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Abstract

This note is devoted to the study of geometric properties and the re-
lationships between a projective space and an exponential class, both nat-
urally associated with the positive elements in a commutative Banach al-
gebra. Even though the motivating problem consists of understanding the
geometry of the class of densities with respect to a given measure, the for-
mulation can be carried out in general in a generic commutative Banach
algebra set up.

Resumen

Este art́ıculo esta destinado al estudio las propiedades geométricas y las
relaciones entre el espacio proyectivo y la clase exponencial, ambas asoci-
adas de manera natural a los elementos positivos en un álgebra conmutativa
de Banach. Aunque la motivación del problema consiste en entender la ge-
ometŕıa de la clase de densidades respecto de una medida, la formulación
se puede realizar en general sobre una álgebra conmutativa de Banach.

1 Introduction and preliminaries

In two previous notes [GR1] and [GR2] we began exploring an intrinsic geometry
in the commutative Banach algebra A consisting of all bounded, measurable,
complex valued functions defined on a measure space (S,S,m). There we con-
sidered separately the finite and infinite dimensional cases. Even though the
constructs are the same, in the finite dimensional case it is easy to visualize geo-
metrically what goes on. The original aim was to provide a framework in which
curves like

ρ(t) =
ρ1−t

0 ρt1
Em[ρ1−t

0 ρt1]

were related to geodesics in some geometry. Here ρ0 and ρ1 are densities (positive
functions a such that the integral

∫
adm ≡ Em[a] = 1). Even though the model
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should be kept in mind, from now we assume that A is a commutative, complex
Banach algebra, with a unit, denoted by 1 and a conjugation operation denoted
by ∗.

After briefly describing the contents of this paper, we devote the remainder of
this section to recalling some basics from [GR1] and [GR2]. In section 2 we study
several aspects of the geometry of the projective space P+ obtained by identyfying
the positive elements G+ in the group G of invertible elements in A. In particular
we shall study the action of an affine group naturally associated to the projection
of G+ onto P+. In particular we relate some vector bundles over P+. In section
3 we take up the concluding comments in [GR1] and explore the geometry of
an hyperbolic space which can be regarded as a class of representatives for P
which inherits the geometry from G+. In section 4 we conclude the study of the
geometry on P+. We direct the reader tho the mentioned references for references
to the necessary literature.

To describe the geometric structure, we considered in [GR1] and [GR2] the
group G of invertible (with respect to the product operation) elements in A. The
group acts on the algebra according to (the right action)

Lg(a) = (g∗)−1ag−1 = |g|−2a

where the middle term stays as is in the non-commutative case. As usual, we
shall say that an element a is real or self-adjoint whenever a = a∗ and a positive
when there is a b such that a = bb∗. We shall denote by G+ the class of positive
invertible elements in A. It is clear the action of G on G+ is transitive. To obtain
G+ as a homogeneous reductive space the idea was to fix an a ∈ G+ and define
πa : G −→ G+ by πa(g) = Lg(a). In the commutative case the conjugation
operation on G is trivial, that is, if g ∈ G and Cg(g′) = gg′g−1 = g, but in
general the setup is such that the following diagram is commutative:

G
Cg−→ G

πa ↓ ↓ πLg(a)

G+ Lg−→ G+

One also defines the isotropy group of a ∈ G+ by Ia = {g ∈ G |Lg(a) = a}, and
the standard result here is that G+ = G/Ia. This setup makes G+ a homogeneous
space, and (G,G+, πa) a fiber bundle with fibers isomorphic to Ia. there is a
well established way of defining a connection on G+ and render (G,G+, πa) a
homogeneous reductive structure. let us recall the very basics and direct the
reader to [KN] for the basics and to [CPR] for the specifics in the general non-
commutative case. The basic constructs at this stage are: the tangent space at
1 ∈ G which happens to be A since G is open in A, the tangent space to G+ at
a which happens to be As, the symmetric elements in A. To simplify notations,
we shall denote the tangent map induced by πa by π̃a. The connection 1-form κb
is defined on G+ in such a way that π̃b ◦ κb = id|A!s . Here πb = πLg(a) for some
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g ∈ G which exists due to the transitivity of the action. The differential version
of the commutative diagram helps us verify that the construction can be made
equivariant starting from κa : (TG+)a ' As −→ (TG)1 ' A, which is defined
by κa(X) = 1

