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Classical analogues of quantum paradoxes

Henryk Gzyl

Abstract

In this note we discuss a few simple classical (as opposed to quantum)
prediction problems. The thrust of this work is to examine the predictive
role of probability theory and we shall see that some situations are not re-
ally paradoxical. In particular we want to separate the role of probability
as a predictive tool from one of the basic sources of strangeness in quan-
tum mechanics, namely the principle of superposition of states. For that
we shall re-examine some of the quantum paradoxes, recast as a problem
about making a prediction about the result of a random experiment in
classical physics when some information is known.

1 Preliminaries

There is a vast, academic and non-academic, which does not mean non-serious,
popular literature, about the strangeness of quantum phenomena and how this
strangeness forces us to re-examine our image or our paradigms about the ma-
terial world. A very small sample is [A],[C],[d’E], [F],[K],[KN],[M],[T] and the
fabulous collection [WZ]. But no item in this collection separates the two issues
mentioned in the abstract, namely, that the strangeness in quantum theory does
not come from its being a curious mathematical model about phenomena that
seem to be intrinsically random, but from the inner structure of the mathemat-
ical model itself. In quantum mechanics the strangeness does not come from
its being a probabilistic theory, but from a combination of two facts: on one
hand the superposition principle (implicit in the fact that states are modeled
by vectors over the field of complex numbers), and on the other hand, from the
fact that probabilities are obtained from the absolute values of the components
of the vector describing the states.

What we are going to do in this note is to examine some problems in which
a prediction has to be made about a classical experimental setup that imitates
and parallels the setup associated to some of the quantum paradoxes. Thus in
spirit we are close to Mermin’s [Me]. Our emphasis is on examining in what
does the process of prediction consist of, and what is the influence of
the available information on it.
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In a lengthy (but necessary for making this note self contained) appendix we
recall the very basic ingredients of mathematical probability theory. The readers
familiar with that material, may skip it, but those that have never heard of it,
must read it. It is basically a collection of standard definitions accompanied
by an explanation for their need. The important part of that section is the
description of the predictive tool in probability theory, namely the concept
of conditional expectation, and the formal use of the concept of σ-algebras
as carriers of information. The content of each section is described below,
but the message is that a predictor is described by a conditional expectation,
which is a random variable whose value depends on information provided by
a measurement, and once the measurement is made, the predictor provides us
with a prediction.

In section 2 we consider an alternative, simple version of the two slit experi-
ment. Instead of two slits, we have two point light sources. Here the randomness
will come from the fact that we do not know which source is on, and we have
to predict the observed signal.

In section 3 we shall consider the classical version of Schroedinger’s cat and
in section 4 the classical version of the EPR paradox (after Einstein, Rosen and
Podolsky). Both in the first and last example the role of prior information role
will be important for completing the prediction of the outcome. In section 5 we
present a proof of the proof of Bell’s inequalities, just to emphasize that there is
nothing in them having to do with quantum phenomena. See [K] for a glimpse
at the vast literature in this area.

We close this section with a few words about random variables. The
formal definition is given in section 6, but an understanding of the concept is
essential for following section (2)-(5). A random variable is the mathematical
object ( a function, to be specific) designed to model the result of a measurement
in an experiment, and an experiment can be thought of as a sequence (finite,
infinite, discrete or continuous, of measurements). The values taken by the
random variable, are identified with the results of possible measurements of the
variable, but the actual mathematical framework chosen does not have anything
to do with the actual measurement process. A couple of example will clarify the
issue. For example, to describe the results of the toss of a coin we need functions
taking values in the set {H,T}, or to describe life-times, we shall use variables
taking values in [0,∞), regardless of how toss the coin or how we measure the
life-times.

But more important, a random variable is a function which stands for a
collection of values. This issue is related to the question: In what state is the
coin? Or, has the particle decayed or not?. The state is known after the coin
or the particle are observed. This is the exact counterpart of the fact that a
function is a collection of values taken at points and should not be confused with
the values of the function at specific points. This is essential when interpreting
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conditional expectations, which are random variables, whose values are the best
predictors of some variable when another variable is observed.

2 The two sources experiment

To avoid dealing with waves behind diffracting holes, we shall consider an exper-
imental setup in which we have two sources emitting continuously monochro-
matic light of frequency ν, located at x± = (0, 0,±h). An observer at x would
see a signal u±(x) = eiν‖x−x±‖

2π‖x−x±‖ coming from each of them. But regretfully Mr.
Prankster is in charge of the lights and he tosses one or two coins to decide
which source he will let shine or not. Thus the observer does not know in ad-
vance what Mr. Prankster will do but he has to predict what will be observed
on the basis of any observation that he may gather.

