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Abstract

The main purpose of this paper is to provide a survey of different notions of
algebraic geometry, which one may associate to an arbitrary noncommutative
ring R. In the first part, we will mainly deal with the prime spectrum of R,
endowed both with the Zariski topology and the stable topology. In the second
part we focus on quantum groups and, in particular, on schematic algebras
and show how a noncommutative site may be associated to the latter. In the
last part, we concentrate on regular algebras, and present a rather complete
up to date overview of their main properties.

Introduction.

The main purpose of this paper is to present a survey of the subject commonly
known as “noncommutative algebraic geometry”. The first two sections treat the
prime spectrum of a noncommutative ring, endowed with its canonical structure
sheaf. This approach is useful for algebras with enough prime ideals, like algebras
satisfying a polynomial identity (pi-algebras for short). Allowing for a more general
topology (induced by Artin-Rees ideals) provides a geometry for rings with the so-
called second layer condition. However, many interesting algebras fall outside the
scope of these techniques. They arise naturally in the study of quantum groups, an
introduction to which is given in section 3.

The last two sections are devoted to projective noncommutative geometry. The
central object of study here is the quotient category Proj, which, for a commutative
algebra, is equivalent to the category of quasi-coherent sheaves on its projective
variety. There is a large class of graded algebras, the so-called schematic algebras,
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which allow the construction of a generalized categorical topological space such that
the same property holds for their Proj. This is the content of section 4. The
last section studies regular algebras, i.e., graded algebras which satisfy a strong
homological condition. For instance, if an algebra is commutative and regular, then
it is a polynomial algebra. Therefore, regular algebras of global dimension d are
considered as noncommutative (“quantum”) Pd−1’s. Regular algebras of dimension
d not bigger than 3 have been classified using a tight connection between their
defining relations and a subvariety of Pd−1. Recently, one has discovered that this
connection is more loose if d ≥ 4. The account in section 5 is a short survey of the
results so far in this exciting subject.

Lack of time and space prevented us from being complete – we do apologize to
authors whose efforts have not been reviewed. In any case, we have tried to provide
the reader with a complete reference list.

1 Rings with polynomial identity

Throughout this text, we fix a field k, which we assume to be algebraically closed
and of characteristic zero, for simplicity’s sake. All rings are supposed to be algebras
over this field k.

1 In the previous decades, most attempts to construct what should be referred to
as “noncommutative algebraic geometry” find their origin in Grothendieck’s inno-
vative ideas about classical (commutative) algebraic geometry, which amount, up
to a certain level, to constructing a dictionary between ring theory and algebraic
geometry.

This is realized by associating to any commutative ring R the affine scheme
(Spec(R),OR), where the set Spec(R) of all prime ideals of R is endowed with the
Zariski topology and where OR is the structure sheaf over it, canonically associated
to R and, conversely, associating to any scheme (X,OX), the ring of global sections
Γ(X,OX). Problems concerning R are thus translated to equivalent problems about
the affine scheme Spec(R) and may thus be tackled by applying geometric methods.

We should also point out that for any ring R, the category R−mod of modules
over R is equivalent to the category of quasi-coherent sheaves of OR-modules on
Spec(R), which allows to apply geometric and cohomological methods to the study
of R-modules as well.

Since this translation from ring theory to algebraic geometry (and vice versa) has
proven to be extremely fruitful, obvious attempts were (and are) made, to develop
an analogue for noncommutative rings of Grothendieck’s approach to algebraic ge-
ometry.

Of course, aiming at such a construction, some non-obvious choices have to be made,
if we naively wish to view a geometric object associated to a noncommutative ring
R as a triple (X, TX ,OX), where X is a space of “points”, TX a topology on X and
OX a sheaf of rings on the topological space (X, TX).

Let us already point out here that defining geometric objects in this way is only one
of many alternative points of view, as we will see below.
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2 Although several alternative approaches have been considered, cf. [17, 23, 25, 52,
73], e.g., we will restrict in the first part of this text to the choice of associating
to any ring R its spectrum Spec(R), which consists of all two-sided prime ideals of
R, i.e., two-sided ideals P of R with the property that xRy ⊆ P implies x ∈ P or
y ∈ P , for any pair of elements x, y ∈ R.

The motivation for this is twofold. First of all, we should stress that, at this point,
it seems unlikely that one might succeed in developing a “useful” noncommutative
algebraic geometry for arbitrary rings. If one expects noncommutative algebraic
geometry to be of any help to the study of noncommutative rings, by allowing
methods similar to those in the commutative set-up, one should restrict to the ge-
ometric study of rings, which are not too noncommutative. The present text does
not aim to define what should be meant precisely by this term. Let us just men-
tion that most rings encountered in real-life applications are of this type, including
pi-algebras or, more generally, fully bounded noetherian (fbn) rings, group rings,
enveloping algebras and even most quantum groups. These rings have the property
of possessing a sufficiently large prime spectrum, allowing a geometric treatment, as
well as the possibility of proving local-global results.

3 The second reason for studying Spec(R) stems from the fact that the prime
spectrum arises rather naturally within the framework of representation theory.

Usually a representation of dimension n of a k-algebra R is defined to be a k-algebra
map π : R→ Mn(k), where Mn(k) is the ring of n× n matrices over k. One calls π
irreducible, if it is surjective. Of course, the kernel Ker(π) is then a maximal ideal
of R.

Two representations π and π′ of R (of the same dimension n) are equivalent, if they
differ by an inner automorphism of Mn(k). If the representations are irreducible, this
is easily seen to be equivalent to Ker(π) = Ker(π′). In this way, the set Max(R)
of maximal ideals of R may be decomposed into a disjoint union

Max(R) = Max1(R) ∪ . . . ∪Maxn(R) ∪ . . . ∪Max∞(R),

where, for each positive integer n, the maximal ideals in Maxn(R) are those cor-
responding to equivalence classes of irreducible representations of dimension n and
where Max∞(R) consists of the remaining maximal ideals.

Typically, if

R =

(
k[X]k[X]
(X) k[X]

)
then Max(R) = Max1(R) ∪Max2(R), where Max1(R) = {M−,M+}, with

M− =

(
k[X] k[X]
(X) (X)

)
resp. M+ =

(
(X) k[X]
(X) k[X]

)

and where Max2(R) consists of all Mα = (X − α)R, for 0 6= α ∈ k.

