
Gluing two affine spaces

Antonio Pasini

Summary. A construction is described in [2] by which, given two or more geometries
of the same rank n, each equipped with a suitable parallelism giving rise to the same
geometry at infinity, we can glue them together along their geometries at infinity,

thus obtaininig a new geometry of rank n+ k− 1, k being the number of geometries
we glue. In this paper we will examine a special case of that construction, namely
the gluing of two affine spaces.

1 Introduction

In this section I recall some definitions and some basic results from [2], in order to
make this paper as self-contained as possible. Gluings of two affine spaces will be

studied in the other sections of this paper.

1.1 Some notation and terminology

I am going to use a number of basic notions of diagram geometry. I refer to [16]
for them. The only difference between the notation used in this paper and that
of [16] is the meaning of the symbol Aut(Γ). In [16] that symbol denotes the full
automorphism group of Γ, whereas in this paper (as in [2]) Aut(Γ) means the group

of type-preserving automorphisms of Γ (denoted by Auts(Γ) in [16]).
As in [16], the symbols c and Af , when used as labels for diagrams, mean circular

spaces (i.e., complete graphs) and affine planes, respectively. The labels c∗ and Af∗

have the meanings dual of the above. We introduce the symbols

• •
LAf

and • •
L∗Af
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to denote point-line systems of affine geometries and their duals, respectively.

In order to avoid any confusion between affine geometries and their point-line
systems we state the following convention: by the name affine geometry we mean
a ‘full’ affine geometry, consisting of points, lines, planes,..., hyperplanes. We keep

the name affine space for the system of points and lines of an affine geometry.

1.2 Parallelism

In this section Γ is a geometry of rank n > 1, with set of types I and type function t.
We denote the set of elements of Γ by X and, given a type i ∈ I , we set Xi = t−1(i).

That is, Xi is the set of elements of Γ of type i. We denote the incidence relation of
Γ by ∗. We distinguish an element 0 ∈ I and we call points the elements of type 0.

1.2.1 Definition

A parallelism (with respect to 0) is an equivalence relation ‖ on X\X0 with the
following properties (P1), (P2) and (P3).

(P1) Every equivalence class of ‖ is contained in some fiber of t.

(P2) Given any two points a and b and an element x of the residue Γa of a, there is
just one element y ∈ Γb such that y ‖ x.

(P3) Given any two points a and b and elements x, x′ ∈ Γa and y, y′ ∈ Γb with x ‖ y
and x′ ‖ y′, we have x ∗ x′ if and only if y ∗ y′.

When x ‖ y we say that x and y are parallel. Thus, we can rephrase (P1) as follows:

parallel elements have the same type. By (P2), distinct elements incident with some
common point are never parallel. By (P2) and (P3), given any two points a and b,
‖ induces an isomorphism between Γa and Γb.

Many examples of geometries with parallelism are described in [2]. I mention
only three of them here: affine geometries and affine spaces, with their natural
parallelism; nets (in particular, affine planes and grids); connected graphs admitting

1–factorizations (in particular, complete graphs with an even number of vertices [12]
and complete bipartite graphs with classes of the same size [14]).

1.2.2 The geometry at infinity

Given a geometry Γ over the set of types I , let 0 ∈ I and let ‖ be a parallelism of Γ
with respect to 0. Given an element x ∈ X\X0, we denote by ∞(x) the equivalence
class of ‖ containing x and we call it the element at infinity of x, also the direction

of x.

By (P3), the incidence relation ∗ of Γ naturally induces an incidence relation
among the directions of the elements of X\X0. Hence them form a geometry Γ∞,

which we call the geometry at infinity of (Γ, ‖) (the line at infinity, when Γ has rank
2). We take I\{0} as the set of types of Γ∞, directions of elements of type i being
given the type i. We have Γ∞ ∼= Γa for every point a, by (P3).
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1.2.3 Isomorphisms and automorphisms

Let Γ and Γ′ be geometries over the same set of types I and let ‖ and ‖′ be par-
allelisms of Γ and Γ′ respectively, with respect to the same type 0 ∈ I . Each
type-preserving isomorphism α : Γ −→ Γ′ maps ‖ onto a parallelism ‖α of Γ′. If
‖α=‖′, then we say that α is an isomorphism from (Γ, ‖) to (Γ′, ‖′). Clearly, if

(Γ, ‖) ∼= (Γ′, ‖′), then Γ∞ ∼= Γ′∞.
An automorphism of (Γ, ‖) is a type-preserving automorphism of Γ preserving ‖.

We denote the automorphism group of (Γ, ‖) by Aut(Γ, ‖).
The group A = Aut(Γ, ‖) induces on Γ∞ a subgroup A∞ of Aut(Γ∞). The kernel

of the action of A on Γ∞ will be denoted by K∞. By (P2), K∞ acts semiregularly
on X0. Therefore, given a point a, the stabilizer Aa of a in A acts faithfully on Γ∞.