2a
−1X. We leave for the reader to verify that π̃a ◦ κa = id|As . This

construction is moved around by means of the group action and an equivariant
setup is obtained.

With respect to this connection a geodesic through a0 with initial speed X
happens to be a(t) = a0e

tX . Also given any two points a0 and a1, the geodesic go-
ing from a0 to a1 in a unit of time is obtained starting with speed X = ln

(
a1
a0

)
.

Comment 1.1 Note that commutativity of A ensures that a1/a0 is well defined
and being a positive element in A, its logarithm is well defined

Definition 1.1 Given a differentiable curve a(t) in G+, the transport curve
g(t) ∈ G in associated to a(t) is defined to be the solution to the transport
equation

ġ(t) = κa(t)(ȧ(t))g(t); g(0) = 1. (1)

It is easy to see that g(t) = (a0/a(t))1/2 is the desired solution to (1) and that

Lemma 1.1 With the notations just introduced, the following holds:

(i)πa0(g(t)) = a(t) and (ii)π̃a(t)

(
g−1(t)ġ(t)

)
= ȧ(t).

Proof Both assertions are easy to verify. To better understand the second, it is
emphasizing that the tangent space to G at g is gA where A is the tangent space
at 1. �

What is important at this stage is to realize that parallel transport along
a curve a(t) ∈ G+ is realized by means of the group action of the associated
transport curve, and we have

Definition 1.2 we say that the vector field X(t) along the differentiable curve
a(t) ∈ G+ is parallel if L̃g(t)(X(0)) = X(t), where Lg(t)(a0) = a(t).

Comment 1.2 Note that if Lg : G+ −→ G+ then linearity implies that L̃g :
(TG+)a −→ (TG+)a is given by L̃g(X) = Lg(X) as in the algebra.

2 Geometry in P+

2.1 P+ as a homogeneous space

Let B be a sub algebra of A and let ΦB : A −→ A be a projection operator
satisfying ΦB(ab) = bΦB(a) for any a ∈ A and b ∈ B. In our standard model B
can be though of as a class of functions measurable with respect to a smaller σ-
algebra and ΦB can be thought of as a conditional expectation, and when B = C,
it can be thought of as an expectation. Let us begin with
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Definition 2.1 (a) We shall say that a ∼B ã whenever ãa−1 ∈ B+, or equiva-
lently, (b) when there exists an element g ∈ GB such that ã = Lg(a). Let (a,X)
and (ã, X̃) be elements in TG+. (c) We shall say that (a,X) ∼B (ã, X̃) whenever
X̃/ã−X/a ∈ Bs

Comment 2.1 The equivalence of (a) and (b) is left for the reader. Here GB,
B+ and Bs denote, respectively, the invertible elements, the positive elements and
the self-adjoint (real) elements in B.

Definition 2.2 Set P+ = G+/ ∼B and denote by Ψ : G+ −→ G+/ ∼B the
canonical projection mapping.

Notice to begin with that the action of G on G+ induces an action on P+ in th
obvious way. We shall denote this action by the same symbol. Let α = [a] ∈ P+,
an set

Lg([α]) = L(Ψ(a)) ≡ Ψ(Lg(a)).

To see that this is independent of the representative a ∈ [α] is standard: Note
that

L(Ψ((̃a))) = Ψ(Lg(ã))Ψ(Lg(Lh(a)) = Ψ(Lh(Lg(a))) = Ψ(Lg(a)).