Of course, at the other extreme, it may occur that for all positive integers n the set
Maxn(R) is empty, the Weyl algebra

A1(k) = k{X, Y }/(Y X −XY − 1)

being an obvious example.
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4 More generally, consider a ring homomorphism α : R → Mn(K), where K is a
field. It is easy to see that α(R) generates Mn(K) over K if and only if for any field
L ⊇ K the induced representation

αL : R
α→ Mn(K) ↪→Mn(L)

is irreducible. We call such representations absolutely irreducible (of degree n).
Absolutely irreducible representations α : R → Mn(K) and β : R → Mm(L) are
said to be equivalent if m = n, and if there exists an extension field H of K and
L, such that the induced representations αH , βH : R → Mn(H) coincide up to an
H-automorphism of Mn(H).

It is fairly easy to see (cf. [51, 73]) that the kernel Ker(α) of any absolutely ir-
reducible representation is a prime ideal of R, and that two absolutely irreducible
representations α and β of R are equivalent if and only if Ker(α) = Ker(β). In
this way, there is, just as for maximal ideals, a bijective correspondence between
equivalence classes of absolutely irreducible representations of R and those prime
ideals P of R for which R/P is a pi-algebra.

Actually, just as before, this leads to a decomposition of Spec(R) of the form

Spec(R) = Spec1(R) ∪ . . . ∪ Specn(R) ∪ . . . ∪ Spec∞(R),

where the prime ideals P of Specn(R) correspond to absolutely irreducible repre-
sentations of degree n (equivalently, such that R/P has pi-degree n), and where
Spec∞(R) contains the remaining prime ideals.

5 We endow Max(R) with the Zariski topology, whose closed sets are the

V (S) = {M ∈Max(R); S ⊆M},

for some subset S ⊆ R (which may obviously be assumed to be a two-sided ideal
of R), and with open sets D(S) = Max(R) − V (S). It has been proved by Artin
[5] that for any positive integer n the corresponding Maxn(R), with the induced
topology, possesses the structure of an ordinary algebraic variety and is locally
closed in Max(R). (For example, if R = k{X, Y }, the free algebra in two variables,
then Maxn(R) is an algebraic variety of dimension n2 + 1.)

If one wishes to study Max(R), one thus essentially has to know how these algebraic
varieties fit together. For the example given in 3, it appears that topologically
Max(R) is just the usual affine line A1

∗ over k with split origin:

———————–:———————

Of course, in other examples, the gluing of the separate components Maxn(R) may
be much more complex and will thus necessitate the use of structure sheaves (which,
by the way, are also needed in order to differentiate between the “affine” variety
Max(R) with R as before, and the “non-affine” (non-separated !) variety A1

∗).

6 Besides the basic obstruction that sometimes Max(R) = Max∞(R) (and that
the previous method thus does not work!), another problem to be dealt with is
that, although the structure of each of the components Maxn(R) may be studied
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individually, the fact that there may be an infinite number of them for arbitrary
rings makes it hardly possible to provide an easy description of Max(R) in terms
of the Maxn(R). In order to remedy this, one restricts to rings with only a finite
number of non-empty Maxn(R). Actually, starting from an arbitrary ring R and
a positive integer d, it is fairly easy to canonically construct a ring Rd such that
Max(Rd) =

⋃d
n=1 Maxn(R).

Indeed, let us first recall that there are certain polynomial identities, which are
satisfied by d × d matrices over k. Indeed, one may prove that S2d = 0 is such an
identity for Md(k), where for any positive integer p, we put

Sp(X1, . . . , Xp) =
∑
σ∈Sp

(−1)σXσ(1) . . . Xσ(p),

where Sn is the permutation group on n elements. For example, for d = 1, we thus
obtain the identity

S2(X1, X2) = X1X2 −X2X1 = 0,

which just expresses the commutativity of the base field k.

One may show that S2d = 0 is minimal for Md(k), in the sense that Sp = 0 is not
an identity for Md(k) if p < 2d.

Denote by Id(R) the two-sided ideal of R generated by all substitutions of elements
of R in S2d and put Rd = R/Id(R). It is then obvious that there exist no irreducible
representations of Rd into Mn(k) for n > d, as S2d vanishes on Rd and hence also
on any homomorphic image of Rd. It follows that

Max(Rd) =
d⋃

n=1

Maxn(Rd),

and since Max(Rn) may be identified with the closed subset V (In(R)) of Max(R)
consisting of all maximal ideals of R containing In(R), also that

Max(Rd) =
d⋃

n=1

Maxn(R).

Passing from R to the quotient Rd thus truncates the possibly infinite collection of
Maxn(R) up to Maxd(R). Moreover, Rd satisfies the identities of d × d matrices,
hence is what is usually referred to as a pi-algebra.

Of course, the same technique works for the prime spectrum of R, where one obtains
that

Spec(Rd) =
d⋃

n=1

Specn(R).

2 Structure sheaves

1 Let us work over an arbitrary algebra R for a moment. Endowing Spec(R)
with its Zariski topology (with open sets D(S) consisting of all prime ideals P
with S 6⊂ P ), the techniques expounded in the previous section allow to study R
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geometrically by decomposing Spec(R) into its components Specn(R), each of these
having a (commutative!) scheme structure. Of course, one of the main problems one
is faced with here, is to see how these components fit together within Spec(R). In
order to study this, one is obviously lead to endow Spec(R) with a structure sheaf,
which permits to glue together local information into global one.

A complete treatment of these constructions over pi-algebras may be found in [73],
so we will not go into details here, preferring to provide some information about
constructions that permit to tackle more general rings.

2 Assume R to be an arbitrary left noetherian ring and suppose R to be prime,
i.e., (0) to be a prime ideal of R. In this case, it is well known that R possesses a
classical ring of fractions Q(R), i.e., the set of regular elements of R is an Ore-set,
and the ring of fractions Q(R) associated to it is simple and artinian, cf. [26, 43] for
details. To any two-sided ideal I of R, one may associate a subring QI(R) ⊆ Q(R),
consisting of all q ∈ Q(R) which may be multiplied into R by some positive power
In of I . If R is commutative and f ∈ R, then it is easy to see that Qf(R) is just
the usual localization Rf at the multiplicative set generated by f .

Using “abstract localization”, such as introduced by Gabriel [19] (see also [62] for a
complete survey), it was proved in [46, 70] that associating to any open subset D(I)
of Spec(R) the ring QI(R) defines a sheaf of rings OR on Spec(R) (endowed with
its Zariski topology), whose ring of global sections Γ(Spec(R),OR) reduces to the
ring R.