If K∞ is transitive on X0, then we say that it is point-transitive. The following

statements are proved in [2] (§2.5):

Proposition 1 If K∞ is point-transitive, then its orbits on X\X0 are just the

classes of ‖.

Proposition 2 Let K∞ be point-transitive on Γ. Then A is the normalizer of K∞

in Aut(Γ).

Proposition 3 If K∞ is point-transitive, then A = K∞Aa, for every point a.

The following is an easy consequence of Proposition 3

Proposition 4 Let K∞ be point-transitive. Then A is flag-transitive on Γ if and
only if A∞ is flag-transitive on Γ∞.

1.3 Gluing

Gluings can be defined for any finite family of geometries with parallelism having
‘the same’ geometry at infinity (see [2]). However, I shall consider only gluings of

two geometries in this paper.

1.3.1 The construction

Let I be a set of types of size at least 2 and let 0 ∈ I . Let Γ1 and Γ2 be geometries over

I , endowed with parallelisms ‖1 and ‖2 with respect to 0. Assume that Γ∞1
∼= Γ∞2 .

Let α be a (possibly non type-preserving) isomorphism from Γ∞2 to Γ∞1 and let τ be
the permutation induced by α on I\{0}. We define the gluing Γ = (Γ1, ‖1)◦α (Γ2, ‖2)
of (Γ1, ‖1) with (Γ2, ‖2) via α as follows.

We take (I\{0}) ∪ {01, 02} as the set of types of Γ. For j = 1, 2, the elements
of Γ of type 0j are the points of Γj. As elements of type i ∈ I\{0} we take the
pairs (x1, x2) with xj an element of Γj (for j = 1, 2), x1 and x2 of type i and τ−1(i)
respectively and α(∞(x2)) = ∞(x1). We decide that all elements of type 01 are

incident with all elements of type 02. For j = 1, 2, we decide that an element
(x1, x2) and an element x of type 0j are incident precisely when x∗xj in Γj . Finally,
we put (x1, x2) ∗ (y1, y2) if and only if xj ∗ yj in Γj, for j = 1, 2.
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When we want to put emphasis on the fact that α induces τ on I\{0}, we call Γ
a τ -gluing. We say that the gluing Γ is plain when τ is the identity on I\{0} (that

is, α is type-preserving). Otherwise, we say that Γ is a twisted gluing.

Let D1 and D2 be diagrams for Γ1 and Γ2 respectively. A diagram for the glued
geometry Γ1 ◦α Γ2 is obtained by pasting D2 with D1 on I\{0} via the permutation
τ induced by α on I\{0}.

For instance, if Γ1 = Γ2 = AG(n,K) and α is a (type-preserving) automorphism
of PG(n − 1, K) = Γ∞1 = Γ∞2 , then the glued geometry Γ1 ◦α Γ2 belongs to the
following diagram of rank n+ 1:

((AfAf ).An−1)
HHH

��
�

Af

Af

•

•

01

02

• • ..... • •� �
I\{0}

In particular, with n = 2 we get the following rank 3 diagram

(Af.Af∗) •01 • •02
Af Af∗

When K is commutative and n > 2, we can also consider non type-preserving

automorphisms (namely, correlations) of PG(n− 1, K). Let α be one of them. The
(twisted) gluing Γ1 ◦α Γ2 belongs to the following diagram:

(Af.An−1.Af
∗) •

01

• • ..... • • •
02

Af Af∗

1.3.2 Automorphisms of glued geometries

Given Γ1, Γ2, ‖1, ‖2 and α be as in §1.3.1, we set Ai = Aut(Γi, ‖i) for i = 1, 2. As in
§1.2.2, K∞i is the kernel of the action of Ai on Γ∞i and A∞i

∼= Ai/K
∞
i is the subgroup

induced by Ai in Aut(Γ∞i ). We denote by α(A∞2 ) the image of A∞2 in Aut(Γ∞1 ) via

α. The following is proved in [2] (§3.4.2):

Proposition 5 We have Aut(Γ1 ◦α Γ2) = (K∞1 ×K∞2 )(A∞1 ∩ α(A∞2 )).

By this and Proposition 4 we get the following:

Proposition 6 Let both K∞1 and K∞2 be point-transitive. Then the glued geometry
Γ1 ◦α Γ2 is flag-transitive if and only if A∞1 ∩ α(A∞2 ) is flag-transitive on Γ∞1 .

1.3.3 Isomorphisms of gluings

Let Γ1 and Γ2 be as in §1.3.1. We keep the meaning stated in §1.3.2 for Ai, A
∞
i and

α(A∞2 ), with α an isomorphism from Γ∞2 to Γ∞1 . Furthermore, we assume that the
following (very mild) condition holds in Γ1 and Γ2:

(O) no two distinct elements are incident with the same set of points.
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Let α and β be two isomorphisms from Γ∞1 to Γ∞2 inducing the same permutation
τ on I\{0}. Then αβ−1 ∈ Aut(Γ∞1 ). The following is proved in [2] (Lemma 3.4):

Proposition 7 We have Γ1 ◦α Γ2
∼= Γ1 ◦β Γ2 if and only if αβ−1 ∈ α(A∞2 )A∞1 .

