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On the Directional Differentiability Properties of

the max-min Function

Erdal Ekici

Abstract

In this paper, the directional lower and upper derivatives of the max-
min function are investigated by using the directional lower and upper
derivative sets of the max-min set valued map. Sufficient conditions en-
suring the existence of the directional derivative of the max-min function
are obtained.
Keywords: multivalued mapping, optimal control.

1 Introduction

It is well known that the max-min functions come into play in the control
theory problems, the differential game theory problems and the parametric op-
timization problems (see, for example Danskin, 1966;1967). On the other hand
the max-min functions are not usually differentiable. But in some problems it
is necessary that the directional derivative or the directional lower and upper
derivatives of the max-min functions should be calculated.

In this paper, by using the concepts of the directional upper and lower
derivative sets of the max-min set valued map, the directional upper and lower
derivatives of the max-min functions are given and sufficient conditions ensuring
the existence of the directional derivative of the max-min function are obtained.

2 Derivative sets of the set valued map

Here and after, cl(Rm) (comp(Rm)) denotes the set of all nonempty closed
(compact) subsets in Rm. Let a(·) : Rn → cl(Rm) be an upper semi-continuous
set valued map. Let us consider the following sets. For (x, y) ∈ Rn × Rm and
vector f ∈ Rn, we set

Da(x, y) | (f) = {d ∈ Rm : lim inf
δ→+0

1
δ
dist (y + δd, a(x + δf)) = 0},

D∗a(x, y) | (f) = {v ∈ Rm : lim sup
δ→+0

1
δ
dist (y + δd, a(x + δf)) = 0}.
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Here for x ∈ Rn, D ⊂ Rn, dist (x,D) = inf
d∈D

‖x− d‖. Da(x, y) | (f) (D∗a(x, y) |
(f)) is called the upper (lower) derivative set of the set valued map a(·) at (x, y)
in the direction f . Note that the directional upper (lower) derivative set of the
set valued map a(·) is closed and there is a connection between the upper (lower)
derivative set of the set valued map and the upper (lower) contingent cone which
is used to investigate various problems in nonsmooth analysis (see, for example
Aubin and Frankowska, 1990; Guseinov, et al., 1985; Clarke, et al., 1995). It is
obvious that D∗a(x, y) | (f) ⊂ Da(x, y) | (f).

A = gra(·) = {(x, y) ∈ Rn ×Rm : y ∈ a(x)}

denotes the graph of the set valued map a(·). Since a(·) is upper semicontinuous,
A is a closed set. It is possible to show that Da(x, y) | (f) = D∗a(x, y) | (f) = ∅
if (x, y) /∈ A, Da(x, y) | (f) = D∗a(x, y) | (f) = Rm if (x, y) ∈ intA where intA
denotes the interior of A.

Suppose that the set valued map a(·) is given as

a(x) = {y ∈ Rm : b(x, y) ≤ 0} (2.1)

where b(·, ·) : Rn × Rm → R is a continuous function in Rn × Rm and locally
Lipschitz in Rm. The lower and upper derivative of b(·, ·) at the point (x, y)

in the direction (f, d) is denoted by
∂−b(x, y)
∂(f, d)

and
∂+b(x, y)
∂(f, d)

respectively and

defined by

∂−b(x, y)
∂(f, d)

= lim inf
δ→+0

[b(x + δf, y + δd)− b(x, y)] δ−1,

∂+b(x, y)
∂(f, d)

= lim sup
δ→+0

[b(x + δf, y + δd)− b(x, y)] δ−1

respectively. If

∂b(x, y)
∂(f, d)

= lim
δ→+0

[b(x + δf, y + δd)− b(x, y)] δ−1

exists and is finite, then b(·, ·) is called differentiable at the point (x, y) in the

direction (f, d) and
∂b(x, y)
∂(f, d)

denotes the derivative of b(·, ·) at the point (x, y)

in the direction (f, d).



Directional differentiability of the max-min function 37

We introduce the sets

H−(x, y) | (f) = {d ∈ Rm :
∂−b(x, y)
∂(f, d)

< 0},

H(x, y) | (f) = {d ∈ Rm :
∂−b(x, y)
∂(f, d)

≤ 0},

E−(x, y) | (f) = {d ∈ Rm :
∂+b(x, y)
∂(f, d)

< 0},

E(x, y) | (f) = {d ∈ Rm :
∂+b(x, y)
∂(f, d)

≤ 0}

(Guseinov, Kucuk and Ekici, 2001).