3 The reason why “abstract localization” comes into the picture in the present
context, is that any two-sided ideal I of R also defines a so-called idempotent kernel
functor σI in R−mod (cf. [15, 22, 24, 71, et al]) by letting for any left R-module
M the submodule σIM consist of all m ∈ M annihilated by some power of I . To
any such idempotent kernel functor σ in R−mod (a left exact subfunctor σ of the
identity in R−mod such that σ(M/σM) = 0 for any left R-module M), one may
canonically associate a “localization functor” Qσ (see again [15, 22, 24, 71, et al])
and it appears that for σ = σI , one has Qσ(R) = QI(R).

Abstract localization theory also permits to calculate the stalks of the above struc-
ture sheaf. Actually, to any prime ideal P of R, one may associate an idempotent
kernel functor σR−P defined by letting σR−PM consist for any M ∈ R−mod of
all m ∈ M with the property that Im = 0 for some two-sided ideal I 6⊂ P . Let
us denote by QR−P the localization functor associated to σR−P . Then one easily
verifies that the stalk of OR at P is given by OR,P = QR−P (R). This generalizes
the commutative case, as one may verify that if R is commutative, then QR−P (R)
is just the usual localization RP of R at P .

4 Although the previous construction possesses several nice features, it suffers from
the fact of only being applicable to prime rings (and, in particular, not to arbitrary
leftR-modules) and of not behaving functorially. In order to remedy this, alternative
constructions have been developed, based on ideals I satisfying the so-called (left)
Artin-Rees condition, which says (in one of its many forms) that for any left ideal
L there exists some positive integer n such that In ∩ L ⊆ IL, cf. [15, 43].

Although this is somewhat hidden in many proofs, the reason why constructions in
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the commutative, noetherian case work so well is that, due to Krull’s Lemma, all
ideals satisfy the Artin-Rees condition, in this case.

Unfortunately, in the noncommutative case, this is no longer valid in general. It thus
makes sense to modify the Zariski topology in the noncommutative (noetherian)
case, by only considering open subsets of the form D(I), where I is a two-sided
ideal of R satisfying the Artin-Rees condition. Since it is clear that finite sums and
products of Artin-Rees ideals again satisfy the Artin-Rees condition, it is rather
easy to check that this thus defines a topology on Spec(R), indeed, the so-called
Artin-Rees topology T (R).

It has been verified in [15] that associating for any left R-module M to D(I) ∈ T (R)
the localization QI(M) of M at σI defines a sheaf OM on (Spec(R), T (R)), with the
property that Γ(Spec(R),OM ) = M .

5 It is clear that the efficiency of representing rings and modules over them by
sheaves over the topological space (Spec(R), T (R)) is highly dependent upon work-
ing over a topology “sufficiently close” to the Zariski topology, i.e., we want the base
ring R to have “many” Artin-Rees ideals. For this reason, as expounded in [15], our
methods work best over rings satisfying the so-called second layer condition.

As this follows outside of the scope of the present text, we refer to the literature
for precise definitions and properties of this notion (cf. [13, 15, 26, 28, 43]). Let us
just mention that the class of rings satisfying this condition is extremely vast, and
includes such rings as fully bounded noetherian (fbn) rings (e.g., noetherian pi-rings),
artinian rings, principal ideal rings, hereditary noetherian prime (HNP) rings with
enough invertible ideals, group rings RG and enveloping algebras R ⊗ U(g), where
R is a commutative noetherian ring, G a polycyclic-by-finite group, g a solvable
finite dimensional Lie (super)algebra. The class also includes Ore extensions (cf. 4)
of the form R[x; idR, δ], R[x;α, 0] (and R[x, x−1;φ, 0]), where R is a commutative
noetherian ring, most quantum groups and the group-graded and skew-enveloping
analogues of the previous types of rings. Finally, let us also mention Letzter’s result
[36], which says that for any pair of rings R ⊆ S such that S is a left and right finitely
generated R-module, S satisfies the second layer condition, whenever R does.

6 Let φ : R → S be an arbitrary ring homomorphism. Clearly, in general Q 7→
φ−1(Q) does not necessarily induce a map Spec(S) → Spec(R). Indeed, it suffices
to consider for example the inclusion

φ : k × k =

(
k 0
0 k

)
↪→

(
k k
k k

)
,

and to note that φ−1((0)) = (0) is not prime in k × k.

In order to remedy this, one has to restrict to particular types of ring homomor-
phisms, such as centralizing extensions (or more generally, strongly normalizing ex-
tensions, cf. [15, 45]). These are ring homomorphisms φ : R → S, which have the
property that S is generated as an R-module by SR, the set of all s ∈ S with the
property that φ(r)s = sφ(r), for any r ∈ R.

It may be shown that any such φ induces a map aφ : Spec(S)→ Spec(R), which is
continuous for the Zariski topology. If we assume, moreover, both R and S to satisfy
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the second layer condition, then the map aφ is also continuous for the Artin-Rees
topology and actually induces a morphism of ringed spaces

(Spec(S), T (S),OS)→ (Spec(R), T (R),OR).

The proof of this fact, which establishes the announced dictionary between (a vast
class of) rings and geometric objects is rather tricky, and may be found in [15].

3 Quantum groups

1 Although the constructions in the previous section are highly satisfactory, they
fail to work well for rings without sufficiently many Artin-Rees ideals or not satis-
fying the second layer condition, examples of which may even be found in the class
of so-called quantum groups.

Most examples of quantum groups arise as deformations of commutative Hopf al-
gebras. In fact, it is well known that there is a bijective correspondence between
affine algebraic groups and commutative Hopf algebras, given by associating to any
commutative Hopf algebra R the affine scheme Spec(R), the comultiplication of R
(and its defining properties) canonically inducing the structure of algebraic group
on Spec(R). There are many examples (as we will see below) of commutative Hopf
algebras, which deform into a family of noncommutative Hopf algebras or, more
precisely, which occur at q = 0 say, within a family of Hopf algebras, depending
upon a (continuous or discrete) parameter q.

Since, in contrast with the commutative case, it is not clear how to canonically
associate to noncommutative Hopf algebras an “algebraic group”, one usually prefers
to continue working with these noncommutative Hopf algebras themselves, referring
to them as “quantum groups”.