That is, Lg maps “rays” in G+ onto “rays” in G+. To visualize P+ as a homo-
geneous space we need α1 = Ψ ◦ πa(1) and set

Iα1 = {g ∈ G |Lg(α1) = α1}.

Note that g ∈ Iα1 whenever (g∗)−1ag−1 ∼B a or g∗g ∼B 1 if you prefer. It should
perhaps be more accurate to write Iα1 = S(A,B), the B-similarities of A. An
easy calculation shows that the Lie algebra of Iα1 is given by

Iα1 = S(A,B) = {X ∈ A |X +X∗ ∈ B}.

The next result renders P+ as a homogeneous space, with the obvious group
action.

Proposition 2.1 With the notations employed above, P+ ' G/S(A,B), where
now the quotient denotes the class of cosets of g ∼S(A,B) g

′ ⇐⇒ g = g′h for some
h ∈ S(A,B).

Proof Let [g] ∈ G/S(A,B) be the class of g ∈ G. Define pα1 : G −→ P+

be defined by pα1(g) = Lg(α1). Note that if g ∼S(A,B) g
′, i.e., g′ = gh with

h ∈ S(A,B). Then

pα1(g′) = Lg′(α1) = Lgh(α1) = LgLh(α1) = Lg(α1) = pα1(g).
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That is, the action of the group is constant on the classes of ∼S(A,B), and it
can be naturally transported on to the quotient, that is, the mapping pα1 :
G/S(A,B) −→ P+ can be defined as above. �

To define the inverse to pα1 , recall that given ã ∈ G+, there exists g ∈ G
such that ã = Lg(a). Actually g = e−X/2 with X = ln(ã/a). So, let α̃ ∈ P+ and
set π−1

α1
(α̃) = g. Again, it is easy to see that this mapping is well defined, for if

Ψ(c) = [α] and π−1
α1

(α̃) = g1, then g1 = gh
Now that we have obtained P+ as a homogeneous space. we can define a

connection on it and verify that it admits a homogeneous reductive structure.

Proposition 2.2 There exists a subspace K of A which is an invariant com-
plement for Iα1 which verifies: (i) K + Iα1A, (ii)K = Ker(ΦB) ∩ As and
(iii)hKh−1 = K for any h ∈ Iα1 .

Proof We shall exhibit Iα1 and K respectively as the kernel and the range of
an idempotent mapping on A. Note that x + x∗ ∈ Bs is equivalent to (Id −
ΦB)(<(x)) = 0, where <(x) = (x∗x)/2 is a real idempotent on BR regarded as sub
algebra of K. Note as well that Id− ΦB is also an idempotent and that both of
these idempotents commute. Therefore (Id − ΦB) ◦ < is an idempotent and its
range is a complement for Iα1 , that is K ≡ R((Id− ΦB) ◦ <) satisfies (i).

To verify that K = Ker(ΦB) ∩ As is simple. Let x ∈ K, then x = x∗ and
ΦB ◦ (Id− ΦB) ◦ < = 0 trivially. The converse is equally simple.

To verify (iii) is simple in the commutative case and it is left for the reader.
�

To define a linear connection on P+ we proceed as follows. As above let
α1 = Ψ ◦ πα(1), therefore the tangent map (drα1)1 : A −→ (TP+)α1 is onto with
kernel Iα1 . Therefore, the restriction

δα1 = (drα1)|K : K −→ (TP+)α1

is an isomorphism. Define now the 1-form of the connection by

Definition 2.3 Define

κα1 : (TP+)α1 −→ K by κα1 = (δα1)−1. (2)

Lemma 2.1 At any other point α = Lα1 ∈ P+, set δα = (drα|K)1. Then
κα = Adg ◦ κα1 ◦ Lg−1 is an inverse for δα