Proposition 1 Let the set valued map a(·) be in the form (2.1). Then for all
(x, y) ∈ ∂A and f ∈ Rn,

clH−(x, y) | (f) ⊂ Da(x, y) | (f) ⊂ H(x, y) | (f),
clE−(x, y) | (f) ⊂ D∗a(x, y) | (f) ⊂ E(x, y) | (f)

where ∂A denotes the boundary of A, clA denotes the closure of A.

By using the previous proposition, we obtain the following corollary.

Corollary 2 Let (x, y) ∈ ∂A, b(·, ·) be differentiable at (x, y) and
∂b(x, y)

∂y
6= 0.

Then it is possible to show that

Da(x, y) | (f) = D∗a(x, y) | (f)

= {d ∈ Rm :
〈

∂b(x, y)
∂x

, f

〉
+

〈
∂b(x, y)

∂y
, d

〉
≤ 0}

where the symbol 〈·, ·〉 denotes the inner product.

Remark 3 Now suppose that the set valued map a(·) is given as

a(x) = {y ∈ Rm : min
i∈I

max
j∈J

bij(x, y) ≤ 0} (2.2)

where I and J are finite sets and bij(·, ·) is a continuous differentiable functions
for all i ∈ I and for all j ∈ J . Then (see Demyanov and Vasilyev, 1981)
b(x, y) = min

i∈I
max
j∈J

bij(x, y) is a directional derivable function and

∂b(x, y)
∂(f, d)

= min
i∈I∗(x,y)

max
j∈J∗(x,y)

[
〈

∂bij(x, y)
∂x

, f

〉
+

〈
∂bij(x, y)

∂y
, d

〉
]



38 E. Ekici

where

J∗(x, y) = {j∗ ∈ J : bij∗(x, y) = max
j∈J

bij(x, y)},

I∗(x, y) = {i∗ ∈ I : min
i∈I

max
j∈J

bij(x, y) = max
j∈J

bi∗j(x, y)}.

In that case, it follows from here that

E−(x, y) | (f)
= H−(x, y) | (f)

= {d ∈ Rm : min
i∈I∗(x,y)

max
j∈J∗(x,y)

[
〈

∂bij(x, y)
∂x

, f

〉
+

〈
∂bij(x, y)

∂y
, d

〉
] < 0},

E(x, y) | (f)
= H(x, y) | (f)

= {d ∈ Rm : min
i∈I∗(x,y)

max
j∈J∗(x,y)

[
〈

∂bij(x, y)
∂x

, f

〉
+

〈
∂bij(x, y)

∂y
, d

〉
] ≤ 0}.

Theorem 4 Let the set valued map a(·) be in the form (2.2), (x, y) ∈ ∂A,
f ∈ Rn and H−(x, y) | (f) 6= ∅. Then

Da(x, y) | (f) = D∗a(x, y) | (f) = H(x, y) | (f).

Proof : It is obtained by using the previous proposition, the previous corollary
and the previous remark.

Remark 5 Above theorem is not true when H−(x, y) | (f) = ∅ for (x, y) ∈ ∂A
and for f ∈ Rn.

Example 6 We take the set valued map a(·) : [0, 1] → cl(R2), x → a(x) =
{(y1, y2) ∈ R2 : y2

1 +y2
2 ≤ 0}. We know that a(x) = {(0, 0)} for all x ∈ [0, 1] and

b(·, ·, ·) : [0, 1] × R2 → R, (x, y1, y2) → b(x, y1, y2) = y2
1 + y2

2 is a differentiable
function. Then we obtain H(x, 0, 0) | (1) = R2, H−(x, 0, 0) | (1) = ∅ and
Da(x, 0, 0) | (1) = {(0, 0)} for (x, 0, 0) ∈ ∂A.