2 Let us illustrate by some basic examples the notion of quantum group, a more
precise description of which may be found in the literature.

Recall that the coordinate ring of the affine plane A2
k is just the ring k[x, y] in two

variables. The addition in A2
k corresponds to the comultiplication

∆ : k[x, y]→ k[x, y]⊗ k[x, y],

defined by ∆(x) = x⊗ 1 + 1⊗x resp. ∆(y) = y⊗ 1 + 1⊗ y. The ring k[x, y] may be
viewed as the quotient k{x, y}/(yx− xy), where k{x, y} is the free k-algebra over
the (noncommuting) variables x and y. One now defines for any q ∈ k the quantum
plane as

kq[x, y] = k{x, y}/(yx− qxy).

Clearly, k1[x, y] = k[x, y], whereas kq[x, y] is noncommutative for q 6= 1.

3 In order to study the ring structure of kq[x, y], let us first recall some background
on Ore extensions.

Let R be an arbitrary algebra and consider an endomorphism α on R. A k-linear
endomorphism δ of R is said to be an α-derivation of R, if

δ(ab) = α(a)δ(b) + δ(a)b,
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for any a, b ∈ R. In particular, it then easily follows that δ(1) = 0.

Consider the free left R-module R[t] generated by {1, t, t2, . . . , tn, . . .}, for some free
variable t, i.e., elements of R[t] are “left polynomials” of the form P = ant

n +
an−1t

n−1 + . . . + a0. The degree deg(P ) of P is defined to be n if an 6= 0 and, by
convention, we put deg(P = 0) =∞.

The question of extending the algebra structure on R to R[t] is answered by the
next result:

3.1 Proposition [30, 43] If R[t] possesses an algebra structure extending that of
R and such that deg(PQ) = deg(P )deg(Q) for any P,Q ∈ R[t], then R has no
zero-divisors and there exist an injective endomorphism α of R and an α-derivation
δ of R, such that

(*) ta = α(a)t + δ(a),

for any a ∈ R. Conversely, if R has no zero-divisors, if α is an injective endomor-
phism of R and if δ is an α-derivation of R, then there exists a unique algebra
structure on R[t] extending that of R and such that (*) holds for any a ∈ R.

4 The algebra defined in the previous result is usually denoted by R[t;α, δ] and
referred to as an algebra of skew polynomials over R or an Ore extension of R with
respect to the automorphism α and the α-derivation δ.

Of course, it may well happen that α or δ is trivial. In particular, R[t; idR, 0] is just
the ring of polynomials in the central variable t over R, whereas for δ 6= 0, clearly
R[t; idR, δ] is the corresponding ring of polynomial differential operators.

To mention another elementary example, let R = k[x], the ring of polynomials over
the central variable x and let δ = d

dx
, the usual derivation with respect to x. In

R[t; idR, δ], we then have ta = at + δ(a), where δ(ab) = aδ(b) + δ(a)b, for any
a, b ∈ R. In particular, since δ(x) = 1, we obtain that tx− xt = 1, the Heisenberg
relation, so R[t; idR, δ] is just the first Weyl algebra A1(k) over k.

5 Ore extensions share many properties with ordinary rings of polynomials. For ex-
ample, it easily follows from 3.1 that (still with R without zero-divisors and α injec-
tive), R[t;α, δ] has no zero divisors either and that it is free, with basis {1, t, t2, . . .},
both as a left and a right R-module.

Let us also point out the following analogue of Hilbert’s basis theorem: if R is (left
or right) noetherian, then so is R[t;α, δ].

Defining iterated Ore extensions in the obvious way, the previous remarks thus
clearly extend to the latter.

As a first corollary, let us mention:

6 Corollary. The quantum plane kq [x, y] is (left and right) noetherian and has no
zero-divisors. Moreover, it is free over k with basis {xpyq}p,q.

Proof Define an automorphism α on k[x] by α(x) = qx. Then it is clear that kq[x, y]
may be identified with the Ore extension k[x][y;α, 0]. The result now trivially follows
from the above construction and remarks. �
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7 Since the quantum plane does not appear to be “too noncommutative”, one is
tempted to study it from the geometric point of view, mimicking the usual set-up
in the commutative case, i.e., through its prime spectrum. However, this approach
is rather disappointing.

Indeed, if q is not a root of unity, then a straightforward calculation shows that
Spec(kq[x, y]) consists of the primitive (maximal) ideals (x − a, y) and (x, y − a),
with a ∈ k, and the only remaining prime ideals are the zero-ideal and the ideals (x)
and (y). It thus follows that (excluding the dense point (0)), the prime spectrum of
kq[x, y] consists just of the two intersecting affine lines corresponding to the x-axis
and the y-axis. It also follows that simple kq [x, y]-modules thus have dimension 1
or are infinite dimensional. We will see in section 3 how to overcome this problem.

In order to see what happens in the other case (q a root of unity), one first determines
the center of kq[x, y]. A straightforward calculation shows that Z(kq[x, y]) = k, if q
is not a root of unity, and that Z(kq[x, y]) = k[xn, yn] if q is a primitive n-th root of
unity. In the latter case, kq[x, y] appears to be a pi-algebra, being generated by the
xpyq, with 1 ≤ p, q ≤ n − 1. The geometric study of kq [x, y] may thus be realized
using the methods described in the previous sections. Let us also point out that in
this case there exist simple modules both of dimension one and two.

8 Note. Without entering into details here, let us mention that the previous con-
struction may be extended to higher dimensions.

Actually, one defines the quantum (affine) space of dimension n to be the ring
kq[x1, . . . , xn] with relations xjxi = qxixj for any i < j. Again, it is fairly easy to
see that kq[x1, . . . , xn] is noetherian and generated over k by the basis consisting of
all xi11 . . . x

in
n . The prime ideals of the quantum space of dimension n are exactly the

ideals (y1, . . . , yr) (with {y1, . . . , yr} ⊆ {x1, . . . , xn}) and (x1, . . . , xi − a, . . . , xn) for
some 1 ≤ i ≤ n.