Assume first that the decision will be made on the basis of a coin toss.
In order to model this set up he chooses Ω = {H,T} and then the signal
at any arbitrary (but fixed x, to avoid dealing with function valued random
variables) all he knows is that the signal has to be modeled by a random variable
U = u+(x)IH + u−(x)IT , and if does not have any other information, then the
best prediction he can make is that on the average he will observe E[U ] =
pHu+(x) + pT u−(x).
This is a good point to insist on the difference between a prediction like E[U ] and
an observed value: When one observes a random variable, U in this case, each
time one of its possible values is seen, even if the initial set up is the same. Since
these differ from observation to observation, one performs a statistical analysis
on the data, and an expected (value to be seen upon average) is provided. But
assume that he is given information consisting of the specification of which
bulb is on. This is modeled by a σ-algebra F = {∅, {H}, {T},Ω}, i.e., the
full information about the setup. He knows that his best predictor must be
computed as E[U | F ] = U , and when he is told that the result of the toss is an
H, he then predicts that he will observe u+(x).
Assume now that the observer knows that Mr. Prankster is using two coins.
Then to model the outcome of a single toss he considers Ω = {(H,H), (H,T ),
(T,H), (T, T )}, and all the information about the experiment is contained in
the σ-algebra P(Ω). Assume that he knows the probabilities {p1, p2, p3, p4} as
listed above. The signal to be observed is modeled by the random variable
(random field)

U = (u+(x) + u−(x))I{(H,H)} + u+(x))I{(H,T )} + u−(x))I{(T,H)}.

Note again that the vales of U , that is of the observed field, depend on the result
of the throw of the two coins. Now in the absence of any information, the best
prediction that the observer can make is given by E[U ] = p1(u+(x) + u−(x)) +
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p2u+(x) + p3u−(x) = (p1 + p2)u+(x) + (p1 + p3)u−(x). Clearly p1 + p2 and
p1 + p3 are, respectively the probabilities that the sources at x± are on. These
were denoted by pH and pT a few lines above.

Assume now that all the observer is able to find out is that either the two
sources may be in the same state. That is, assume that both of the sources
are on or off, or that either of them may be on and the other off. The given
information corresponds to the partition of {{(H,H), (T, T )}, {(H,T ), (T,H)}}
of Ω. Denote by G the σ-algebra that it generates. The best predictor given
this information is the random variable E[U | G] taking values

E[U | {(H,H), (T, T )}] =
p1(u+(x) + u−(x))

p1 + p4
=

p1

p1 + p4
(u+(x) + u−(x))

E[U | {(H,T ), (T,H)}] =
p2u+(x) + p3u−(x)

p2 + p3
=

p2

p2 + p3
u+(x)+

p3

p2 + p3
u−(x).

respectively whenever the event {(H,H), (T, T )} or {(H,T ), (T,H)} occurs.
The probabilities of occurrence of each of the events are, respectively p1+p4 and
p2 + p3. To make the role of the prior information more apparent, assume that
the observer knows that one of the events in the following partition of Ω occurs:
{{(H,H), (T, T )}, {(H,T )}, {(T,H)}}. The difference with the previous case is
that when the observer finds out that one of the sources is uncovered, he knows
that the other is covered. If we denote by G1 the σ algebra generated by that
partition, then the best predictor of the random field U is the random variable
(random field)

E[U | G1] = u+(x)I{(H,T )}+u−(x)I{(T,H)}+
p1

p1 + p4
(u+(x)+u−(x))I{(H,H),(T,T )}.

Observe for example, that if the toss of the coins were (T, T ), then we would see
no signal, but if it were (H,T ), we would see u+(x). And equally important,
that the three possible results would occur with probabilities p2, p3 and p1+p4.
The difference between this and the first case treated, is that now both sources
may be on or off, whereas in the first case one was on while the other was off.

3 Is the bird in the cage or not?

Let us now examine the classical variant of the Schroedinger cat paradox. Our
setup consists of a light bulb with an exponential lifetime, and a bird in a cage.
The setup is such that if the light bulb burns out, the latch on the bird’s cage is
released and the bird flies away. The issue is whether, upon observation, will we
find the bird in the cage or not? To describe the result of one measurement of a
lifetime, the following sample space is adequate: Ω = [0,∞), and all questions
we can ask about the measurement are represented by F = B([0,∞)). As
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probability measure we choose P (dt) = 1
τ e−t/τ . The random variable of interest

is the lifetime of the bulb, described by T : Ω → [0,∞) such that T (u) = u,
that is we shall find convenient to think of the points u ∈ Ω as “life-histories”
of the light bulb. The distribution of this variable is P ({T > t}) = e−t/τ , which
is to be read as: the fraction of life-histories longer that t is e−t/τ .
Let the position of the latch be denoted by > if it is open and by ⊥ if it is
closed. The random state of the latch at time t is described by a random
variable Xt : Ω → {>,⊥} given by

Xt(u) = > whenever T(u) ≤ t; or Xt(u) = ⊥ whenever T(u) > t.