To compute κα explicitly consider a differentiable curve g(t) ∈ G such that
g(0) = 1 and ġ(0) = X. then

d

dt
rα1(g(t)) =

d

dt

(
Ψ(g(t)∗)−1ag(t)−1

)
|t=0 = Ψ̃ (a,−(X +X∗)a) .
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The restriction of this mapping to K provides us with δα1 . As element of TP+,
Ψ̃(a,−(X + X∗)a) = {(b, w) |w/b + (X + X∗) ∈ Bs}, therefore the obvious
candidate for κα1 is

κα1(b, w) = −1
2
(
b−1

(
w − ΦB(b−1w)

))
(3)

It is an exercise to verify that κα1(b, w) ∈ K = Ker(ΦB) ∩ As, that it has the
desired properties and that the defining map is independent of the representative
chosen.

Definition 2.4 Let a(t) be a differentiable curve in G+ and α(t) = Ψ(a(t)). Let
X(t) de a differentiable vector field along a(t) and let us use the same symbol to
define its equivalence class in TP+. The covariant derivative of X(t) is defined
to be

DX

dt
= δα(t)

(
d

dt
κα(t)(X(t))

)
(4)

2.2 An affine group determined by B

As at the beginning of this section, let B be a sub-algebra of A. We can define
an action of the group G+

B on the real algebra Bs as follows

G+
B × B

s −→ Bs (b, b′)→ bb′. (5)

Similarly, we can define an action of Bs on itself by means of

Bs × Bs −→ Bs (b, b′)→ b+ b′. (6)

Definition 2.5 Let us denote by AfBs de semi direct product of the multiplicative
group G+

B and the additive group Bs. The group operation is (b̂, b̂′), (b, b′) =
(b̂b, b̂b′ + b̂′).

Comment Notice that Bs can be thought of as the tangent space to G+
B at the

identity.
That that is a well defined group operation is standard exercise, and it is

simple to verify the following

Lemma 2.2 With the notations introduced above and in definition 2.1 we have
(i)The mapping AfBs × Bs → Bs defined by (b, b′)(b′′) = bb′′ + b′ is a well

defined action of AfBs on Bs.
(ii) The mapping AfBs×TG+ → TG+, defined by (b, b′)(a,X) = (ba, bX+b′a)

is a group action.
(iii)The affine group action is compatible with the equivalence relation ∼B .
(iv)AfBs acts on TP+ by means of (b, b′)[a,X] = [(b, b′)(a,X)], where [a,X]

denotes the equivalence class of (a,X) ∈ TG+ under ∼B .
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Proof We shall just sketch the proof of the third assertion. Let (a,X) ∼B (ã, X̃).
It is just a computation to verify definition 2.1, namely that

(b, b′)(a,X) ∼B (b, b′)(ã, X̃),

which we leave for the reader to complete. The fourth assertion is clear from
this. �

2.3 Tangent bundles over P+

To better understand the apparition of AfBs and what comes below, let us go
back to definition 2.1, and notice that the equivalence class of (1, 0) with respect
to ∼B is [1, 0] = {(b, b′) | b ∈ G+

B , b
′ ∈ Bs} = AfBs . Thus if we write the tangent

space at 1 ∈ G+ as As = Bs⊕V , then under (the lifting of) Ψ, Bs projects down
to 0. Actually, we have the simple

Lemma 2.3 With the notations introduced above

[a,X] = {(b, b′)(a,X) | (b, b′) ∈ AfBs}.

Another way in which Bs comes up as the part of the tangent bundle which
is tangent to the rays is the following. Consider a smooth curve b(t)in G+

B such
that b(0) = 1 and derivative ḃ(0) = X ∈ Bs. Then for a ∈ G+, b(t)a lies along the
ray through a, and its tangent is aX. Therefore, we may call the vector bundle
introduced below the radial bundle. We have the easy

Lemma 2.4 Consider the vector bundle

R = {(a,X) ∈ TG+ | a−1X ∈ Bs}

which is contained in TG+. Then, R is stable under the action of G+
B .

Recall that the action of G+
B on G+ produces P+ as quotient space. Let us

now examine the equivalence classes of action of G+
B on TG+.

