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Abstract

If Γ is a pathwise-connected region in the complex plane, the problem
of Γ-stability consists of establishing necessary and sufficient conditions on a
set S of n-th degree polynomials to have their zeros inside Γ. In the present
work, this problem is settled in the special case when Γ is either the imaginary
axis or the unit circle and S is the set of all convex combinations of real or
complex polynomials which are stable in the Routh-Hurwitz or the Schur-
Cohn sense. Such conditions are required in problems related to the stability
of complex systems of differential equations whose coefficients are subject to
perturbations.

1 Introduction

The problem of eigenvalue distribution of systems of differential equation with re-
spect to a given curve has been studied for quite a long time. The most commonly
used curves are the imaginary axis and the unit circle due to the importance of the
problem of stability of linear systems. Very efficient solutions have been devised to
handle these two special cases, but they are mainly restricted to the case of real
coefficients. Among these solutions, the Routh-Hurwitz test for the imaginary axis
case and the Schur-Cohn test for the unit circle case are the most celebrated. In
this respect the list of references is long indeed, and we confine it to [1], [2] and [4]
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where the above problems have been widely discussed. Recently, the complex coun-
terpart of the Routh array for real systems was developed based on the theory of
positive para-odd functions, see [6] and [7]. In [5], relationships between both types
of stability- Hurwitz and Schur- were established in both the real and the complex
case. Consider the eigenvalue distribution of systems of differential equations with
respect to a general curve. More precisely, given a pathwise-connected region Γ in
the complex plane, and a set S of n-th degree polynomials. We propose the following
problem : under what conditions do all polynomials of S have their zeros inside Γ.
When this condition holds, we say that S is Γ-stable. This problem is much too
difficult to be handled all at once and no necessary and sufficient conditions for
Γ-stability of complex systems or polynomials are known. In the present work, a
version of the above problem is going to be considered, where the set S will be the
set of all convex combinations of real or complex polynomials which are stable in
the Routh-Hurwitz or the Schur-Cohn sense, and the question we answer here is :
What are the necessary and sufficient conditions for the set S to be Γ-stable where Γ
is either the imaginary axis or the unit circle. Such criteria are required in a variety
of problems especially those dealing with the stability of complex systems whose
coefficients are subject to perturbations. In section 2, we give our notations and we
recall some basic results related to stability theory. In section 3 we obtain necessary
and sufficient conditions for the stability of a convex combination of two complex
polynomials, each stable in the Routh-Hurwitz sense. The Schur-Cohn counterpart
is dealt with in section 4.

2 Notations and Basic Results

Consider two complex systems of differential equations with characteristic polyno-
mials given respectively by :

f(z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an, a0 6= 0

and
g(z) = b0z

m + b1z
m−1 + · · ·+ bm−1z + bm, b0 6= 0

Without loss of generality, we may assume that both polynomials are monic, i.e.
a0 = b0 = 1. It is obvious that the coefficients of f and g are complex numbers.

Define the resultant matrix R(f, g) as follows :

1 a1 a2 · · · an 0 · · ·
0 1 a1 · · · an−1 an · · ·
· · · · · · · · · · ·
· · · · · · · · · an−1 an
0 · · 0 1 b1 · · · bm−1 bm
· · · · · · · · · · ·
0 1 b1 b2 · · bm 0 · · 0
1 b1 · · · bm 0 0 · · 0


The resultant of R(f, g) denoted |R(f, g)| is the determinant of the (m + n) ×

(m + n) resultant matrix R(f, g). We recall the following two facts on resultants
which may be found in [4].
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Lemma 2.1. The polynomials f(z) and g(z) have a common nonconstant factor
if and only if |R(f, g)| = 0.

Lemma 2.2. If f(z) =
∏n
j=1(z−αj) and g(z) =

∏m
k=1(z−βk) are the factorized

forms of f and g, then the resultant of R(f, g) is given by

|R(f, g)| = (−1)n(n−1)/2
n∏
j=1

m∏
k=1

(αj − βk).

The paraconjugate f∗ of f was defined in [6] by

f∗(z) = f(−z̄)

where z̄ denotes the complex conjugate of z. So

f∗(z) = (−1)nzn + (−1)n−1a1z
n−1 + · · · an−2z

2 − an−1z + an

Following the procedure of [6], define

h(z) =


f − f∗
f + f∗

, n odd

f + f∗

f − f∗ , n even

then h can be written in the form

h(z) =
zn + iIma1z

n−1 + Rea2z
n−2 + iIma3z

n−3 + Rea4z
n−4 + · · ·

Rea1zn−1 + iIma2zn−2 + Rea3zn−3 + iIma4zn−4 + · · · .

1
h

is sometimes referred to as the test fraction corresponding to the function f [7].
If N(z) is the numerator and D(z) the denominator of h, then

f(z) = 1
2
[N(z) +D(z)] (1).

In what follows, we shall refer to N and D as the elements of the decomposition
of f . Lemmas 2.3 and 2.4 below will be needed in the proof of the main theorem.

Lemma 2.3. N(z0) = 0 if and only if N(−z0) = 0 and D(z0) = 0 if and only if
D(−z0) = 0.

The proof follows from the observation that if n is odd, then N = f − f∗ and
D = f + f∗ and if n even, then N = f + f∗ and D = f − f∗.

Lemma 2.4. [3]. The system of differential equations with characteristic poly-
nomial f(z) is stable in the Routh-Hurwitz sense if and only if Rea1 > 0, and the
zeros of N(z) and D(z) are simple, lie on the imaginary axis and interlace.