What happens here? Well, the observer decides when he is going to look at
the bird, that is the observer chooses t, whereas nature chooses the life history u
of the bulb. If u = T (u) ≤ t then the bulb is still on at the time of observation,
whereas if u = T (u) > t, the bulb has burnt out and the bird has flown away.
Is there anything paradoxical here? It does not seem so.

If the caretaker of the bird is to receive a payment d if nothing has happened,
and he has to pay a penalty δ if the bird escapes, what is our best prediction of
his fortune at time t? Clearly if no information is available, his fortune at time
t is d(1 − e−t/τ ) − δe−t/τ . We leave it up to the reader to see why, and direct
her/him to Peres’ [P] for a discussion from the point of view of a physicist.

4 Split coins and recoiling particles

In this section we shall consider non quantum variants of the EPR paradox.
Again the aim is to emphasize the role of prior knowledge. Suppose you have a
coin-like object with two faces which can be either R(ed) or B(lue), but these
properties for all you know, have been assigned at random. The assignment is
by means of a random variable taking values in the set {(R,R), (R,B), (B,B)}.
When performing an experiment consisting of one measurement, it suffices to
take Ω = {{R,R}, {R,B}, {B,B}}. Clearly we think of the color assignment
as a multi set: sets in which an element may appear repeated a number of
times. This description takes care of the intuitive symmetry of a coin respect
to the labeling of the faces. An observation of a coloring of a coin is actually
a pair of observations, which we list sequentially. Formally speaking X : Ω →
{R,B} × {R,B} and an equivalence relation has been defined on the range,
which identifies (R,B) and (B,R). The values of X are obviously X({B,B}) =
(X1({B,B}), X2({B,B})) = (B,B), etc. This may seem like overdoing it, but
is really necessary if we want our model to reflect the symmetry of the coin with
respect to “flips” (We may also think of colorings as mappings {1, 2} → {B,R}
which are invariant under the “flip” F : {1, 2} → {1, 2}, F (1) = 2, and F (2) =
1).



138 H. Gzyl

If we assign probabilities to the elementary events by Ω by P ({B,B}) = p1,
P ({R,B}) = p2 and P ({R,R}) = p3, then clearly P ({X1 = B}) = p1 + p2

2 and
P ({X1 = R}) = p3 + p2

2 .
Suppose now that Mr. Prankster splits the coin in two (each half comprising

a face), and a half given to some team mate. You have to guess the color of
that face. You will receive either of the following pieces of information about
the half in Mr. Prankster’s hand: (i) the color of that half, (ii) the color of that
half and the coloring of the coin, or (iii) only the coloring of the coin.

Case 1 Assume you are told that X2 = R. In this case all you can predict is
that either X1 = B or that X1 = R with the two probabilities given above.

Case 2 Assume that you are told that X2 = B and that the coloring is {B,R}.
Clearly in this case you predict that P (X1 = R |X = {B,R}, X2 = B) = 1.
You do not have to invoke super luminal propagation of information or anything.
Just apply basic probability (which in this case could not be more trivial).

Case 3 Here there are several possibilities depending on the explicit form of the
information. For example, if told that both faces are equal but nothing else,
you will compute basic conditional probabilities and conclude that the coloring
is B with probability p1

p1+p3
or R with the probability p3

p1+p3
. If you are told

that the coloring is mixed, you will assert that one face is R and the other is B
with probability 1.

A variation on this theme, corresponding to a simple version of the prob-
lem of the recoiling particles, is the following: Assume that the particles are
marked (distinguishable) and an integer 1 ≤ Xi ≤ N, i = 1, 2 is assigned to
each. Assume that the numbers are chosen at random but not necessarily in-
dependently of each other. For example, the numbers may measure “quanta”
of energy transferred to each particle during the splitting process. Assume that
you may observe X1 and you want to predict X2.
The underlying sample space for this situation is Ω = {1, 2, ..., N}×{1, 2, ..., N},
and the information about the measurement is described by a probability law P
on Ω given by P (X1 = i, X2 = j) = pij , and each observable is modeled by a co-
ordinate map, for example X1 : Ω → {1, ..., N}, such that X1(a, b) = a.. When
the Xi are independent P (X1 = i, X2 = j) = P (X1 = i)P (X2 = j) = pipj , but
this is not necessary for what comes below.

Any prediction about X2 will depend about the information we are given
about X1 and about the pair. Let us consider three cases (i) we only know X1,
(ii) we are given X1 and we now that a ≤ X1 + X2 ≤ b is constant, but we do
not know which constant, and (iii) is as the second case, but the value of the
constant X1 + X2 = k is specified.
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Case 1 We know from Example 1 in the appendix that E[X2 = j |X1] = pX1j

pX1
.

