenter coincides with the centroid.

Assume that the Fermat-Torricelli point is 0. Then we may suppose that aj = 1
||Aj || for all j

in (17). Again using (20), we see the following equivalences.

The cevians through the Fermat-Torricelli point of S have equal lengths
⇔ ai(s− ai) = aj(s− aj) ⇔ (ai − aj)(s− ai − aj) = 0 ⇔ ai = aj for all i, j

⇔ a1 = · · · = ad+1

⇔ 0 is the centroid of S

⇔ the Fermat-Torricelli point of S coincides with the centroid of S

⇔ the centroid of S coincides with the circumcenter of S (by Theorem 4.1).

Finally, assume that the circumcenter is 0 and that it lies in S. Then in (17) ||A1|| = · · · =
||Ad+1||, and aj ≥ 0 for all j. Using (20), we get the following equivalences.

The cevians through the circumcenter of S are of equal lengths
⇔ |s− aj| is independent of j

⇔ s− aj is independent of j (because s− aj ≥ 0)

⇔ a1 = · · · = ad+1

⇔ 0 is the centroid of S

⇔ the centroid of S and the circumcenter of S coincide. �

The last statement in Theorem 5.1 triggers the question whether there exists a d-simplex
S whose circumcenter C is outside of S and whose cevians through C have equal lengths.
Theorem 5.5 will show that this can happen if and only if d ≥ 4. As preparation for that
theorem, we need three lemmas.

Lemma 5.2. Let S = [A1, . . . , Ad+1] be a d-simplex whose circumcenter is 0 and whose
circumradius is 1. Then the cevians through the circumcenter are equal if and only if there
exists a suitable r with 0 ≤ r < d+1

2
such that, after some rearrangement,

(2d− 2r + 1)(A1 + · · ·+ Ar)− (2r − 1)(Ar+1 + · · ·+ Ad+1) = 0 . (21)

Proof. Let the dependence relation among the Ai’s be given as in (17), and let s = a1 + · · ·+
ad+1. By rearranging the Aj’s and by multiplying (17) with −1, if necessary, we may assume
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that s−aj ≥ 0 for 1 ≤ j ≤ r and s−aj < 0 for j > r, where 0 ≤ r ≤ d+1
2

. By (20) we obtain
the following equivalences.

The cevians through the circumcenter of S are of equal length

⇔ |s− aj| is independent of j

⇔ s− a1 = · · · = s− ar = −(s− ar+1) = · · · = −(s− ad+1)

⇔ a1 = · · · = ar, ar+1 = · · · = ad+1 = 2s− a1

⇔ sa1 = · · · = sar = s2d−2r+1
d+1−2r

, sar+1 = · · · = sad+1 = s 1−2r
d+1−2r

⇔ (2d− 2r + 1)(A1 + · · ·+ Ar)− (2r − 1)(Ar+1 + · · ·+ Ad+1) = 0, as desired.

Note that the possibility d+1−2r = 0 is excluded since it leads to the contradiction s = 0.�

Lemma 5.3. Let V be a unit vector in Ed, and let t 6= 0 be in the open interval (−d, d). If
d ≥ 2, then there exists a basis B1, . . . , Bd of Ed consisting of unit vectors with B1+· · ·+Bd =
tV . In fact, one can choose B1, . . . , Bd to be equally inclined in the sense that Bi ·Bj = Bk ·Bl

whenever i 6= j and k 6= l.

Proof. Let U be the orthogonal complement of V , and let [E1, . . . , Ed] be a regular (d− 1)-
simplex in U centred at 0 and having circumradius 1. Then E1, . . . , Ed are equally inclined,
affinely independent unit vectors with E1 + · · · + Ed = 0. As x takes all non-zero values,

dx√
1+x32 takes all non-zero values in the open interval (−d, d). It follows that there exists an

x such that dx√
1+x2 = t. Let

Bj =
Ej + xV√

1 + x2
.

Then the Bj’s are equally inclined unit vectors with B1 + · · ·+ Bd = tV . It remains to show
that they are linearly independent. We use the fact that if a linear combination of equally
inclined unit vectors vanishes, then all the coefficients are equal, see also [24]. Thus

c1B1 + · · ·+ cdBd = 0 ⇒ (c1E1 + · · ·+ cdEd) + x (c1 + · · ·+ cd) V = 0
⇒ c1E1 + · · ·+ cdEd = (c1 + · · ·+ cd) V = 0

(since V ⊥ U)
⇒ c1 = · · · = cd (by [24]) and c1 + · · ·+ cd = 0
⇒ c1 = · · · = cd = 0, as desired. �

Lemma 5.4. Suppose that 2 ≤ r ≤ d − 1 and that b, c are non-zero real numbers such that
br + c(d− r + 1) 6= 0. Then there exist affinely independent unit vectors A1, . . . , Ad+1 in Ed

such that
b (A1 + · · ·+ Ar) + c (Ar+1 + · · ·+ Ad+1) = 0 . (22)

Proof. Dividing (22) by an appropriate number, one may assume that b, c are non-zero small
numbers, say in (−1, 1). We decompose Ed into the direct sum of three mutually orthogonal
subspaces Ur−1, U1, Ud−r of dimensions r − 1, 1, d − r, respectively, and we let V be a unit
vector in U1. By the previous lemma, the direct sum U1⊕Ur−1 has a basis consisting of unit
vectors A1, . . . , Ar with A1 + · · ·+ Ar = −cV . Similarly, U1 ⊕ Ud−r has a basis consisting of
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unit vectors Ar+1, . . . , Ad+1 with Ar+1 + · · · + Ad+1 = bV . Then A1, . . . , Ad+1 satisfy (22).
Also, since the sum of the coefficients in (22) is not zero, being nothing but br + c(d− r + 1),
it follows that 0 is in the affine hull of A1, . . . , Ad+1. Hence the affine hull of A1, . . . , Ad+1 is
their linear span and thus has dimension r + (d− r + 1)− 1 = d. Therefore A1, . . . , Ad+1 are
affinely independent, as desired. �

Theorem 5.5. There exists a d-simplex whose circumcenter is exterior and whose cevians
through the circumcenter are of equal lengths if and only if d ≥ 4.

Proof. We use Lemma 5.2. Taking d = 2 and r = 0 in (21), we obtain A1 + A2 + A3 = 0,
and hence 0 is the centroid and cannot be exterior. Taking d = 2 and r = 1, we obtain
3A1 − (A2 + A3) = 0, which is impossible since ||3A1|| = 3. Similarly for the cases d =
3, r = 0 and d = 3, r = 1. For d ≥ 4, let r be any number such that 2 ≤ r < d+1

2
,

and let b = 2d − 2r + 1 , c = −(2r − 1). Then r ≤ d − 1 and br + c(d − r + 1) 6= 0.
Hence, by Lemma 5.4 there exist affinely independent unit vectors A1, . . . , Ad+1 such that
b(A1 + · · · + Ar) + c(Ar+1 + · · · + Ad+1) = 0. Now the simplex S = [A1, . . . , Ad+1] has the
desired properties. �

Unfortunately, we were not able to prove a statement in the spirit of Theorem 5.1 that refers
to cevians of equal lengths going through the incenter of S. Such a result would be the
natural generalization of the well-known Steiner-Lehmus theorem; see [8], pages 9 and 420.
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6 (1997), 55–127. Zbl 0911.51021−−−−−−−−−−−−

[27] Lancaster, P.; Tismenetsky, M.: The Theory of Matrices. 2nd ed., Academic Press, New
York 1985. Zbl 0558.15001−−−−−−−−−−−−
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