9 The quantum plane permits us to introduce quantum matrices in a natural way.
Indeed, assume a, b, c and d to be variables commuting with the generators x and y
of the quantum plane and define the elements x′, y′ resp. x′′, y′′ through the relations(

x′

y′

)
=

(
a b
c d

)(
x
y

)
resp. (

x′′

y′′

)
=

(
a c
b d

)(
x
y

)
Assume that q2 6= −1, then it is fairly easy to see that (x′, y′) and (x′′, y′′) are
“points” of kq[x, y], i.e., that y′x′ = qx′y′ and y′′x′′ = qx′′y′′ if and only if (a, b, c, d)
satisfies the following relations:

ba= qab

ca= qac

db= qbd

dc= qcd

bc= cb

ad− da= (q−1 − q)bc.
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It thus makes sense to define Mq(2), the algebra of quantum (2× 2) matrices as the
quotient of the free algebra k{a, b, c, d} by the ideal Jq generated by ba−qab, . . . (the
elements corresponding to the above relations). Let us note that, as most quantum
groups, Mq(2) is graded and that for q = 1, we find that Mq(2) = M(2), the generic
algebra of 2× 2 matrices.

The main ring-theoretic properties of Mq(2) are given by:

3.2 Proposition The ring Mq(2) is noetherian and has no zero-divisors.

Proof It clearly suffices to show Mq(2) to be an iterated Ore extension of k. Let us
consider the chain of rings

k = A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A4 = Mq(2),

where

A1 = k[a]

A2 = k{a, b}/(ba− qab)
A3 = k{a, b, c}/(ba− qab, ca− qac, cb− bc)

It is trivial that A1 is an Ore extension of A0 and that A2 = A1[b;α1, 0], where the
automorphism α1 is defined by putting α1(a) = qa. Defining the automorphism α2

of A2 by α2(a) = qa and α2(b) = b, it is easy to see that A3 = A2[c;α2, 0]. Finally,
define the automorphism α3 on A3 by α3(a) = a and by α3(b) = qb resp. α3(c) = qc.
A straightforward calculation shows that one may define an α3-derivation on A3 by
putting δ(bjck) = 0 and

δ(aibjck) = (q − q−1)
1− q2i

1− q2
ai−1bj+1ck+1,

if i 6= 0, and that A4 = Mq(2) = A3[d;α3, δ]. This proves the assertion. �

Of course, it also follows from the previous proof that the set of all aibjckdl is a basis
of Mq(2) over k.

10 Define the quantum determinant as

detq = ad− q−1bc = da− qbc ∈Mq(2).

It is easy to see that detq ∈ Z(Mq(2)), the center of M2(q). Actually, a rather
technical calculation shows that if q is not a root of unity, then Z(Mq(2)) = k[detq].

More generally, for any algebra R, let us define an R-point of M2(q) to be a matrix

m =

(
AB
C D

)
∈M2(R),

whose components satisfy the relations BA = qAB, . . . defining the algebra Mq(2).
It is thus clear that R-points of Mq(2) are in bijective correspondence with the
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algebra homomorphisms Mq(2) → R. The quantum determinant of an R-point m
is then defined to be

Detq(m) = AD− q−1BC = DA − qBC.

The quantum determinant shares many properties with its traditional counterpart.
In particular, if m and n are R-points, then so is their product mn and we have

Detq(mn) = Detq(m)Detq(n).

11 Note. For arbitrary n ≥ 2, the algebra of quantum matrices Mq(n) is defined
similarly as the quotient of the free algebra k{Xij ; 1 ≤ i, j ≤ n}, by the relations
necessary for any i < j and k < l to make the canonical map

Mq(2) → k{Xik, Xil, Xjk, Xjl} : (a, b, c, d) 7→ (Xik, Xil, Xjk, Xjl)

into a ring isomorphism.

The quantum determinant may also be generalized to this setting. Indeed, denote
by Sn the symmetric group on n elements and for any σ ∈ Sn, let `(σ) be the length
of σ, i.e., the minimal number of transpositions into which σ decomposes. We then
put

detq =
∑
σ∈Sn

(−q)`(σ)X1,σ(1) . . .Xn,σ(n).

It is fairly easy to verify that detq (and its generalization to R-points, for any algebra
R) behaves in a similar way as its two-dimensional analogue. Note also that detq
generates the center of Mq(n) over k, when q is not a root of unity.

12 One may endow Mq(2) with a bialgebra structure by defining

∆ : Mq(2)→ Mq(2) ⊗M2(2)

resp.
ε : Mq(2)→ k

by

∆(a) = a⊗ a + b⊗ c
∆(b) = a⊗ b+ b⊗ d
∆(c) = c ⊗ a + d⊗ c
∆(d) = c ⊗ b+ d ⊗ d

resp.

ε(a) = ε(d) = 1

ε(b) = ε(c) = 0.

Putting

∆A(x) = a⊗ x+ b⊗ y
∆A(y) = c⊗ z + d⊗ y,
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then defines a map

∆A : kq[x, y]→Mq(2) ⊗ kq[x, y],

which makes the quantum plane kq[x, y] into a Mq(2)-comodule-algebra.

Of course, Mq(2) is not a Hopf algebra. However, let us define

GLq(2) = Mq(2)[t]/(tdetq − 1)

resp.
SLq(2) = Mq(2)/(detq − 1) = GLq(2)/(t − 1).

Then it is easy to see that ∆ and ε induce a comultiplication and a counit on GLq(2)
and SLq(2), making both into bialgebras. Moreover, GLq(2) and SLq(2) are now
Hopf algebras, if one endows them with the antipode S defined in matrix form by(

S(a) S(b)
S(c) S(d)

)
= det−1

q c

(
d −qb

−q−1c a

)
.

Note that S is not an involution, in general. Actually, if q is a primitive root of
unity, then S has order n.

Note also that the Mq(2)-comodule-algebra structure on kq [x, y] induces an SLq(2)-
comodule-algebra structure in the obvious way.

4 Schematic algebras

1 In the previous section, we have essentially only considered the affine structure
of a noncommutative ring R. However, as may be seen in the above examples, most
quantum groups have a natural graded structure. It thus makes sense to use this
graded structure and to study the quotient category Proj R as a basic object within
noncommutative algebraic geometry.

Let us briefly recall its definition before we explain the recent interest in this cate-
gory. From now on, we let R be a connected graded k-algebra, i.e., R =

⊕
n∈NRn

and R0 = k. Suppose, moreover, that R is generated by R1 and that R1 is a finite
dimensional vector space. We denote the positive cone

∑
n>0Rn by R+.