3 Directional differentiability of the max-min function

Let a(·) : Rn → comp(Rm), b(·) : Rn → comp(Rk) be set valued maps and
σ(·, ·, ·) : Rn ×Rm ×Rk → R be a continuous function on Rn ×Rm ×Rk. The
max-min function is denoted by m(·) and is defined by

m(x) = max
y∈a(x)

min
z∈b(x)

σ(x, y, z).

Here and after we will assume that a(·) : Rn → comp(Rm), b(·) : Rn →
comp(Rk) are continuous set valued maps and σ(·, ·, ·) : Rn ×Rm ×Rk → R is
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a continuous function on Rn × Rm × Rk and locally Lipschitz on Rm × Rk, i.
e. for every bounded D ⊂ Rn ×Rm ×Rk, there exists L(D) > 0 such that

|σ(x, y1, z1)− σ(x, y2, z2)| ≤ L(D). ‖(y1 − y2, z1 − z2)‖

for any (x, y1, z1), (x, y2, z2) ∈ D. Under these conditions m(·) is a continuous
function (see, for example Aubin and Frankowska, 1990). Let

Y∗(x) = {(y∗, z∗) ∈ a(x)× b(x) : m(x) = max
y∈a(x)

min
z∈b(x)

σ(x, y, z) = σ(x, y∗, z∗)}.

x → Y∗(x) is an upper semicontinuous set valued map and it is called max-
min set valued map. Now we give a characterization of the upper and lower
directional derivatives of m(·).

Proposition 7 For all x ∈ Rn and f ∈ Rn

∂−m(x)
∂f

≤ inf
(y,z)∈Y∗(x)

inf
(d,n)∈DY∗(x,y,z)|(f)

∂+σ(x, y, z)
∂(f, d, n)

, (3.1)

∂+m(x)
∂f

≤ inf
(y,z)∈Y∗(x)

inf
(d,n)∈D∗Y∗(x,y,z)|(f)

∂+σ(x, y, z)
∂(f, d, n)

. (3.2)

Proof : Let (y, z) ∈ Y∗(x). Let DY∗(x, y, z) | (f) = ∅. Then

inf
(d,n)∈DY∗(x,y,z)|(f)

∂+σ(x, y, z)
∂(f, d, n)

= +∞

and the inequality (3.1) holds. Now let (y, z) ∈ Y∗(x), DY∗(x, y, z) | (f) 6=
∅. Choose arbitrary (d, n) ∈ DY∗(x, y, z) | (f). Then from the definition of
DY∗(x, y, z) | (f), there exists a sequence (yk, zk) ∈ Y∗(x+δkf), where δk → +0
as k →∞, such that

(yk, zk) = (y, z) + δk(d, n) + (o1(δk), o2(δk))

where ‖(o1(δk), o2(δk))‖ /δk → 0 as k →∞. Since (y, z) ∈ Y∗(x), it follows that
m(x) = σ(x, y, z) and (yk, zk) ∈ Y∗(x + δkf) (k = 1, 2, ...) then it follows that
m(x + δkf) = σ(x + δkf, yk, zk). Consequently

∂−m(x)
∂f

= lim inf
δ→+0

[m(x + δf)−m(x)] δ−1

≤ lim inf
k→∞

[σ(x + δkf, yk, zk)− σ(x, y, z)] δ−1
k

= lim inf
k→∞

[σ(x + δkf, y + δkd + o1(δk), z + δkn + o2(δk))− σ(x, y, z)] δ−1
k

≤ lim inf
δ→+0

[σ(x + δkf, y + δkd, z + δkn)− σ(x, y, z)] δ−1
k

≤ lim sup
δ→+0

[σ(x + δf, y + δd, z + δn)− σ(x, y, z)] δ−1

=
∂+σ(x, y, z)
∂(f, d, n)

.