Therefore,

Proposition 8 If A∞1 = Aut(Γ∞1 ), then (up to isomorphisms) there is a unique
τ -gluing of (Γ1, ‖1) with (Γ2, ‖2).

More generally, by modifying a bit an argument of [2] (§3.4.5) the following can be
proved:

Proposition 9 The isomorphism classes of τ -gluings of (Γ1, ‖1) with (Γ2, ‖2) are
in one-to-one correspondence with the double cosets α(A∞2 )gA∞1 , with g ∈ Aut(Γ∞1 ),
where α is any given isomorphism from Γ∞2 to Γ∞1 inducing τ on I\{0}.

1.3.4 Canonical gluings

Assume (Γ2, ‖2) ∼= (Γ1, ‖1). A gluing Γ1 ◦α Γ2 is said to be canonical if α is induced
by an isomorphism from (Γ2, ‖2) to (Γ1, ‖1). Note that only plain gluings can be said
to be canonical, since, according to the definition stated in §1.2.2, isomorphisms of
geometries with parallelism are type-preserving. (However, by modifying a bit the

definitions of §1.2, one could also define canonical τ -gluings for any τ .)
It follows from Proposition 8 that all canonical gluings are pairwise isomorphic.

In short, the canonical gluing is unique.

Let the gluing Γ1 ◦α Γ2 be canonical. Then A∞1 = α(A∞2 ). Therefore

Aut(Γ1 ◦α Γ2) = (K∞1 ×K∞2 )A∞1

by Proposition 5. This is in fact the largest automorphism group for a gluing of

(Γ1, ‖1) with (Γ2, ‖2) (see Proposition 5).
Let Γ1 ◦β Γ2 be another plain gluing such that β(A∞2 ) = A∞1 . Then αβ−1 nor-

malizes A∞1 . Consequently, if A∞1 is its own normalizer in Aut(Γ∞1 ), then Γ1 ◦β Γ2
∼=

Γ1 ◦α Γ2, by Proposition 7. Thus, we have proved the following

Proposition 10 Let A∞1 be its own normalizer in Aut(Γ∞1 ). Then the canonical
gluing is the unique plain gluing Γ1 ◦α Γ2 for which α(A∞2 ) = A∞1 .

1.3.5 A bit of ‘history’ and some applications

The earliest example of a construction that is clearly a gluing is due to Cameron
[3], who glued generalized quadrangles admitting partitions of their set of lines into
spreads, to obtain geometries of arbitary rank with diagrams as follows:

• • • ,
•�����
�•HHH
HHH•

•

,
•�����
�•HHH
HHH•

•HHH
HHH��

���
�•

, etc.
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As Cameron says in [3], an idea by Kantor [11] is the ‘ancestor’ of his construction.
Independently of [3], examples of gluings have been discovered in [7] and [8] in

the context of an investigation of geometries belonging to the diagram Af.An−1.Af
∗

(in particular, Af.Af∗). A description of the minimal quotients of finite geometries
belonging to the diagram Af.An−1.Af

∗ is obtained in [8]. Those minimal quotients
can only be of two types: either ‘almost flat’, or flat. The flat ones are in fact twisted

gluings of two copies of AG(n, q). When n > 2 there is just one twisted gluing of
two copies of AG(n, q) (see Proposition 8). This fact made it possible to accomplish
the classification of all finite Af.An−1.Af

∗ geometries with n > 2 (see [8]).

Gluings have been gaining in importance in other contexts, too. For instance,
by exploiting the classification of 2-transitive groups preserving a 1-factorization
of a complete graph, obtained by Cameron and Korchmaros [4], the following two
theorems can be proved (see [1] for the first of them and [14] for the latter):

Theorem 11 Let Γ be a flag-transitive geometry belonging to the following diagram

(c.c∗) •
points

1
•

lines
s

•
planes

1

c c∗
1 < s <∞

Assume also that Γ is flat (that is, all points are incident with all planes ). Then
one of the following holds:

(i) s = 4 and Aut(Γ) = S6;

(ii) s = 2n− 2 for some n ≥ 2 and Γ is a gluing of two copies of the n-dimensional
affine space over GF (2). Furthermore, either that gluing is the canonical one (in

this case Aut(Γ) = 22n.Ln(2)) or Aut(Γ) = 22nX with X ≤ ΓL1(2n).

Theorem 12 Let Γ be a flag-transitive geometry belonging to the following diagram

(c.C2) •
points

1
•

lines
s

•
planes

1

c
1 < s <∞

Assume furthermore that Γ is flat. Then s = 2n − 2 for some n ≥ 2 and Γ is a

gluing of the n-dimensional affine space over GF (2) with a complete bipartite graph
endowed with a suitable 1-factorization.