That is the best predictor of the probability of the event {X2 = j} depends on
the observation of X1. When we learn that X1 = i, at that moment we know
that we predict X2 = j with probability pij

pi
. But before the observation of X1,

the best predictor is a random variable.

Case 2 This time the generic information is the trace of σ(X1) on the event
{a ≤ X1 + X2 ≤ b}, that is the σ-algebra generated by the collection {a− i ≤
X2 ≤ b − i; 1 ≤ i ≤ N}. Let us denote this by the obvious σ(X1) ∩ {a ≤
X1 +X2 ≤ b}. In this case the best predictor of X2 (not of any particular value
of the variable) is

E[X2 |σ(X1) ∩ {a ≤ X1 + X2 ≤ b}]

and we leave it up to the interested reader to compute the possible values of
this random variable according to Example 1 in the appendix.

Case 3 Let us examine the most standard example corresponding to the classical
version of the EPR paradox. Assume that it is known that X1 + X2 = k. If
nothing is known about X1, the best predictor of X2 is

E[X2 |X1 + X2 = k] =
N∑

i=1

(k − i)+pi

pi
I{X1=i}

where the explanation of the term (k− i)+ is clear: the value k− i is an allowed
value for X2 while it is bigger or equal to 0.
Notice that when we are given the event {X1 = i} ∪ {X1 + X2 = k} (which is
not empty, that is it describes a possible event only when k ≥ i, then

E[X2 |{X1 = i} ∪ {X1 + X2 = k}] = k − i!

This is clear because {X1 = i} ∪ {X1 + X2 = k} = {X2 = k − i}, that is
specifying the conserved quantity and one of the variables and the value of one
of them, automatically specifies the other, regardless whether we measure it or
not. In this case knowledge does not have to do with transmission of informa-
tion, it has to do with logic.

Let us now consider these three cases under the assumption that X1 and X2

are continuous, say, real valued random variables, having a joint distribution
function ρ(x1, x2). Let us now re-examine some possibilities.

Case 4 Assume that all knowledge that may be available to us consists of the
result of a measurement of X1. What is our best predictor of X2?. We already
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know that it is E[X2 |X1], and in example 2 of the appendix, we show that this
is the random variable

∫
x2

ρ(x2,X1)
ρ(X) dx2, whose value becomes known once X1

is measured. When X1 = x1 is observed, our best predictor of X2 becomes

E[X2 |X1 = x1] =
∫

x2
ρ(x2, x1)

ρ(x1)
dx2.

Case 5 Let us consider now the case where only Z ≡ X1 + X2 is available for
observation. What is our best predictor of X2 in this case? This is similar to the
case considered above, except that now we must first find the joint distribution
of (Z,X2). It is a simple computation to verify that it is ρ̂(z, x2) = ρ(z−x2, x2)
and that ρ̂(z) =

∫
ρ(z − x2, x2)dx2. Now the computation of E[X2 |Z] is a

particular case of Case 4.

Case 6 Assume to finish that we may measure both Z and X1. In this case
note that for bounded continuous functions h, f, g, a simple change of variables
should convince anyone that

E[h(X2)f(X1 + X2)g(X1)] = E[h(Z −X1)f(Z)g(X1)]
= E[E[h(X2) |Z,X1]f(Z)g(X1)]

from which it is clear (see definition (6.4) that E[h(X2) |Z,X1] = h(Z − X1).
This is clearly what is expected, and the predictive formalism reflects it.

5 Bell inequalities

There are some inequalities, called Bell inequalities, satisfied by any set of three
random variables taking values in [−1, 1]. And it said that their violation is
a manifestation of the fact that the system under study is quantum and not
classical, or that it “obeys a logic” different that the logic of classical probability.
Actually, the following is an exercise of chapter 1 of [B]:

Let X, Y, Z, be three random variables taking values in [−1, 1]. Show that
1− E[XY ] ≥ |E[XZ]− E[Y Z]|.