40 E. Ekici

So we have
∂−m(x)

∂f
≤ ∂+σ(x, y, z)

∂(f, d, n)
for any (d, n) ∈ DY∗(x, y, z) | (f) and

consequently we obtain the inequality (3.1).
Let us prove (3.2). Let (y, z) ∈ Y∗(x). Let D∗Y∗(x, y, z) | (f) = ∅. Then

inf
(d,n)∈D∗Y∗(x,y,z)|(f)

∂+σ(x, y, z)
∂(f, d, n)

= +∞

and the inequality (3.2) holds.
Now let (y, z) ∈ Y∗(x), D∗Y∗(x, y, z) | (f) 6= ∅. Choose arbitrary (d, n) ∈

D∗Y∗(x, y, z) | (f). From the definition of D∗Y∗(x, y, z) | (f), there exists a
δ∗ > 0 such that for all δ ∈ [0, δ∗]

(y(δ), z(δ)) = (y, z) + δ(d, n) + (o1(δ), o2(δ)) ∈ Y∗(x + δf)

where ‖(o1(δ), o2(δ))‖ /δ → 0 as δ → +0. Since (y, z) ∈ Y∗(x) then it follows
that m(x) = σ(x, y, z) and (y(δ), z(δ)) ∈ Y∗(x + δf) then it follows that m(x +
δf) = σ(x + δf, y(δ), z(δ)) for any δ ∈ [0, δ∗]. Then

∂+m(x)
∂f

= lim sup
δ→+0

[m(x + δf)−m(x)] δ−1

= lim sup
δ→+0

[σ(x + δf, y(δ), z(δ))− σ(x, y, z)] δ−1

= lim sup
δ→+0

[σ(x + δf, y + δd + o1(δ), z + δn + o2(δ))− σ(x, y, z)] δ−1

≤ lim sup
δ→+0

[σ(x + δf, y + δd, z + δn)− σ(x, y, z)] δ−1 =
∂+σ(x, y, z)
∂(f, d, n)

.

Hence
∂+m(x)

∂f
≤ ∂+σ(x, y, z)

∂(f, d, n)
for any (d, n) ∈ D∗Y∗(x, y, z) | (f), we obtain

the inequality (3.2).

Proposition 8 Let x ∈ Rn, f ∈ Rn and there exists (y∗, z∗) ∈ Y∗(x) such that
DY∗(x, y∗, z∗) | (f) 6= ∅. Then

∂+m(x)
∂f

≥ inf
(y,z)∈Y∗(x)

inf
(d,n)∈DY∗(x,y,z)|(f)

∂−σ(x, y, z)
∂(f, d, n)

(3.3)

Moreover if there exists (y∗, z∗) ∈ Y∗(x) such that D∗Y∗(x, y∗, z∗) | (f) 6= ∅ then

∂−m(x)
∂f

≥ inf
(y,z)∈Y∗(x)

inf
(d,n)∈D∗Y∗(x,y,z)|(f)

∂−σ(x, y, z)
∂(f, d, n)

(3.4)

Proof : Take any (d, n) ∈ DY∗(x, y∗, z∗) | (f). From the definition of
DY∗(x, y∗, z∗) | (f), there exists a sequence (yk, zk) ∈ Y∗(x + δkf), where δk →
+0 as k →∞, such that

(yk, zk) = (y∗, z∗) + δk(d, n) + (o1(δk), o2(δk))
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where ‖(o1(δk), o2(δk))‖ /δk → 0 as k → ∞. Since (y∗, z∗) ∈ Y∗(x), it follows
that m(x) = σ(x, y∗, z∗) and (yk, zk) ∈ Y∗(x + δkf) (k = 1, 2, ...) then it follows
that m(x + δkf) = σ(x + δkf, yk, zk). Consequently

∂+m(x)
∂f

= lim sup
δ→+0

[m(x + δf)−m(x)] δ−1

≥ lim sup
k→∞

[σ(x + δkf, yk, zk)− σ(x, y∗, z∗)] δ−1
k

= lim sup
k→∞

[σ(x + δkf, y∗ + δkd + o1(δk), z∗ + δkn + o2(δk))− σ(x, y∗, z∗)] δ−1
k

≥ lim inf
δ→+0

[σ(x + δf, y∗ + δd, z∗ + δn)− σ(x, y∗, z∗)] δ−1
k

=
∂−σ(x, y∗, z∗)

∂(f, d, n)
.