2 Gluing two affine planes

Let Γ1 and Γ2 be two affine planes of the same order. We can assume that they

have the same line at infinity Γ∞ = Γ∞1 = Γ∞2 .
Γ∞ is a geometry of rank 1. Hence any permutation of its elements is an auto-

morphism of Γ∞.
Let α be a permutation of Γ∞. The glued geometry Γ1 ◦α Γ2 belongs to the

diagram Af.Af∗ (see §1.3.1).
By Proposition 6, the geometry Γ1 ◦α Γ2 is flag-transitive if and only if both Γ1

and Γ2 are flag-transitive and A∞1 ∩αA∞2 α−1 is transitive on the set Γ∞. (Note that
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A∞2 is a group of permutations of Γ∞ and α(A∞2 ) = αA∞2 α
−1.) In particular, the

canonical gluing of two copies of a flag-transitive affine plane is flag-transitive.

On the other hand, it might be that both Γ1 and Γ2 are flag-transitive but Γ1◦αΓ2

is not. An example of this kind will be given in §2.2.3, with Γ1 = Γ2 = AG(2, 7).

2.1 Gluing two copies of AG(2, K)

Let Γ1 = Γ2 = AG(2, K), with K a division ring. Hence Γ∞1 = Γ∞2 = PG(1, K) and
A∞1 = A∞2 = PΓL2(K). We denote PG(1, K) by Γ∞ and PΓL2(K) by A∞. Given a
permutation α of the set Γ∞, we write AG(2, K)◦αAG(2, K) for Γ1 ◦αΓ2, to remind

ourselves of the assumption Γ1 = Γ2 = AG(2, K).

By Proposition 7, a gluing Γ1 ◦α Γ2 is the canonical one if and only if α ∈ A∞.
Therefore, non-canonical gluings exist when |K| > 4.

It is well known that, if K is commutative, then PΓL2(K) is its own normalizer
in the group of all permutations of the set PG(1, K) = Γ∞ (see [10], Chapter II, §8,
Exercise 14). By this and by Proposition 10, in the finite case we get the following:

Theorem 13 A gluing AG(2, q) ◦α AG(2, q) is the canonical one if and only if
Aut(AG(2, q) ◦α AG(2, q)) ∼= p2h.PΓL2(q) (where ph = q, p prime).

All other gluings of two copies of AG(2, q) have automorphism groups smaller than
p2h.PΓL2(q).

Problem. Can we generalize Theorem 13 to the case where K is an infinite commu-
tative field ? Note that an infinite field might be isomorphic with some of its proper
subfields. Hence, when K is infinite, the group PΓL2(K) might be isomorphic with
some of its proper subgroups.

2.2 Some examples of small order

2.2.1 The cases of q = 2, 3 or 4

Let q ∈ {2, 3, 4}. Then A∞ is the full symmetric group on q + 1 obiects. In these
cases the canonical gluing is the unique gluing of AG(2, q) with itself.

2.2.2 The case of q = 5

Let q = 5. Non-canonical gluing now exist. For instance, let α be the following
permutation of Γ∞ = PG(1, 5):

α = (∞)(0)(1)(2)(3, 4)

It is straightforward to check that the stabilizer of the point ∞ of Γ∞ in the group

X = A∞ ∩ αA∞α−1 is cyclic of order 4. Hence |X| = 4t for some positive integer
t ≤ 6 and X 6= A∞ = PGL2(5).

Therefore the gluing AG(2, 5) ◦α AG(2, 5) is not the canonical one.
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As PGL2(5) ∼= S5, we have |A∞| = 5! and the double coset A∞αA∞ has size
(5!)2/|X|. Clearly,

6! ≥ |A∞|+ |A∞αA∞| = 5! +
(5!)2

4t

This forces t ≥ 6. On the other hand, t ≤ 6, as we remarked above. Hence t = 6.

Therefore X is transitive on Γ∞. Thus, the (non-canonical) gluing AG(2, 5) ◦α
AG(2, 5) is flag-transitive.

As t = 6, we have 6! = |A∞| + |A∞αA∞|. Hence A∞ admits only two double

cosets in S6, namely itself and A∞αA∞. Consequently, by Proposition 9, there are
only two ways of gluing AG(2, 5) with itself, namely the canonical one and the gluing
we have described now. Both of them are flag-transitive.

2.2.3 The case of q = 7

Let q = 7. The following permutation of Γ∞ is considered in [7]:

α = (∞)(0)(1)(2)(3, 6, 5, 4)

It is straightforward to check that A∞ ∩ αA∞α−1 contains the element g ∈ A∞

represented by the matrix (
0 1

1 1

)

which is in fact a Singer cycle on PG(1, 7). Therefore A∞ ∩ αA∞α−1 is transitive

on Γ∞. Hence the gluing AG(2, 7) ◦α AG(2, 7) is flag-transitive.
On the other hand, it is straightforward to check that no non-trivial element of

A∞ ∩αA∞α−1 fixes any point of Γ∞. That is, A∞ ∩αA∞α−1 = 〈g〉 = Z8. Hence
the gluing AG(2, 7) ◦α AG(2, 7) is not the canonical one.