2 Let R be any noetherian connected k-algebra. Define a category Proj R with
the same objects as R−gr, the category of graded R-modules. We will write π(M)
when considering the graded R-module M as an object of Proj R. Morphisms in
Proj R are given by:

HomProj R(π(M), π(N)) = lim
−→
M ′

HomR−gr(M
′, N/κ+(N)),

where M ′ runs through the submodules of M such that M/M ′ is torsion. Conse-
quently, π is an exact functor from R−gr to Proj R. Moreover, π has a right adjoint
ω : Proj R→ R−gr, in the sense that for all N ∈ Proj R

HomR−gr(M,ω(N )) ∼= HomProj R(π(M),N ).
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This Proj R is in fact the quotient category of R−gr with respect to the idempotent
kernel functor κ+ which associates to any graded R-module M its graded submodule
consisting of all m ∈ M which are annihilated by some positive power of R+. The
functor ω ◦ π is left exact and maps M to

lim
−→
n

HomR(Rn
+,M).

This module ωπ(M) has the property that⊕
i

HomR−gr(R
n
+, ωπ(M [i])) ∼= ωπ(M)

for all n. Here the shifted module M [i] is just M as an R-module, but with gradation
given by M [i]j = Mi+j for any integer j.

3 The interest in Proj R is raised by its realization as the category of quasi-coherent
sheaves on the projective scheme associated to R if R is commutative. We give a
brief survey since the theory of schematic algebras is aiming at a similar description
of Proj R for a vast class of algebras. However, since many interesting algebras do
not posses enough prime ideals (like the so-called Sklyanin-algebras [48, 49, 54, 55]),
the schematic algebras need a rather unusual description of the projective scheme
of a commutative algebra, not stressing the prime ideals but the complementary
multiplicatively closed sets.

To any commutative algebra R one associates the couple (X = Proj(R),OX), where
Proj(R) consists of all homogeneous prime ideals of R not containing R+ and OX
is the sheaf of graded rings on X canonically associated to R. Each homogeneous
element f of R defines an affine open set D(f). Open sets of this kind form a basis
and a finite number of them suffices to cover X. There is a functor F from R−gr
to the category of quasi-coherent sheaves on X such that F (R) = OX and such
that for any graded R-module M the module of sections Γ(D(f), F (M)) is just the
localization of M at the multiplicatively closed set generated by f . The global-
sections functor G maps a quasi-coherent sheaf F to its sections on the total space
X, i.e., G(F) = Γ(X,F). The composition F ◦ G is the identity, but the functor
Γ = G ◦F is only left exact. An important theorem of Serre’s [53] states that these
two functors induce an equivalence between the category of quasi-coherent sheaves
on X and the quotient category Proj R. The functor Γ = G ◦ F is thus precisely
the functor ω ◦ π. Hence Serre’s Theorem motivates the use of Proj R as a basic
object of study in noncommutative algebraic geometry.

If M is graded R-module, then F (M) being a sheaf implies that Γ(M) may be
described as the inverse limit of the sections of F (M) on a cover of X. In particular,
if f1, . . . , fn are homogeneous elements of R such that

⋃
iD(fi) = X, then Γ(M)

consists of the ( mi
f
ni
i

)i ∈
⊕n
i=1Mfi with the property that

fnij mi

(fjfi)ni
=

f
nj
i mj

(fifj)nj

within Mfifj = Γ(D(fi) ∩D(fj), F (M)).
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4 Let us now assume R to be noncommutative. If one wants a similar local de-
scription of the objects in Proj R, then one has to confine to algebras possessing
“enough” Ore-sets; these are the so-called schematic algebras introduced in [75].

Let us say that R is schematic if there exists a finite number of two-sided homoge-
neous Ore-sets S1, . . . , Sn with Si ∩ R+ 6= ∅, such that for all (si)i=1,...,n ∈

∏n
i=1 Si,

we may find some positive integer m with Rm
+ ⊆

∑n
i=1Rsi.

The origin of this definition lies in the commutative case: the “Ore-sets” generated
by homogeneous elements fi of R satisfy the above property exactly if

⋃
iD(fi) = X.

Besides the commutative algebras, many interesting graded algebras are schematic:
algebras which are finite modules over their center, homogenizations of enveloping
algebras and Weyl-algebras, 3-dimensional Sklyanin-algebras and several algebras
of quantum-type (like kq [x, y] and Mq(2)), cf. [74]. Finding counterexamples is easy
after noting that for a schematic algebra R all ExtnR(kR, RR) are torsion, cf. [76].
For instance, as pointed out in [61], the subalgebra S of k{x, y}/(yx − xy − x2)
generated by y and xy is not schematic since Ext1S(kS , SS) is not torsion.

Even if R is schematic, then it is not true that

Γ(M) ∼= {(
mi

si
)i ∈

⊕
i

S−1
i M ;

mi

si
=
mj

sj
in (Si ∨ Sj)−1M}

where Si ∨ Sj is the Ore-set generated by Si and Sj. The reason is that two con-
secutive Ore-localizations do not necessarily commute, i.e., S−1

i R ⊗R S−1
j R is not

necessarily isomorphic to S−1
j R⊗R S−1

i R in general. The solution to this problem is
a refinement of the inverse system. Indeed, one may show that Γ(M) is isomorphic
to the set of those tuples (mi

si
)i in

⊕
i S
−1
i M such that for any i, j we have

1⊗ mi

si
=

1

sj
⊗ mj

1
in S−1

j (S−1
i M).

It is possible to deform the usual notion of a categorical topology (the “intersection”
of two open sets must depend on the ordering in which one intersects) such that the
desired equivalence between Proj R and the category of quasi-coherent sheaves on
this topological space holds, cf. [75]. This setting generalizes well if one replaces Ore-
sets by arbitrary idempotent kernel functors, cf. [81]. The definition of a covering
in [75] has been adapted in [20] in order to fit better the commutative case.

If R is the homogenization of an almost commutative ring, then it is possible to work
with a genuine categorical topology, i.e., (1) holds although the localizations still do
not commute ([35, 77]). The point variety (see 10 below) may be described locally
by studying one-dimensional representations of the sections on a suitable covering.