So we have
∂+m(x)

∂f
≥ ∂−σ(x, y∗, z∗)

∂(f, d, n)
for any (d, n) ∈ DY∗(x, y∗, z∗) | (f) and

consequently we obtain the inequality (3.3).
Let us prove (3.4). Take any (d, n) ∈ D∗Y∗(x, y∗, z∗) | (f). From the

definition of D∗Y∗(x, y∗, z∗) | (f), there exists a δ∗ > 0 such that for all δ ∈ [0, δ∗]

(y(δ), z(δ)) = (y∗, z∗) + δ(d, n) + (o1(δ), o2(δ)) ∈ Y∗(x + δf)

where ‖(o1(δ), o2(δ))‖ /δ → 0 as δ → +0. Since (y∗, z∗) ∈ Y∗(x) then it follows
that m(x) = σ(x, y∗, z∗) and (y(δ), z(δ)) ∈ Y∗(x + δf) then it follows that
m(x + δf) = σ(x + δf, y(δ), z(δ)) for any δ ∈ [0, δ∗]. Then

∂−m(x)
∂f

= lim inf
δ→+0

[m(x + δf)−m(x)] δ−1

= lim inf
δ→+0

[σ(x + δf, y(δ), z(δ))− σ(x, y∗, z∗)] δ−1

= lim inf
δ→+0

[σ(x + δf, y∗ + δd + o1(δ), z∗ + δn + o2(δ))− σ(x, y∗, z∗)] δ−1

≥ lim inf
δ→+0

[σ(x + δf, y∗ + δd, z∗ + δn)− σ(x, y∗, z∗)] δ−1

=
∂−σ(x, y∗, z∗)

∂(f, d, n)
.

Hence
∂−m(x)

∂f
≥ ∂−σ(x, y∗, z∗)

∂(f, d, n)
for any (d, n) ∈ D∗Y∗(x, y∗, z∗) | (f), we

obtain the inequality (3.4).
From Proposition 2 and Proposition 3 we have the following statement.

Theorem 9 Suppose that x ∈ Rn, f ∈ Rn and there exists (y∗, z∗) ∈ Y∗(x)
such that D∗Y∗(x, y∗, z∗) | (f) 6= ∅. Let σ(·, ·, ·) : Rn × Rm × Rk → R is a
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differentiable function at (x, y, z) in the direction (f, d, n) for any (y, z) ∈ Y∗(x),
d ∈ Rm and n ∈ Rk. Then m(·) : Rn → R is differentiable at x in the direction
f and

∂m(x)
∂f

= inf
(y,z)∈Y∗(x)

inf
(d,n)∈DY∗(x,y,z)|(f)

∂σ(x, y, z)
∂(f, d, n)

4 Conclusions

By using the concepts of the directional lower and upper derivative sets
of the max-min set valued map, the directional lower and upper derivatives
of the max-min function are investigated. The results of this paper can be
employed to calculate the directional lower and upper derivatives of the max-
min functions in the control theory problems, the differential game problems
and the parametric optimization problems. Sufficient conditions ensuring the
existence of the directional derivative of the max-min function are obtained.

5 References

1. Aubin, J. P. and H. Frankowska (1990). Set-Valued Analysis. Birkhauser,
Boston.
2. Clarke, F. H., Yu. S. Ledyayev, R. J. Stern and P. Wolenski (1995). Quali-
tative Properties of Trajectories of Control Systems : a Survey. J. of Dynamical
and Control Systems, 1, 1-48.
3. Danskin, J. M. (1966). The Theory of max-min with applications. SIAM
Journal, vol. 14, pp. 641-664.
4. Danskin, J. M. (1967). The Theory of Max-Min. Springer-Verlag, New York.
5. Demyanov, V. F. and L. V. Vasilyev (1981). Non-differentiable optimization.
Nauka, Moscow.
6. Guseinov, Kh. G., A. I. Subbotin and V. N. Ushakov (1985). Derivatives for
multivalued mappings with applications to game theoretical problems of con-
trol. Problems of Control and Information Theory, 14. 155-167.
7. Guseinov, Kh. G., Y. Kucuk and E. Ekici (2001). On the directional differ-
entiabilty properties of the marginal function. Nonlinear Control Systems NOL-
COS’01, 5th IFAC Symposium, Saint Petersburg, Russia, July 4-6. Preprints
vol. 2 of 5, 355-359.

Erdal Ekici
Department of Mathematics,
Cumhuriyet University
Sivas 58140, TURKEY
eekici@cumhuriyet.edu.tr