Non flag-transitive gluings of AG(2, 7) with itself also exist. For instance, let β
be the following permutation of Γ∞:

β = (∞)(0)(1)(2)(3)(4, 5, 6)

It is straightforward to check that A∞ ∩ βA∞β−1 does not contain any element
mapping the point∞ of Γ∞ onto the point 0. Thus, the glued geometry AG(2, 7)◦β
AG(2, 7) is not flag-transitive.

3 Gluing two copies of AG(n,K)

From now on we shall denote the canonical gluing of two copies of AG(n,K) by the
symbol AG(n,K) ◦AG(n,K). It belongs to the diagram (AfAf ).An−1 (see §1.3.1) and
it is flag-transitive.

Note that, by Proposition 9 and well known properties of affine and projective
geometries, when n > 2 the canonical gluing AG(n,K) ◦ AG(n,K) is the unique
plain gluing of two copies of AG(n,K).
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Keeping the hypothesis that n > 2, assume furthermore that K is commutative.
Then PG(n− 1, K) admits correlations. Given a correlation α of PG(n− 1, K), we

can construct the twisted gluing AG(n,K) ◦α AG(n,K). It belongs to the diagram
Af.An−1.Af

∗ (see §1.3.1) and it is flag-transitive. Note that, by Proposition 9, and
since all correlations of PG(n− 1, K) differ by elements of PΓL2(n,K), the isomor-
phism type of AG(n,K) ◦α AG(n,K) does not depend on the particular correlation

α we have chosen.

It is proved in [8] that the twisted gluing of two copies of AG(n,K) is the minimal
quotient of the geometry obtained from PG(n + 1, K) by removing a hyperplane
H and the residue of a point p ∈ H (see [8]). In §3.2 I shall give an analogous of

that result for the canonical gluing AG(n,K) ◦ AG(n,K). More precisely, we will
prove that, if K is commutative, then AG(n,K)◦AG(n,K) is a quotient of a certain
subgeometry of the building of type Dn+1 over K.

3.1 Some subgeometries of Dn+1-buildings

3.1.1 Removing two hyperplanes from a Dn+1-building

Let K be a commutative field and let ∆ be the building of type Dn+1 over K, n ≥ 2.
I allow n = 2, with the convention that the symbols D3 and A3 mean the same.
According to this convention, PG(3, K) may be called a building of type D3. I take

+, −, 0, 1,..., n− 2 as types, as follows:

HHH

��
�

•

•

+

−
•
0

•
1

..... •
n− 3

•
n− 2

Let us write ε to denote any of the two types + or −. For every element x of ∆, let
σε(x) be the set of elements of ∆ of type ε incident to x.

For ε = + or −, let ∆ε be the half–spin geometry relative to the type ε (see

[19]). That is, ∆ε is the geometry of rank 2 having the elements of ∆ of type ε as
points and those of type 0 as lines, with the incidence inherited from ∆. As the
Intersection Property holds in ∆, the geometry ∆ε is a partial plane. In particular,
distinct lines of ∆ε are incident with distinct sets of points. Hence, the lines of ∆ε

can be viewed as distinguished sets of elements of type ε.

A proper subset H of the set of points of ∆ε is said to be a geometric hyperplane
of ∆ε (a hyperplane, for short) if every line of ∆ε not contained in H meets H in
precisely one point (see [19]).

Given hyperplanes H+ and H− of ∆+ and ∆− respectively, we can construct a
new geometry ∆ as follows.

The elements of ∆ are the elements x of ∆ such that σε(x) 6⊆ Hε for ε = + or
−. Two elements x, y of ∆ are said to be incident in ∆ if they are incident in ∆

and, furthermore, σε(x) ∩ σε(y) 6⊆ Hε, for ε = +,−.

I call ∆ the geometry obtained from ∆ by removing H+ and H−. It is straight-
forward to prove that ∆ is indeed a geometry (this amounts to prove that it is
residually connected).
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Let b be an element of ∆. Then b 6∈ H−. The residue ∆b of b in ∆ is a
projective geometry isomorphic to PG(n,K). We take σ+(b) as the set of points

of that projective geometry. Then H+ ∩ σ+(b) is a hyperplane of ∆b = PG(n,K).
When we remove H+ from ∆, we are forced to remove H+ ∩ σ+(b) from ∆b. What
remains is isomorphic with AG(n,K). Removing H− gives no effect on ∆b, since
σ−(x) 6⊆ H− for every x ∈ ∆b (indeed b ∈ σ−(x) for every such x, and b 6∈ H+).

Therefore, the residue of b in ∆ is isomorphic to AG(n,K). It is now clear that ∆
belongs to the diagram (AfAf ).An−1:

HHH

��
�

Af

Af

•

•

+

−
•
0

•
1

..... •
n− 3

•
n− 2

3.1.2 A particular choice of H+ and H−

Keeping the notation of the previous paragraph, let a+ and a− be incident elements
of ∆ of type + and − respectively.

If n is even, then we define H+ as the set of elements of ∆ of type + having
distance < n/2 from some element of σ+(a−) in the collinearity graph of ∆+.