Definition 2.6 We shall say that (a,X) ∼G+
B

(a′, X ′) whenever there exists b ∈
B+ such that a′ = ba and X ′ = bX.

Comments The classes on the action of G+
B on TG+ are bigger that those of

the action on R

Lemma 2.5 The following sequence is exact:

0→ R i→ TG+ Ψ∗→ TP+ → 0,

where i denotes the inclusion mapping.



22 H. Gzyl & L.Recht

Proof From the comments above, it is clear that if (a,X) ∈ R then [a,X] = [a, 0],
of R ⊂ ker Ψ∗. The rest is easy. �

For the next proposition we need the following

Lemma 2.6 With the notations from above, Ψ∗ preserves G+
B .

Proof If (a,X) ∼G+
B

(ã, X̃) or, equivalently¡ if (ã, X̃) = b0(a,X) for some b0 ∈
G+
B , then [ã, X̃] = b0[a, x]. To see why this is so, notice that according to 2.3

[ã, X̃] = {(b, b′)(ã, X̃) | (bã, bX̃ + ãb′) for (b,b′) ∈ AfBs}
= {b0(ba, bX + ab′) | (b, b′) ∈ AfBs} = b0[a,X]

from which the conclusion drops out. �

Proposition 2.3 There exists a mapping Ψ̂∗ such that the following diagram is
commutative, and furthermore the lower row is exact.

0 → R i→ TG+ Ψ∗→ TP+ → 0
↓ ↓ ↓

0 → R/ ∼G+
B

i→ TG+/ ∼G+
B

Ψ̂∗→ TP+/ ∼G+
B
→ 0,

where the vertical mappings in all cases are the implied quotient mappings.

Proof According to the previous lemma, the last arrow is well defined. The
existence of Ψ̂∗ is a standard argument when dealing with quotient structures.
See [D] or [P]. �

3 The class Eo = exp K

We shall now explore the properties of the class Eo = expK = {expz : |z ∈ K}.
The original ideas in the non-commutative case can be found in [PR]. This class
happens to be isometric with P+ and its geometry is easier to deal with. Let us
begin with

Proposition 3.1 With the notations introduced above, any a ∈ G+ can be
uniquely factored as a = bez, with z ∈ K and b ∈ B+. In other words, the
mapping G+ = G+

B × K, sending a onto (b, z) is a homeomorphism. Certainly
G+
B denotes the positive invertible elements in B.

Proof Commutativity readily implies that a = eln a = eΦB(ln a)eln a−ΦB(ln a) for
a ∈ G+. �

Comment 3.1 One way of thinking about the starting point of the proof is that
a is the end point of the geodesic γ(t) = etX that joins a ∈ G+ to 1 ∈ G+, with
initial speed X = ln a. The rest is clear for the decomposition is multiplicative.
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The geometric properties of Eo are inherited from G+. Let us begin with

Proposition 3.2 (a) The connection on G+ reduces to Eo: If a ∈ Eo and X ∈
(TEo)a is tangent to a differentiable curve c(t) in G+ that passes through a, then
∇XY ∈ (TEo)a.

(b) A geodesic of G+, which starts tangent to Eo, remains in Eo, that is, if γ(t)
is a geodesic in G+ such that γ(0) = a ∈ Eo and γ̇(0) ∈ (TEo)a, then γ(t) ∈ Eo
for all t.

(c) Eo is geodesically convex. That is, if c1 and c2 are n Eo, the geodesic in
G+ joining c− 1 to c2 is in Eo.

