Centroaffine Surfaces with parallel traceless
Cubic Form

Huili Liu* Changping Wang T

Abstract

In this paper, we classify the centroaffine surfaces with parallel cubic Simon
form and the centroaffine minimal surfaces with complete positive definite flat
metric.

1 Introduction.

Let x : M — R? be a nondegenerate centroaffine surface. Then x induces a cen-
troaffinely invariant metric g and a so-called induced connection V. The difference
of the Levi-Civita connection V of ¢ and the induced connection V is a (1,2)-tensor
C on M with the property that its associated cubic form C, defined by

-~

(1.1) C(u,v,w) = g(C(u,v),w)), u,v,we TM,

is totally symmetric. The so-called Tchebychev form is defined by
~ 1 ~
(1.2) T = itraceg(C).

Using C and T one can define a traceless symmetric cubic form C by

~

(1.3)  C(u,v,w) = C(u,v,w) — %(f(u)g('z},w) +T(v)g(u, w) + T(w)g(u,v)),
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where u,v,w € T'M. This cubic form C was introduced and studied by U. Simon
(cf. [15] and [16]) in relative geometry; it extends the Pick form and, in particular,
plays an important role in centroaffine geometry. In fact, C' is an analogue of the
cubic form in equiaffine geometry: it is totally symmetric and satisfies an apolarity
condition. Furthermore, in relative geometry it is independent of the choice of the
relative normalizations (cf. [16]). In the case of the equiaffine normalization C
coincides with the cubic form in the equiaffine geometry. For further interesting
properties of C' we refer to [16], [10], [11], [9] and [6]. We will call C' cubic Simon
form.

Affine hypersurfaces with parallel cubic Pick forms have been intensively studied
by Dillen, Li, Magid, Nomizu, Pinkall, Vrancken, Wang and other authors (cf. [12],
[13], [1], [2], [3], [17], [4], [18] and [8]). In this paper, we classify all surfaces with
parallel cubic Simon form C. We will prove the following theorem in R?.

Theorem 1: Let x : M — R3 be a nondegenerate centroaffine surface with the
V-parallel cubic Stmon form. Then x is centroaffinely equivalent to an open part of
one of the following surfaces:

(i)  quadrics;

(i) afega =1, apy(a+B+7) £ 0;

(iii)  [exp(evarctan 21)](27 + 23)°23 = 1, (v +26)(a® + 5%) #0;
(iv) 23 =wxi(alogzy + Blogzs), Bla+p)#0;

where a, B and 7y are constants.

Let T be the Tchebychev vector field om M defined by the equation

(1.4) g(T,v) = T(v), veTM.

Then a centroaffine surface z : M — R? is called centroaffine Tchebychev if
(1.5) VT = \id,

where )\ is a function on M; a centroaffine surface z : M — R? is called centroaffine
minimal if

(1.6) trace,(VT) = 0.

It is proved by the second author in [19] that z is minimal if and only if x is a
critical surface of the volume functional of the centroaffine metric g. For a locally
strongly convex surface the centroaffine metric is definite. It is positive (or negative)
definite if the position vector x points outward (or inward) (cf. [19]). For centroaffine
minimal surfaces, we will prove:

Theorem 2: Let x be a centroaffine minimal surface with complete positive definite
flat centroaffine metric g. Then, up to centroaffine transformations in R3, z is an
open part of one of the following surfaces

<1> €T3 = l'?l'g,
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where (o, 3) is constant in RT™ x R or R x RT with af(a+ 3 —1) < 0;

(ii) x3 = [exp(—« arctan i—:)](xf + 22)P,

where o and (3 are constants with 23 > 1,
(iii) x3 = —x1(alog x1 + [log xs),
where a and [ are constants in R with G(a+ ) < 0.

Our main tool is a PDE for the square of the norm of C' which we recently
derived in [6].

This paper is organized as follows: In section 2, we prove Theorem 1; in section
3, we prove Theorem 2.

2 Proof of Theorem 1.

Let = be a nondegenerate centroaffine surface with Ve = 0. Then by Proposition
4.2.1 of [9] we know that x is a Tchebychev surface. From VC = 0 we get ||C||* =
constant. By [6], 5.2.1.1, we have

(2.1) A|ICI? = 2| VC| + 65| C| .

/V\Né =0 and (2.1) yield &||C||? = 0. Thus we get either (i) C' = 0; or (ii) C' # 0 but
|C||> = 0; or (iii) k = 0.

If (i) is true, we know that z is an open part of a quadric (cf. [16], 7.11, pp.
117).