If n is odd, then we define H+ as the set of elements of type + having distance
< (n+ 1)/2 from a+ in the collinearity graph of ∆+.

The hyperplane H− of ∆− is defined just as H+, but interchanging the roles of

+ and −. The following is a special case of Theorem 2.4(ii) of [19]:

Lemma 14 The sets H+ and H− are hyperplanes of ∆+ and ∆−, respectively.

It is worthwhile to examine the case of n = 2 closer. Let n = 2. Then ∆ = PG(3, K).

Chosen the elements of type + as points of PG(3, K), a− is a plane and H+ is the
set of its points. The point a+ is one them and H− is the set of the planes incident
with it. Thus, removing H+ and H− from ∆ amounts to remove from PG(3, K) a
plane and the star of one of its points.

3.2 From ∆ to AG(n,K) ◦AG(n,K)

Let H+ and H− be the hyperplanes defined in §3.1.2 and let ∆ be the geometry
obtained from ∆ by removing H+ and H−, as in §3.1.1. Let G be the stabilizer of

a+ and a− in Aut(∆) and let N be the elementwise stabilizer of H+ ∪H− in G. It
is straightforward to check that N defines a quotient of ∆, which is flag-transitive,
since N is normal in Aut(∆) and Aut(∆) is flag-transitive.

Theorem 15 We have ∆/N = AG(n,K) ◦ AG(n,K).

Proof. If n is even (odd) then an orbit of N on the set of elements of ∆ of type ε is
the set of elements of ∆ of type ε incident with some element of type n− 2 incident

with aε but not with aη (with aη but not with aε) for {ε, η} = {+,−}.
Let Γ+ (respectively, Γ−) be the geometry obtained from the residue of a+ (of a−)

in ∆ by removing the elements incident to a− (to a+). Both Γ+ and Γ− are copies
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of AG(n,K). We can take the residue in ∆ of the flag {a+, a−} as the (common)
geometry at infinity of Γ+ and Γ−. Let us denote this residue by Γ∞.

Let σ be the shadow operator in ∆ with respect to the type n − 2. By the
Intersection Property in ∆, for every element x of ∆ there is just one element xε of
∆ incident with aε and such that σ(x) ∩ σ(aε) = σ(xε) ∩ σ(aε), for ε = ±. Since x
belongs to ∆, it has maximal distance in ∆ from both a+ and a−. Hence x+ and

x− have the same type in ∆. Furthermore,

σ(xε) ∩ σ(aη) = σ(a+) ∩ σ(a−) ∩ σ(x), (for{ε, η} = {+,−})

by the definition of xε. Hence x+ and x−, viewed as elements of the affine geometries
Γ+ and Γ− respectively, have the same element at infinity in Γ∞.

Let us consider the natural embedding of ∆ in the lattice of linear subspaces of

a (2n + 2)-dimensional vector space V (2n + 2, K) over K. With a suitable choice
of the basis of V (2n+ 2, K), it is not difficult to compute the matrices of O+

2n+2(K)
that represent elements of N . Thus, by straightforward calculations one can prove

that two elements x, y of ∆ belong to the same orbit of N if and only if xε = yε for
ε = +,−. Therefore ∆/K is a plain gluing of Γ+ with Γ−.

When n > 2, the above is enough to prove that ∆/K ∼= AG(n,K) ◦ AG(n,K),
by the uniqueness of the plain gluing of two copies of AG(n,K) with n > 2.

Let n = 2. Thus ∆ = PG(3, K) and ∆ is obtained from PG(3, K) by removing
the plane H+ and the star of the point a+ ∈ H+. Also Γ∞ is the bundle of lines
of H+ through a+. The affine plane Γ+ is the complement of Γ∞ in the star of a+,
whereas by removing the lines of Γ− and the point a+ from H+ we get the dual of

the affine plane Γ−. Two lines of ∆ belong to the same orbit of N if and only if
they are coplanar with a+ and intersect H+ in the same point. The orbits of N on
the set of lines of ∆ can be represented by the pairs (S, p), where S is a plane of
PG(3, K) passing through a+ and distinct from H+ and p ∈ H+ ∩ S, with p 6= a+.

Thus, in order to prove that ∆/N is the canonical gluing of Γ+ with Γ−, we need
to find an isomorphism α from Γ+ to Γ− such that α(S) ∈ S for every line S of Γ+

(I recall that the lines of Γ+ are planes of PG(3, K) on a+, whereas the lines of Γ−

are points of H+).
Since K is commutative, PG(3, K) admits a symplectic polarity π. We can

always assume to have chosen π in such a way that H+ is the polar plane of a+ with
respect to π. Then π induces an isomorphism α from Γ+ to Γ− with the property

that α(S) ∈ S for every line S of Γ+, as we wanted. 2

Remark. When n = 2 and K = GF (q), the isomorphism between ∆/N and
AG(2, q) ◦ AG(2, q) can also be obtained as a consequence of Theorem 13 (see [7]).