3 The Hurwitz Case

Let f1(z) and f2(z) be two monic n-th degree polynomials. Form the convex com-
bination of f1 and f2

f(z, λ) = λf1(z) + (1− λ)f2(z) for λ ∈ (0, 1) (2).
It is to be noted that f(z, λ) is also a monic polynomial. We may write

f(z, λ) = N(z, λ) +D(z, λ),
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where N(z, λ) and D(z, λ) are the elements of the decomposition of f(z, λ) as in
(1).

Let Rλ = R[N(z, λ), D(z, λ)] be the resultant matrix of the polynomials N(z, λ)
and D(z, λ) where each is treated as a complex polynomial in z parametrized by
the real variable λ belonging to (0, 1). Rλ is a (2n − 1) × (2n − 1) square matrix.
Since the elements of Rλ are convex combinations of the appropriate coefficients
of f1(z) and f2(z), then by lemma 2.2, the resultant |Rλ| (determinant of Rλ) is a
polynomial of degree at most (2n − 1) in λ with complex coefficients.

The following theorem characterizes the stability in the Routh-Hurwitz sense of
a convex combination of two polynomials.

Theorem 3.1. Suppose f1(z) and f2(z) are both stable in the Routh-Hurwitz
sense, then f(z, λ) as defined in (2) is stable in the Routh-Hurwitz sense if and only
if the resultant |Rλ| 6= 0, for all λ ∈ (0, 1).

Proof. Let fj(z) = Nj(z) +Dj(z) for j = 1, 2 where Nj and Dj are the elements
of the decomposition of fj as in (1). Since f1(z) is stable in the Routh-Hurwitz
sense, then by lemma 2.4, the zeros of N1 and D1 are simple and interlacing on the
imaginary axis. The same is true for the zeros of N2 and D2.

To prove the necessity, suppose |Rλ0| = 0 for some λ0 ∈ (0, 1), then by lemma
2.1, N(z, λ0) and D(z, λ0) must have a common zero, where N(z, λ0) and D(z, λ0)
are the elements of the decomposition of f(z, λ0) in

f(z, λ0) = N(z, λ0) +D(z, λ0).

But this violates the simple alternating property of the zeros of N(z, λ0) and
D(z, λ0) which must hold by lemma 2.4 because f(z, λ) is stable for all λ ∈ (0, 1).

For the sufficiency, suppose |Rλ| 6= 0 for all λ ∈ (0, 1). We note first that the
zeros of N(z, λ) and D(z, λ) vary continuously as λ varies continuously in (0, 1).
We claim that f(z, λ) is stable for all λ ∈ (0, 1). Otherwise the simple interlacing
property of the zeros will be violated for some λ0 ∈ (0, 1), and this could happen in
one of two cases only :

case1 : at least one zero of N(z, λ0) or D(z, λ0) leaves the imaginary axis, or
case2 : N(z, λ0) and D(z, λ0) have a common zero on the imaginary axis.
Now case1 is impossible by applying lemma 2.3 to N(z, λ0) and D(z, λ0) after

realizing that N(z, 0) and D(z, 0) have simple interlacing zeros on the imaginary
axis because f2(z) is Hurwitz stable and f2(z) = N(z, 0) +D(z, 0).

By lemma 2.1, case2 implies that |Rλ0| = 0, and therefore case2 is also impossible.

4 The Schur Case

To deal with this case, we shall decompose the monic polynomial

f(z) = zn + a1z
n−1 + · · ·+ an−1z + an

in a different manner. Define the circular symmetric h(z) and antisymmetric k(z)
of f(z)as follows

h(z) =
1

2
[f(z) + znf(

1

z̄
)]
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and

k(z) =
1

2
[f(z)− znf(

1

z̄
)]

Clearly f(z) = h(z) + k(z) (3)
and we call h(z) and k(z) the elements of the decomposition of f(z). The next
lemma is the Schur counterpart to lemma 2.3.

Lemma 4.1. h(z0) = 0 if and only if h( 1
z0

) = 0, and k(z0) = 0 if and only if

k( 1
z0

) = 0.

The Schur counterpart to lemma 2.4 is given bellow,

Lemma 4.2. f(z) is stable in the Schur-Cohn sense if and only if |an| < 1 and
the zeros of h(z) and k(z) are simple, lie on the unit circle |z| = 1 and interlace.

Suppose now that g1(z) and g2(z) are two monic n-th degree polynomials. Form
their convex combination as follows :

g(z, λ) = λg1(z) + (1− λ)g2(z)

for λ ∈ (0, 1). Again g(z, λ) is a monic polynomial. Denote by h(z, λ) and k(z, λ)
the elements of the decomposition of g(z, λ) as defined in (3),

g(z, λ) = h(z, λ) + k(z, λ).

By looking at h(z, λ) and k(z, λ) as polynomials in z with coefficients which
are 1-st degree polynomials in λ, the resultant matrix Rλ = R[h(z, λ), k(z, λ)] is a
square 2n× 2n matrix, and by lemma 2.2 the resultant |Rλ| is a polynomial in λ of
degree at most 2n. The Schur counterpart to theorem 3.1 may now be given.

Theorem 4.1. Suppose g1 and g2 are both stable in the Schur-Cohn sense, then

g(z, λ) = λg1(z) + (1− λ)g2(z)

is stable in the Schur-Cohn sense for all λ in (0, 1) if and only if |Rλ| 6= 0 for all
λ ∈ (0, 1).

The proof is identical to that of theorem 3.1. One has to employ lemma 4.1
instead of lemma 2.3, and lemma 4.2 should replace lemma 2.4 concerning the sim-
plicity of the zeros and their interlacing property on the unit circle.
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