Proof Let us begin with a useful remark: If Z ∈ (TEo)a, then ΦB(a−1Z) = 0.
To see why this is clear, let c(t) be a differentiable curve in Eo such that c(0) = a
and ċ(0) = Z, therefore a−1c(t) = eX(t) ≡ δ(t) for some differentiable curve
X(t) ∈ K. Thus 0 = d

dtΦB(δ(t))t=0 = ΦB(a−1Z).
To proof (a) recall that if X is tangent to a(t) and Y (t) is tangent to Eo in a

neighborhood of a, then ∇XY = d
dtY − a

−1XY . Multiply by a−1 both sides and
keep in mind that X = ȧ, then

ΦB(a−1) = ΦB

(
a
dY

dt
− a−1ȧa−1Y

)
=

d

dt
ΦB (a−1Y ) = 0.

(b)Let now γ(t) = a0e
tX = eξo+tX be a geodesic in G+ such that γ(0) = eξo ∈ Eo

and ΦB(γ(0)−1γ̇) = ΦB(X) = 0. Therefore γ(t) ∈ Eo.
(c)Let c1 = eZ1 and c2 = eZ2 be such that Z1 Z2 ∈ K. We saw in sec-

tion 1 that the geodesic in G+ through these points is c(t) = c1e
t ln(c2/c1) =

exp (Z1 + t(Z2 − Z1)) ∈ Eo. � We also have

Proposition 3.3 The restriction Ψ|Eo
: Eo −→ P+ is a diffeomorphism.

Proof Note first that Ψ|Eo is bijective. If eX ∼ eY , with X,Y ∈ K, then there
exists b ∈ B+ such that eX = beY . By the uniqueness of the factorization, b = 1
and X = Y . Also, if Ψ(a) ∈ P+ for some a ∈ G+, then a = beX and therefore
a ∼ eX and we have produced an X ∈ K such that Ψ(eX) = Ψ(a).

Clearly, the mapping is continuous and has inverse P+ −→ Eo given by Ψ(a)→
eX . To verify the continuity of the inverse mapping, assume that an and a ∈ G+,
are such that Ψ(an) → Ψ(a). This means that there exists a sequence bn ∈ B+

such that bnan → a. Now let an = dne
Xn and a = deX . Therefore bndneXn →

deX which implies that Xn → X. �
and we finish with

Proposition 3.4 The mapping Ψ : G+ −→ P+ is a fiber bundle.

Proof Suffices to exhibit a global section, namely

P+ −→ Eo ⊂ G+; given by Ψ(a)→ eX

where a = beX with b ∈ B+ and X ∈ K. �
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4 The geometry on P+ concluded

In the previous section we saw how the geometry of G+ restricts well to Eo. We
shall now see how to obtain the geometry of P+ from that of Eo. The diffeomor-
phism Ψ|Eo

: Eo −→ P+ yield a linear isomorphism

Ψ̃|Eo
: (TEo)a −→ (TP+)α

where of course, α = Ψ(a). Also recall that

(TP+)α =
{

(a,X) ∈ G+ ×As | (a,X) ∼ (ã, X̃)

⇐⇒ ãa−1 ∈ B+ and X̃/ã−X/a ∈ Bs
}
.

Let us denote by ‖a‖ the norm in A, and begin with

Definition 4.1 For (a,X) ∈ (TP+)α define the (projective) norm

‖(a,X)‖ΦB = inf
{
‖X̃‖a,ΦB | (ã, X̃) ∼ (a,X)

}
(7)

where
‖X̃‖a,ΦB ≡ ‖a−1/2Xa−1/2‖ΦB ≡ ‖ΦB(a−2X2)‖1/2

Proposition 4.1 With the same notation as above, the mapping

Ψ|Eo
: Eo −→ P+

is isometric.

Proof Let (a,X) be a representative of the class of a tangent vector at (TP+)α,
where α = Ψ(a). Since Ψ|Eo

: Eo −→ P+ is a diffeomorphism, there exists a
pair (c, V ) with c ∈ Eo and V ∈ (TEo)c, such that (a,X) ∼ (c, V ). Recall that
(TEo)c = {Y ∈ A |Y = Y ∗, and ΦB(c−1Y) = 0}. Then V/c−X/a ∈ Bs or

V/c−X/a = ΦB(V/c−X/a) = −ΦB(X/a)

or V/c = X/a− ΦB(X/a) and therefore

ΦB(c−2V 2) = ΦB(a−2X2)− 2ΦB
(
a−1XΦB(a−1X)

)
+
(
ΦB(a−1X)

)2
= ΦB(a2X2)− (ΦB(a1X))2 ≤ ΦB(a−2X2).