Next we consider case (ii). In this case, the centroaffine metric ¢ has to be
indefinite. So we choose local asymptotic coordinates (u,v) of g with

(2.2) g = e*(du®dv + dv ® du)

for some local function w. We define

(23) Bi—ev, By—evl

5 90 0, = e“du, 6y = e“dv.

Then for the basis {E1, Es}, the local functions g;; := g(E;, E;) are given by
(2-4) g11 = go22 = 0, g12 = go1 = 1.

Let {ézj} be the Levi-Civita connection forms of g with respect to {Fy, E»}, then
(2.5) d6; = %0 A 05, dgi; = ginbrj + Ginbi-

From (2.4) and (2.5) we get

(26) élg = égl = 0, éll = —égg = wudu — wvd’U.
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Since tracegé' =0 and éz‘jk; = @lj gi. are totally symmetric, we have
(2.7) Cl +C3; = Craj + Craj =2C19; = 0, j =1,2.

Therefore B o
HCH2 = 2C"111C99.

Since C %\ONand HéHZ = 0, we may assume that Ci11 = 0 and Chyo # 0. From the
fact that VC = 0 we get

(2.8) dChgg + 3C12902 = 2¢5222,¢9i = 0.
We define B
1/} = €3w0222,
then (2.8) is equivalent to
(29) wu = 6wuw7 wv = 0.
Since

P = e*Chag # 0,
we get from (2.9) that
bwuy = (log [¢/)uw = 0,
which implies that the Gauss curvature x = 0. Thus case (ii) reduces to case (iii).

For the case (iii), the surface x is flat and Tchebychev. Thus we know by the proof
of Theorem 4.2 in [10] that VT = 0. By choosing special asymptotic coordinates
(u,v) of g we have w = 0. Then (2.6) implies that 6;; = 0. From the fact that
VC =0 we get

(210) dénl = 0, déggg = 0, i.e. éijk = constant.

Moreover, VT = 0, thus we obtain that 7; = constant. From (1.3) we know that
Cijr = constant and therefore z is the so-called canonical surface classified in [8].
Thus Theorem 1 follows from [8], Theorem 1.3.

3 Proof of Theorem 2.

Let 2 : M — R? be a centroaffine surface with positive definte centroaffine metric
g. We introduce a local complex coordinate z = u + v with respect to g. Then

1
(3.1) g= §e2w(dz®d2+d2®dz),

for some local function w. We define

(3.2) B WPl g g

[xaxzaxé]

2w [l‘, xza xzz]

dz? = Udz?.
[l‘, xza xé]

(3.3) U=e



Centroaffine Surfaces with parallel traceless Cubic Form 497

It follows from [10] that E and U are globally defined centroaffine invariants. More-
over, {g, E, U} form a complete system of centroaffine invariants which determines
the surface up to centroaffine transformations in R3. The relations between g, E
and U are given by (cf. [10], pp. 82-83)

1
(3.4) 2w,z — |E|* + e *|U|? + 5 =0
(35) EE = Ez;

(3.6) U = e*(E, — 2w.E).

Furthermore, let { Ey, E»} be theorthonormal basis for g defined by

0 0

37 E —e Y— E — v __
(3.7) LT 90 PTG
and

T=TE +1T2E,,
then

—2w 1 -
(3.8) e E;zztracegVT.

Now if ¥ : M — R? be a centroaffine minimal surface with complete and flat
centroaffine metric g,, then we have a universal Riemannian covering 7 : C — M
such that

1
(3.9) g=m"g, = 5(dz®d2+d2®dz)

on C. We consider the centroaffine surface z = yor : C — R? with z(C) = y(M) €
R3. It is clear that z is again a centroaffine minimal surface with centroaffine metric
g given by (3.9), i.e. w = 0. Since x is centroaffine minimal, we have traceg/V\T =0.
By (3.8) we get Fz = 0. Thus £ : C — C is a holomorphic function. From (3.4) we
know that |E|? > 1. Thus it follows from Picard theorem (cf. [5], pp. 213, Theorem
27.13) that E = constant. Therefore, (3.4) and (3.6) imply that U is holomorphic
and |U|? = |E|? — 3 = constant. So U must be constant. Since from (2.13) of [10]
we know that

1 1 ~ ~
(310) E = §(T1 - ’iTg), U == 1(0111 + ’iCQQQ).

Hence we get that 7; and CNij are constants. Thus x is canonical in the sence
of [8]. By the classification theorem 1.3 of [§8] and the positive definiteness of the
centroaffine metric g we obtain the surfaces in Theorem 2.

This complete the proof of the theorem 2.
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