One possible proof of the inequality runs as follows: Consider

(1 + X)(1− Y )(1 + Z) = 1 + X − Y − Z −XY + XZ − Y Z

(1−X)(1 + Y )(1− Z) = 1−X + Y + Z −XY + XZ − Y Z

adding these two and noticing that the left hand side is always positive, rear-
ranging and taking expected values, we obtain

E[Y Z]− E[XZ] ≤ 1− E[XY ].
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To obtain the other half of the inequality, consider

(1−X)(1 + Y )(Z − 1) = −1 + X − Y + Z + XY −XZ + Y Z

(1 + X)(Y − 1)(1 + Z) = −1−X + Y − Z + XY −XZ + Y Z

adding and noticing that the left hand side is always negative, we obtain after
rearranging and taking expected values, that

1− E[XY ] ≤ E[XZ]− E[Y Z]

which finishes the proof. And for fun consider the particular case: Let ξ, η, ζ
be random variables taking (any) two values each, such that P (ξ = a) = 1/2,
P (η = b) = 1/2 and P (ζ = c) = 1/2, and consider that random variables X =
I{ξ = a}; Y = I{η=b} and Z = I{ζ=c}. A direct application of the inequalities
plus multiplication by 2, lead us to the inequality

2− P (ξ = a | η = b) ≥ |P (η = b | ζ = c)− P (ξ = a | ζ = c)|.

Comment 5.1 Note that in the assumption about X, Y and Z, nothing is
said about whether these variables represent measurements at near or far away
locations, nor about the times the measurements are to be taken, or about pos-
sible physical or other kind of interpretation of the random variables. The only
assumption made is about their possible values, nothing is even assumed about
their joint distribution. If the inequalities are violated, it must be that the under-
lying mathematical structure of the probabilistic model under examination does
not coincide with the classical probabilistic model, not due to some non-explicit
assumption about causality or whatever.

Here is an example of a quantum system that does seem to satisfy the
Bell inequalities: Consider three identical, distinguishable and spinless particles
moving on the real line, under the action of a three particle force given by the
potential V (x1, x2, x3) = 0 or = +∞ depending on whether (x2

1 + x2
2 + x2

3 is
respectively ≤ 1 or ≥ 1. Mathematically speaking, this system is equivalent to
a particle confined to move freely inside a sphere of radius 1. Can there exist
a state Ψ(x1, x2, x3) such that the probability density |Ψ(x1, x2, x3)|2 violates
Bell inequalities? Offhand, it seems that the answer is: “No, there is not.” But
life is full of surprises.

To finish, we direct the reader to the exposé [B] for a nice presentation of
the “geometric” ideas behind the inequalities as well as further references.

6 Appendix: The very basics of probabilistic modeling

6.1 Ensembles a.k.a Sample Spaces

The basic construct in probability theory is that of a sample space. This cor-
responds to what is called (but never explicitly defined) an ensemble in most
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books in statistical thermodynamics. The construct is specified by a triplet
(Ω,F , P) where the set Ω should be thought of as the “experiments” (i.e., se-
quences of measurements), or sometimes it may be convenient to think of it as
“the set of sates of nature”. The set F is the mathematical construct describing
the information about our system (i.e., it contains the objects that describe all
questions we assume valid to ask about our system). Its elements are called
events and formally it is a σ-algebra of subsets of Ω, that is a collection of sets
satisfying:
i) ∅ ∈ Ω
ii)A ∈ F ⇒ Ac ≡ Ω−A ∈ F
iii) If Ak for k = 1, 2, ... is a countable collection of elements of Ω, then⋃

k Ak ⊂ Ω.

Observe that the arithmetical structure of the set operations parallel that
of the logical connectives in ordinary speech. That is why F is to be thought of
as the class of allowed questions about the collection of experiments described
by Ω. And to finish with the list,we have

Definition 6.1 We say that P is a probability measure or law on the sample
space (Ω,F), that is a function P : Ω → [0, 1] satisfying the conditions
1)P(Ω) = 1
2)If Ak for k = 1, 2, ... is a countable collection of disjoint elements of Ω, then
P(

⋃
k Ak) ≡

∑
k P(Ak).

Comment 6.1 A pair (S,S) where S is any set and S is a σ-algebra of subsets
of S is called a measurable space, because an additive function (called measure
or volume) can be consistently defined on it. The difference between probability
and arbitrary measures is that the later do not have to be normalized to 1.

6.2 Observables a.k.a Random Variables

And important notion in both classical and quantum mechanics is the concept of
random variable, it is central to mathematical probability theory, just because
it is the mathematical object embodying the notion of measurement, not the
actual process or act of measurement, but the object describing the result
of the measurement. The technical definition is the following:

Definition 6.2 We assume we have already chosen a sample space (Ω,F) and
we also have a measurable space (S,S). An S-valued random variable is a
function X : Ω → S such that for any A ∈ S we have {X ∈ A} ≡ X−1(A) ∈ F .

Comment 6.2 We can interpret X(ω) as the value of the observable X in the
experiment ω. It is here where the mathematical modeling of the randomness is
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located. Notice that different values of the observable are achieved in different
experiments. Thus, the interpretation of the ω and of and of X(ω) are tailored to
complement each other. Also, if the sets in S describe questions about the results
of measurements, then the measurability condition just transfers questions about
measurements onto questions about experiments taking given values. When S =
R and S = B(R), we just say that X is a random variable. For any topological
space S, the class B(S) denotes the smallest σ-algebra containing the open sets
of S and is called the Borel σ-algebra of S.