That is ‖V ‖c,ΦB ≤ ‖ΦB(a2X2)‖1/2 holds for any pair (a,X) ∼ (c, V ), or in other
words ‖V ‖c,ΦB ≤ ‖(̃V )‖Ψ(c),ΦB .
The converse inequality is proved similarly. �
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Let us now verify that the connection on P+ transported from Eo by means of
Ψ|Eo coincides with the connection defined in section 2 by means of the reductive
structure. Let us begin by explicitely computing the idempotent κα ◦ δα for
α = Ψ(a) ∈ P+. For X ∈ A

κα ◦ δα(X) = κα(a, (−(X +X∗)a) =
1
2

(Id− ΦB)
(
a−1(X +X∗)a

)
=

1
2

(X +X∗ − ΦB(X +X∗)) .

Proposition 4.2 The diffeomorphism Ψ|Eo
preserves linear connections.

Proof Let X(t) be a tangent field to P+ along a differentiable curve α(t) Let us
denote by Dr/dt the covariant derivative determined by the reductive connection
and denote by DΨ/dt the connection induced by Ψ|Eo

In order to compare them,
we shall use κα to translate both to A (regarded as tangent space to G at 1).
Let V (t) be a vector field in Eo along the curve (Ψ|Eo)−1(α(t)) ≡ c(t), that is

X(t) = (Ψ̃)c(t)(V (t)).

Being tangent to Eo, V (t) verifies ΦB(c(t)−1V (t)) = 0. Therefore

κα

(
DrX

dt

)
= κα ◦ δα

(
d

dt
κα(X(t))

)
,

and now note that κα(X(t)) = κα(Ψ̃)c(t)(V (t)) = c(t)−1

2 V (t). Then

d

dt
κα(X(t)) =

1
2
c(t)−2ċ(t)V (t)− 1

2
c(t)−1V̇ (t).

Using the computation carried out above for κα ◦ δα with a(t) = c(t) we obtain

κα

(
DrX

dt

)
=

1
2

(
c(t)−2ċ(t)V (t)− c−1V̇ (t)

)
because ΦB(c(t)−2ċ(t)V (t)− c−1V̇ (t)) = d

dtΦB(c−1V ) = 0. On the other hand

DΨX

dt
= Ψ̃c(t)

(
DEoX

dt

)
= Ψ̃c(t)

(
V̇ (t)− c−1ċ(t)V (t)

)
.

Now apply κα to both sides to obtain

κα

(
DΨX

dt

)
= −1

2
c−1

(
V̇ (t)− c−1ċ(t)V (t)

)
− ΦB

(
c−1

(
V̇ (t)− c−1ċ(t)V (t)

))
=

1
2

(
c(t)−2ċ(t)V (t)− c−1V̇ (t)

)
for exactly the same reasons as in the previous computation. �

The following corollary, the proof of which is for the reader, asserts that P+

inherits geometric properties from G+ via Eo.



26 H. Gzyl & L.Recht

Corollary 4.1 The Finsler metric defined in section 1, P+ inherits the following
properties from Eo:
(i) Any two points in P+ are joined by a unique geodesic, which is the shortest
possible curve in P+ with such end points.
(ii) If α1(t) and α2(t) are two geodesics in P+, and d(a, b) denotes the distance in
the Finsler metric, then the mapping t −→ d(α1(t), α2(t)) is a convex function.
(iii) If α = Ψ(a) and β = Ψ(b), with a, b ∈ Eo, then the unique geodesic joining
them is given by

γα,β = Ψ
(
a1−tbt

)
.
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