5 The most important application of schematic algebras is of cohomological nature.
Again we start with the cohomology groups of Proj R for an arbitrary graded algebra
R. Since Proj R has enough injectives, we may define H i, the i-th right derived
functor of HomProj R(π(R),−). In order to calculateH i(π(M)), we should start with
an injective resolution of π(M) in Proj R, apply the functor HomProj R(π(R),−) and
take homology at the i-th locus. We get an injective resolution of π(M) in Proj R
if we apply the functor π to an injective resolution E

.
of M in R−gr. Moreover,

since
HomProj R(π(R), π(Ei)) ∼= HomR−gr(R, ωπ(Ei)) ∼= (ωπ(Ei))0
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we get thatH i(π(M)) ∼= hi(ωπ(E
.
)0), for all positive integers i. Graded cohomology-

groups are obtained by the usual procedure, i.e., by putting

H i(π(M))
def
=
⊕
n∈Z

Hi(π(M [n])).

In particular, H0(π(M)) ∼= ωπ(M). These graded cohomology groups are again
graded R-modules and from the reasoning above we obtain that

H i(π(M)) ∼= hi(ωπ(E
.
)).

The complex ωπ(E
.
), the homology of which we want to calculate, may be described

in an easier way since each graded injective R-module E may be written as a direct
sum I ⊕ Q where I is graded torsion and Q is graded torsionfree. Moreover, both
I and Q are graded injective and ωπ(E) ∼= Q. We may then rewrite the injective
resolution E

.
of M as:

0 // M // I0 ⊕Q0 f0 // I1 ⊕Q1 f1 // I2 ⊕Q2 f2 // . . .

Note that fn(In) ⊆ In+1, since the image of a torsion element under a graded R-
module homomorphism is again torsion. Applying ω ◦ π yields a complex

0 // ωπ(M) // Q0 g0 // Q1 g1 // Q2 g2 // . . .

where gi = ωπ(fi) is the composition of the maps

Qi ↪→ Ei fi−→ Ei+1 −→ Qi+1.

Thus H j(π(M)) is the jth homology-group of the complex (Qi, gi).

6 In algebraic geometry, it is shown that theseH i coincide with the derived functors
of the global-sections functor on the category of sheaves, and the latter coincide with
the more amenable Cech-cohomology groups. If R is a schematic algebra, then one
can define (generalized) Cech-cohomology groups as the homology groups of the
complex

0 −→
⊕
i

S−1
i M −→

⊕
i,j

S−1
i R ⊗R S−1

j M −→ . . .

It has been shown in [76] that these Cech-cohomology groups coincide with the
functors Hi. This provides a more computable approach to the H i (see the example
in [76]), and has some interesting consequences like, left and right cohomology of R
coincide, or if R is a finite module over its center Z(R), then its cohomology is the
same as its cohomology as Z(R)-module. Moreover, if the schematic algebra R has
finite global dimension, then the cohomology groups of any finitely generated graded
R-module are finite dimensional ([12, 76]). We conclude with noting [83] that there
is a dimension function for schematic algebras which separates the homogenizations
of Weyl and enveloping algebras.



Noncommutative Algebraic Geometry: from pi-algebras to quantum groups 573

5 Regular algebras

1 This section is devoted to regular algebras whose Proj is considered to be a
quantized projective space. Let A be a connected algebra again and suppose that
A is generated by the finite dimensional vector space A1.

We start by recalling the construction of the twisted homogeneous coordinate ring
from [11]. Let X be an irreducible projective variety over k and σ an automorphism
of X. An invertible sheaf L is called σ-ample if for all coherent sheaves F on X and
all positive integers i we have

H i(X,L ⊗ Lσ ⊗ · · · ⊗ Lσn−1 ⊗ F) = 0,

for all sufficiently large n, where Lσ denotes the pull-back σ∗L. Fix a σ-ample
invertible sheaf L and define B0 = OX and Bn = L⊗ Lσ ⊗ · · · ⊗ Lσn−1

if n > 0. Let
B =

⊕
n≥0 Bn and B = B(X, σ, L) =

⊕
n≥0 H

0(X,Bn). The multiplication on B is
defined by

b.c = b⊗ cσn ∈ Bn+m

for b ∈ Bn and c ∈ Bm. Then Proj B is equivalent with the category of quasi-
coherent OX -modules, the equivalence being induced by

Γ∗(F) =
⊕
n≥0

H0(X,F ⊗OX Bn)

and (B⊗B −)0. Coherent OX -modules correspond to finitely generated B-modules.
Moreover, B is a finitely generated noetherian algebra.

2 Let us call A a regular algebra of dimension d if and only if

1. gldim(A) = d <∞;

2. gkdim(A) <∞;

3. A is Gorenstein, i.e., ExtiA(k, A) = δid k.

For example, a commutative algebra is regular if and only if it is a polynomial
algebra. Therefore, the Proj of a regular algebra of dimension d is viewed as a
noncommutative Pd−1. If A is a finite module over its center and has finite global
dimension, then A is regular (cf. [8]). It has been proved in [27] that a regular
algebra A of dimension 2 is either of the form

A = k{x, y}/(yx− qxy),

with q ∈ k∗, or
A = k{x, y}/(yx− xy − x2).

In particular, the quantum plane kq [x, y] is a regular algebra.

The study of regular algebras of dimension 3 was initiated in [8], with a proof of the
following dichotomy:

3 Theorem. Let A be a regular algebra of dimension 3.
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1. All defining relations have the same degree s and the minimal number of
defining relations equals r = dimk(A1). Moreover, (r, s) = (2, 3) or (3, 2).

2. With a suitable choice of the relations fi =
∑r
j=1 mijxj (i = 1, . . . , r), there is

a resolution

0 // A
xt // Ar M // Ar x // A // k // 0

and the entries of xtM are again a set of defining relations for A.

3. The Hilbert series HA(t) =
∑∞
i=0 dimkAit

i of A is (1 − t)−3 if r = 3 and
(1− t)−3(1 + t)−1 if r = 2.

Let us call an algebra A standard if it can be presented by r generators xi of degree
1 and r relations fi of degree s such that

1. (r, s) = (3, 2) or (2, 3);

2. if fi =
∑r
j=1mijxj, then the r elements gj =

∑r
i=1 ximij are also a set of

defining relations, i.e. there exists a matrix Q = (qij) in Glr(k) such that∑r
i=1 ximij =

∑r
i=1 qjifi for all j ∈ {1, . . . , r}.

Thus regular algebras of dimension 3 are standard. This fact was then exploited to
classify all regular algebras of dimension 3.