Also, now and then we shall make use if the notation IA to denote the indicator
function of the set A, defined by IA(x) = 1 or 0 depending on whether x ∈ A
or not.

The important example for us corresponds to the case in which F is gen-
erated by a partition π = {Λ1, ...,ΛK}. In this case any random variable is
described by

X =
K∑

j=1

xjIΛj

that is, X takes value xj whenever the event Λj takes place.
Three simple but important examples of σ-algebras are worth recording.

(i)First, consider a partition Π = {Ai, ..., An, , ...}, that is, a finite or infinite
disjoint collection of subsets of Ω whose union is Ω. The σ-algebra F = σ(Π)
that the partition generates is the collection of all possible union of sets of Π.
Any F-measurable function (random variable) is of the form X =

∑
n xnIAn

.
(ii) Conversely, any random variable X taking only a countable collection of
values {x1, x2, ....} generates a σ-algebra, obviously denoted by σ(X) generated
by the partition {{X = xn} |n = 1, 2, ...}.
(iii)To finish the list, there is the trivial σ-algebra F0 ≡ {∅,Ω}. The reader
should verify that all F0-measurable random variables are constant.

Actually, usually the construction of sample spaces and of the basic random
variables is carried out simultaneously. A typical example of sample space is
the following: Consider a finite set R = {r1, ..., rk} and form Ω ≡ RN where N
is either finite or ∞. In any case think as follows Ω = {ω : {1, 2, ..., N} → R}
is the collection of sequences of length N (finite or infinite). Each sequence
describes an experiment and to describe the measurements it is convenient to
introduce the following R-valued random variables: Xi : Ω → R defined by
Xi(ω) ≡ ω(i). Mathematically speaking this is just a coordinate map, but it is
the mathematical object that models the result of the i − th measurement in
the experiment Ω. The information about this setup is provided but the results
of all possible experiments. This corresponds to the σ-algebra generated by
the collection (of “cylinders”) {Xi1 ∈ B1, ..., Xim

∈ Bm : 1 ≤ i1 ≤ i2 ≤ ... ≤
im; B1, ..., Bm ⊆ R}
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To construct a probability on (Ω,F) there are many ways to proceed. If
we want the Xi to be statistically independent we start from any assign-
ment Q(B) =

∑
qi∈B qi where

∑
qi∈R qi = 1 and define P({Xi1 ∈ B1, ..., Xim

∈
Bm}) =

∏
Q(Bi). That is we start from a probability Q on R which we may

have to find by doing statistical analysis, and we end up with a probability law
on the class of all possible questions about the experiments.
But more interesting probability laws are conceivable. For example, when
N < ∞, we may define a measure on Ω by putting

P(ω) ≡ eβ
P

E(i,j)Xi(ω),Xj(ω)

Z(β)

where Z(β) is a normalization factor, which should remind us of the partition
function. Anyway, this is as simple as you can get and say something interesting
and familiar. But the list examples in the applied literature, ranging from signal
processing to mathematical finance is enormous.

6.3 A simple ensemble

A standard construction in probability theory, which can obviously identified
with the physicist’s notion of ensemble (which by the way is never made ex-
plicit in any book on statistical physics), is useful for describing sequences of
independent measurements. Denote by S the set in which the measurements
take value. Let us assume that it is either a discrete set or a subset of some Rd.
In the first case we consider S = P(S) to be the σ-algebra on S. In the second
case S = B(S). We set Ω ≡

∏N
j=1 S, and we describe all the questions about

the experiments by F ⊗N
j=1 S. We understand that N is either finite or N = ∞

depending on whether we need to describe finite or infinite sequences of mea-
surements. The results of the measurements are described by the coordinate
maps Xn : Ω → S defined by Xn(ω) = sn if ω = {s1, s2, ...}

Thus, note that in this set up, ω = {s1, s2, ...} clearly denotes an experiment,
that is, a sequence of measurements yielding values s1, s2, ....

A probability assignment which makes the Xn statistically independent is
the following: Let µ : S → [0, 1] be a given probability on (S,S), which we want
to describe the distributions of particular measurements, and we put P ({Xn1 ∈
A1, ..., Xnk

∈ Ak}) ≡ µ(A1)...µ(Ak), for any n1 < ... < nk and any A1, ...Ak in
S. In particular P ({Xn ∈ A}) = µ(A), and thus the Xn are by construction
independent and identically distributed.