4 Gluing two affine spaces

When n > 2, the affine space of points and lines of AG(n,K) is a proper subge-

ometry of AG(n,K). We denote it by AS(n,K), to avoid any confusion between it
and AG(n,K). More precisely, AS(n,K) is the affine space of points and lines of
AG(n,K), equipped with the parallelism ‖ inherited from AG(n,K). (Note that,
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when K 6= GF (2), ‖ can be recovered from the incidence structure of AS(n,K).)
We denote by Γ∞ the set of points of the geometry at infinity PG(n − 1, K) of

AG(n,K). That is, Γ∞ is the line at infinity of AS(n,K).

A gluing of two copies of AS(n,K) belongs to the following diagram

(LAf .L
∗
Af ) • • •

LAf L∗Af

The line at infinity Γ∞ of AS(n,K) is just a set. Thus, for every permutation α of

Γ∞, we can glue AS(n,K) with itself via α.

4.1 Canonical gluings

The symbol AS(n,K) ◦ AS(n,K) will denote the canonical gluing of two copies of

AS(n,K). When n > 2, AS(n,K) ◦ AS(n,K) is a truncation of the (unique) plain
gluing of two copies of AG(n,K). Hence it is a quotient of a truncation of the
geometry ∆ defined in §3.3, by Theorem 15.

It is well known that when K is commutative PΓLn(K) is its own normalizer in
the group of all permutations of the set Γ∞ of points of PG(n− 1, K). By this and
by Proposition 10, in the finite case we get the following:

Theorem 16 A gluing AS(n, q) ◦α AS(n, q) is the canonical one if and only if
Aut(AS(n, q) ◦α AS(n, q)) ∼= pnh.PΓLn(q), where ph = q, p prime.

That is, the gluing AS(n, q) ◦αAS(n, q) is canonical if and only if its automorphism
group is as large as possible. We can say more:

Theorem 17 Let (n, q) 6= (3, 2), (3, 8). Then the gluing AS(n, q) ◦α AS(n, q) is the
canonical one if and only if PΓLn(q) ∩ αPΓLn(q)α−1 is flag-transitive on PG(n −
1, q).

Proof. The “only if” claim is obvious. Let us prove the “if” statement. Let G =
PΓLn(q)∩αPΓLn(q)α−1 be flag transitive on PG(n−1, q). By a theorem of Higman

[9], one of the following occurs:

(1) G ≥ Ln(q);

(2) n = 4, q = 2 and G = A7;

(3) n = 3, q = 2 and G = Frob(21);

(4) n = 3, q = 8 and G = Frob(9 · 73).

In case (1) α normalizes the socle Ln(q) of PΓLn(q). Hence it also normalizes
PΓLn(q). Therefore α ∈ PΓLn(q) because PΓLn(q) is its own normalizer in the

group of all permutations of Γ∞. Hence the gluing AS(n, q)◦αAS(n, q) is canonical.

Let (2) occur. Then there are two subgroups X, Y of L4(2), both isomorphic
with A7 and such that α maps X onto Y , and Y = L4(2) ∩ αL4(2)α−1. However,

L4(2) has just one conjugacy class of subgroups isomorphic with A7. Therefore, by
multiplying α by a suitable element of L4(2) if necessary, we can always assume that
X = Y . That is, α normalizes X.
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The stabilizers inX of the lines of PG(3, 2) form one conjugacy class of subgroups
of X. They have index 35 in X and all subgroups of X with that index belong to

that conjugacy class (see [6]). Therefore α permutes those subgroups of X. Hence
it permutes their orbits on PG(3, 2). On the other hand, if H is the stabilizer in
X of a line L of PG(3, 2), X has just two orbits on the set Γ∞, namely L and its
complement in Γ∞. It is now clear that α permutes the lines of PG(3, 2). Hence

α ∈ L4(2). Thus, case (2) is impossible.
Cases (3) and (4) are the two exceptions mentioned in the statement of the

theorem. 2

4.2 Two exceptional examples

The assumption that (n, q) 6= (3, 2), (3, 8) is essential in Theorem 17. Indeed, let

n = 3 and q = 2, for instance, and let G = Frob(21) ≤ L3(2), flag-transitive on the
projective plane PG(2, 2) (see [9]).

For every point a of PG(2, 2), the stabilizer Ga of a in G fixes a unique line La of
PG(2, 2). Given a line L = {a, b, c} of PG(2, 2), the lines La, Lb, Lc form a triangle.

Let us denote by L′ the set of vertices of that triangle. Let L be the set of lines of
PG(2, 2) and define L′ = {L′ | L ∈ L}.

Then L′ is the set of lines of a model Π of PG(2, 2) and α(PG(2, 2)) = Π for
some permutation α of the set of points of PG(2, 2). Let α be such a permutation.

Then L3(2) ∩ αL3(2)α−1 = Frob(21). Therefore, the gluing AS(3, 2) ◦α AS(3, 2) is
not the canonical one. Nevertheless L3(2)∩αL3(2)α−1 is flag-transitive in PG(2, 2).