For example in order to describe an experiment consisting on the measure-
ment of the life-time of a light bulb, or the life-time of a decaying particle, or the
penetration of a particle in an absorbing medium, we take N = 1, S = [0,∞) ,
S = B(S) and µ(A) = 1

τ

∫
A

e−t/τdt.
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6.4 Basic predictions

In order to do predictions we need to introduce two notions, that of mathemat-
ical expectation and that of conditional expectation. Logically speaking, the
former is a particular case of the later, but it is easier to begin with the simpler
notion. The definition or construction of the mathematical expectation is done
stepwise. We shall define a simple function or simple random variable by
X ≡

∑
xiIAi where {A1, A2, ..., Am} denotes a finite partition of Ω.

Now we define the expected value (or the mathematical expectation) of a
simple random variable by

E[X] =
∑

xiP(Ai)

This is the intuitive thing to do, and so it is to extend this to any variable: one
can prove that any positive random variable X is an increasing limit of simple
functions Xn, then we define E[X] ≡ limn E[Xn], and to finish one notices
that any random variable can be written as X = X+ − X−, and when the
expected of each of these is finite we say that X is integrable and write E[X] =
E[X+]− E[X−]. Actually to express that summarily we write E[|X|] < ∞.

We are finally ready to introduce the most basic probabilistic notion: that
of conditional expectation.

Definition 6.3 Let (Ω,F , P) be some probability space, and G be s sub-σ-algebra
of F . Let Y be an integrable, F-measurable, real valued random variable. The
conditional expectation of Y given G is a G-measurable random variable
denoted by E[Y | G] satisfying the following condition

E[Y H] = E[E[Y | G]H] for any G −measurable, bounded H. (1)

Let us list some of its properties and then show how it is computed starting
from (1).

Theorem 6.1 Let (Ω,F , P) be a probability space and let G be a subσ-algebra
of F . Then the following hold:
(i) E[1 | G] = 1.
(ii) If X1 ≥ X2 are random variables, then E[X1 | G] = E[X2 | G].
(iii) For a, b ∈ R E[aX1 + bX2 | G] = aE[X1 | G] + E[X2 | G].
(iv) (Filtering or tower property) If H ⊂ G is another subσ-algebra, then for
any integrable X; E[E[X | G] |H] = E[X |H].
(v) If Z is any bounded, G-measurable random variable, then E[ZX | G] =
ZE[X | G].
(vi) E[X | F0] = E[X]

Even though we do not state it explicitly, the mapping X → E[X | G] behaves
in all respect as an expected value, except that it is a random variable. When
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G = σ(Y ), where Y is a given random variable, we shall write E[X |Y ] instead
of E[X |σ(Y )]. The result that explains why conditional expectations are (best)
predictors is contained in the following

Theorem 6.2 Let (Ω,F , P) be a probability space. Let X be an integrable ran-
dom variable and let Y be another random variable. Then the function g(Y )
that minimizes E[(X − g(Y ))2] is g(Y ) = E[X |Y ]

Comment 6.3 Implicit in the statement of the theorem is an intuitive result
that we need to complete the proof.

Let us state a simple version of that result:

Theorem 6.3 Let (Ω,F , P) be a probability space, and let Y1, ..., YN be a col-
lection of random variables. If Z is a random variable, measurable with respect
to σ(Y1, ..., YN ), then there exists a Borel measurable function h : RN → R such
that Z = h(Y1, ..., YN ).

Proof of theorem (6.2). It is basically a computation. Consider

E[(X − g(Y ))2] = E[((X − E[X |Y ]) + (E[X |Y ]− g(Y )))2] =

E[(X−E[X |Y ])2]+E[(E[X |Y ]−g(Y ))2]+2E[(X−E[X |Y ])(E[X |Y ]−g(Y ))]

We shall now verify that the last term vanishes. Therefore the assertion is
clear, since we can choose G(Y ) = E[X |Y ]. Observe that from the definition
it follows that by (1) (i.e., the defining property of the conditional expectation)

E[(X−E[X |Y ])(E[X |Y ]−g(Y ))] = E[E[(X−E[X |Y ]) |Y ](E[X |Y ]−g(Y ))]

and now by properties (i) and (v) in theorem (6.1), with X there replaced by 1
and Z by E[X |Y ], it follows that the conditional expectation under the integral
sign vanishes.