A similar argument works when n = 3 and q = 8, with Frob(9 · 73) instead

of Frob(21). Thus, a non canonical gluing AS(3, 8) ◦α AS(3, 8) also exists, with
L3(8) ∩ αL3(8)α−1 = Frob(9.73), flag-transitive on PG(2, 8).

4.3 A problem

Let X = PΓLn(q) and Y = αXα−1 for a permutation α of the (qn − 1)/(q − 1)
points of PG(n − 1, q). Is it true that X ∩ Y is transitive on the set of points of
PG(n − 1, q) only if it contains a Singer cycle ?

Assume that X ∩ Y contains a Singer cycle S and that X 6= Y . Is it true that,
if q is large enough (say, q > 5) then X ∩ Y is contained in the normalizer of S in
X ?

5 Universal covers

In this section we investigate the universal covers of AS(n,K) ◦ AS(n,K) and

AG(n,K) ◦ AG(n,K), with K a commutative field. We shall focus on the cases
of n = 2 and of K = GF (2).

5.1 The case of n = 2

Let ∆ be the geometry obtained from PG(3, K) by removing a plane π and the star
of a point p ∈ π (compare §3.1). It follows from [13] that ∆ is simply connected (see
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also [8]). This together with Theorem 15 imply the following:

Theorem 18 Let K be commutative. Then the geometry ∆ is the universal cover
of AG(2, K) ◦ AG(2, K).

5.2 The case of K = GF (2)

Henceforth we denote by Γm the Coxeter complex of type Dm and by Tr(Γm) the
{+, 0,−}-truncation of Γm, that is the subgeometry of Γm formed by the elements
of type +, 0 and −, where +, 0 and − are as follows:

HHH

��
�

•

•

+

−
•
0

• ..... • •

The following result, proved in [1], is a completion of Theorem 11:

Lemma 19 The geometry AS(n, 2)◦AS(n, 2) is a quotient of Tr(Γm), with m = 2n.

By Theorem 1 of [15] and since Coxeter complexes are simply connected, Tr(Γm) is
simply connected. Thus, Lemma 19 implies the following:

Theorem 20 The universal cover of AS(n, 2) ◦ AS(n, 2) is Tr(Γm), with m = 2n.

5.3 An unexpected consequence of Theorem 20

The universal cover of AG(2, 2) ◦ AG(2, 2) is the geometry ∆ mentioned in §5.1,
with K = GF (2). Actually, that geometry is isomorphic with Tr(Γ4).

When n > 2 things look more intriguing. Let ∆ be as in §3.1, with K = GF (2)

and n > 2, and let Tr(∆) be its {+, 0,−}-truncation. Let m = 2n. By theorems
20 and 15, Tr(Γm) is the universal cover of Tr(∆). Hovewer, Tr(∆) contains less
elements than Tr(Γm). Hence Tr(∆) is a proper quotient of Tr(Γm).

By Theorem 1 of [15], the {−, 0,+}-truncation of the universal cover of ∆ is the

universal cover of Tr(∆). This has the following (surprising) consquence:

Theorem 21 When n > 2 and K = GF (2), the geometry Tr(Γm) (with m = 2n)
is the {+, 0,−}-truncation of the universal cover of ∆.

Let Ξ be the universal cover of ∆. All elements of Γm of type + belong to Ξ, by
Theorem 21. The number of these elements is

2m−1 = 22n−1

whereas, denoted by ν the number of elements of ∆ of type +, we have

ν <
n∏
i=1

(2i + 1) < 2(n+2)(n+1)/2

Hence ν < 2m−1 whenever n > 2. Therefore

Corollary 22 When n > 2 and K = GF (2), the geometry ∆ is not simply con-
nected.



Gluing two affine spaces 39

5.4 Problems

1. Describe the universal cover Ξ of ∆ when n > 2 and K = GF (2). Note that

2m−1

ν
> 22n−(n2+3n+4)/2

and the latter goes to infinity with the same speed as 22n. Thus, Ξ very soon becomes

huge in comparison with ∆.

2. Is ∆ simply connected when K 6= GF (2) and n > 2 ?

3. Given a non-commutative field K, let ∆ be the geometry obtained from PG(3, K)
be removing a plane π and the star of a point p ∈ Π.

Let Θ be the equivalence relation defined on the set of elements of ∆ as follows:

two points (planes) correspond by Θ if they are collinear with p (respectively, if they
meet π in the same line); two lines correspond by Θ if they are coplanar with p and
meet π in the same point.

Then Θ defines a quotient of ∆. It is not difficult to check that ∆/Θ is a gluing of

AG(2, K) with AG(2, Kop), where Kop is the dual of K. Characterize these gluings.

4. Which is the universal cover of AG(n,K)◦AG(n,K) whenK is non-commutative ?

5. What about non-canonical gluings of two copies of AG(2, K) ? Are they simply
connected ? And what about gluings of two copies of a non-desarguesian affine

plane, or gluings of two non-isomorphic affine planes ?

6. What about non-canonical gluings of two copies of AS(n,K) ? Are they simply
connected ?
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