To illustrate how the definition is applied, let us now work out two standard
examples:
Example 1 Consider the a σ-algebra σ(π), generated by the partition π =
{A1, ..., An, ..} of Ω. Assume that P(Aj) > 0 ∀j ≥ 1. Then since E[X |σ(π)]
is σ(π)-measurable, it can be written as E[X |σ(π)] =

∑
j cjIAj . Clearly, to

compute the cj it suffices to apply the defining identity (1) to the binary random
variables IAk

. Thus

E[E[X |σ(π)]IAk
] = E[XIAk

] = E[(
∑

j

cjIAj
)IAk

] = ckP(Ak),
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and therefore

E[X |σ(π)] =
∑

j

E[XIAj
]

P(Aj)
IAj . (2)

Example 2 Consider now two random variables X and Y , about which you
know the joint distribution ρ(x, y), i.e., for any bounded function F (X, Y ),
E[F (X, Y )] =

∫
F (x, y)ρ(x, y)dxdy. Assume that X is integrable, which presen-

tly means that E[|X|] =
∫
|x|ρ(x, y)dxdy < ∞. To compute E[H(X) |Y ] for

any bounded H(X), note that for any bounded g(Y ),

E[H(X)g(Y )] =
∫

H(x)g(y)ρ(x, y)dxdy =
∫

g(y)(
∫

h(x)
ρ(x, y)
ρ̂(y)

dx)ρ̂(y)dy

where we set ρ̂(y) =
∫

ρ(x, y)dx. Also, temporarily put E[H(X) |Y ] = h(y),
then

E[E[H(X) |Y ]g(Y )] = E[h(Y )g(Y )] =
∫

h(y)g(y)ρ̂(y)dy.

Since this identity is true for any g(y), then it must be true that

h(Y ) = E[H(X) |Y ] =
∫

h(x)
ρ(x, Y )
ρ̂(Y )

dx).

Comment 6.4 what is important is that we are displaying the conditional ex-
pectation as a random variable. That is, the best predictor of H(X) given that
Y is measured is a random variable, whose value is known once Y is observed,
and not before.

6.5 The notion of independence

The proper definition of independence is at the level of σ-algebras. We have,
within the usual model (Ω,F , P )

Definition 6.4 (a) A collection {Gi | i ∈ I} (where I is any set of indices) of
sub-σ-algebras of F , is said to be independent whenever for any finite subset
J ⊂ I, and foe any collection {Ai | i ∈ J} we have

P (∩{i∈J}Ai) =
∏
{i∈J}

P (Ai).

(b) A family {Xi | i ∈ I} is independent whenever σ(Xi) are independent.

Independence is a family property, and is a tricky property to verify. And it is
sometimes confused with functional independence. Let us examine this source
of confusion in a simple case. Consider Ω = R2 and F = B(R2). Consider the
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two random variables X, Y : Ω → R X(x, y) = x, Y (x, y) = y. These are func-
tionally independent at least in two senses. First they are linearly independent
as vectors in the class of functions defined over Ω, and second they are function-
ally independent, that is Y /∈ σ(X) (nor viceversa), that is, Y cannot be written
as function of X. But they may not be independent as random variables, as the
following two examples show:

Example 3 Consider the uniform distribution on the unit disk on Ω, that is
P (dx, dy) = 1

π whenever (x, y) ∈ {(ξ, η) | (ξ)2 + (η)2 ≤ 1}, and equal to zero
otherwise. We leave it up to reader to find two sets A,B in the disk and verify
that P ({X ∈ A, Y ∈ B}) 6= P ({X ∈ A})P ({Y ∈ B}).

Example 4 Within the same setup of the previous example, Assume that X
and Y have a joint Gaussian distribution with correlation ρ 6= 0. They again,
they are not independent, no matter how functionally independent they are.

Let us now examine another source of confusion. Consider the following
model for the coin tossing experiment. Ω = {0, 1}N = {ω : N → {0, 1}}.
Now experiments are specified by the “observation” of the random variables
Xn : Ω → {0, 1} by Xn(ω) = ω(n). Observe that specifying an experiment ω ∈ Ω
amounts to prescribing the result of the measurement of all Xn. The information
available to the observer is modeled by the σ-algebra generated by the cylinder
sets {∩{i∈J}{Xi = αi}; |αi ∈ {0, 1}; J finite}.One extends P from its values
on cylinders, which to make life easy we take as P ({∩{i∈J}{Xi = αi}) = ( 1

2 )|J|,
where we denote the cardinality if J by |J |. Let Θ : Ω → Ω be the shift operator
defined by Xn◦Θ = Xn+1, that is, the shift of a sequence by one unit to the left,
and let Θn describe the n−th iterate of Θ. It is rather easy to see that the map-
pings Θn are not independent, whereas the Xn are independent by construction.
Consider for example the events Λ1 = {X2 = 0} and Λ2 = {X1 = 1, X2 = 1}.
Consider for example: {Θ ∈ Λ1} ∩ {Θ2 ∈ Λ2} = ∅, but P ({Θ ∈ Λ1}) = 1/2 and
P ({Θ2 ∈ Λ2}) = 1/4.

Notice that the flow Θn is deterministic, that is, given the initial point ω of
the orbit, the values Θn(ω) are completely determined. But to give the initial
point an infinite sequence of independent random variables has to be observed.
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