4 Another classification and a simple criterion to decide whether a given standard
algebra A is regular emerged in [9].

Let T be the tensor algebra of the vector space A1. Any element t ∈ Tn may be
viewed as a multilinear function t̃ on the product of n copies of the dual vector
space A∗1. Therefore we may consider its zero locus ν(t̃) in the product of n copies
of P = P(A∗1). Let Γ be the intersection of the ν(f̃i) where the fi are the defining
relations of A. Define two projections from (P)s onto (P)s−1, the first one dropping
the first component and the second one dropping the last component. If A is a
standard algebra, then the images of Γ in (P)s−1 under both projections coincide.
They are both equal to the zero locus of detM̃ where M̃ is the matrix of the m̃ij if
fi =

∑r
j=1 mijxj.

There are four possibilities for this locus, which we call E. If detM̃ is identically
zero, the so-called linear case, then E is all of P2 if r = 3 or all of P1 × P1 if r = 2.
In the elliptic case we have that E is a cubic divisor if r = 3 or a divisor of bidegree
(2, 2) if r = 2.

5 Definition. An algebra A is nondegenerate if Γ is the graph of an automorphism
σ of E, or equivalently, if the r × r matrix M̃ has rank at least r− 1 at every point
of P2 or of P1 × P1.

We can now state the main result of [9]:

6 Theorem. Let A be an algebra of global dimension 3. Then A is regular if and
only if A is nondegenerate and standard.
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To prove the sufficiency, the authors associate to a nondegenerate standard algebra
A a triple (E, σ, L) consisting of (i) a schemeE ⊂ (P(A∗1))

s−1 which is either a divisor
of the type described above or is the whole ambient space, (ii) an automorphism σ
of E and (iii) an invertibleOE-module L = π∗O(1), where π is the inclusion of E in
P2 if r = 3 or is the projection on the first factor P1 if r = 2. In the latter case, the
projection of E on the second factor P1 is π ◦σ. Such a triple gives rise to a twisted
homogeneous coordinate ring B = B(E, σ, L) and there is a canonical epimorphism
A→ B which is an isomorphism in degree 1.

7 Theorem. Suppose that A is regular. If dim E = 2, then A and B are iso-
morphic. If dim E = 1, then there exists a non zero-divisor g in As+1 which is
normalizing and such that B ∼= A/(g). Let λ be the class of L in the Picard group
of E. Then

1. if r = 3, then (σ − 1)2λ = 0;

2. if r = 2, then (σ − 1)(σ2 − 1)λ = 0.

Conversely, given a triple (E, σ, L) where L satisfies equation (7), one constructs a
regular algebra as follows. If r = 2 or r = 3 and if π : E → Pr−1 is the morphism
determined by the global sections of L and T is the tensor algebra on H0(P,OP(1)),
then we obtain an epimorphism T → B. If I is the graded ideal generated by the
homogeneous part of degree s = 5− r of the kernel of this morphism, then T/I is a
regular algebra of dimension 3.

These correspondences are almost each others inverse, except that if the automor-
phism σ of a triple with dim E = 1 can be extended to the whole ambient space,
then the resulting regular algebra is the same as for the triple with the ambient
space as scheme and the unique extension of σ as automorphism.

Recently all 3-dimensional regular algebras (including those not necessarily gener-
ated in degree 1) were classified in [63, 64].

8 Examples. Let us first consider the case (r, s) = (2, 3). Let A be the enveloping
algebra of the Heisenberg Lie algebra. Thus A is generated by two degree 1 elements
x and y which satisfy the relations

x(xy − yx)− (xy − yx)x = 0 = y(xy − yx)− (xy − yx)y

The matrix M becomes (
yx− 2xy x2

−y2 2yx− xy

)

If we use (x1 : y1; x2 : y2) as coordinates in P1 × P1, then

M̃ =

(
y1x2 − 2x1y2 x1x2

−y1y2 2y1x2 − x1y2

)

Since detM̃ = −2(x1y2 − x2y1)
2, the divisor E becomes the double diagonal in

P1×P1. Using the affine coordinate t = x/y in P1, E is given by the points (t, t+ ε)
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such that ε2 = 0 and the automorphism σ maps (t, t + ε) to (t + ε, t + 2ε). Thus σ
is the identity on the reduced curve but is non-trivial on the double diagonal.

Next, let us consider the case (r, s) = (3, 2). Let A be the 3-dimensional Sklyanin
algebra, i.e., the algebra depending on 3 parameters a, b, c ∈ k defined by:

f1 = cx2 + bzy + ayz

f2 = azx+ cy2 + bxz

f3 = byx+ axy + cz2

The corresponding multilinearizations are:

f̃1 = cx1x2 + bz1y2 + ay1z2

f̃2 = az1x2 + cy1y2 + bx1z2

f̃3 = by1x2 + ax1y2 + cz1z2

where the coordinates in P2×P2 are labeled as (x1 : y1 : z1; x2 : y2 : z2). The divisor
E is given by the zero locus of detM̃ where

M̃ =

cx1 bz1 ay1

az1 cy1 bx1

by1 ax1 cz1


Thus E is the cubic curve in P2 with equation

(a3 + b3 + c3)x1y1z1 = abc(x3
1 + y3

1 + z3
1)

It is easy to check that A is regular if not a3 = b3 = c3, or if at most one element in
{a, b, c} is zero. In that case,

Γ =
3⋂
i=1

ν(f̃i) ⊂ P2 × P2

is the graph of an automorphism σ of E. To compute σ(x, y, z) one must solve the
equations

cxx′ + bzy′ + ayz′= 0

azx′ + cyy′ + bxz′= 0

byx′ + axy′ + czz′= 0

for (x′, y′, z′). One then obtains that

σ(x, y, z) = (acy2 − b2xz, bcx2− a2yz, abz2 − c2xy)

Choosing (1,−1, 0) as origin for the group law on E, one finds that σ is just trans-
lation by the point (a, b, c).

9 The authors of [9] also show that every regular algebra of dimension 3 is left and
right noetherian. They prove that B is noetherian by a “reduction modulo a prime”
argument (or by the result of [11]) and then lift this property to A. In a second
paper [10], it is shown that a 3-dimensional regular algebra A is a finite module over
its center if and only if the automorphism σ has finite order. In order to describe
the other results of [10], we need some more definitions:
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1. The grade number of an A-module M is the infimum of all positive integers n
such that ExtnA(M,A) 6= 0. It is denoted by jA(M).

2. An algebra A is Auslander-Gorenstein resp. Auslander-regular of dimension d
if and only if

(a) injdim(A) = d <∞ resp. gldim(A) = d <∞;

(b) for every finitely generated A-module M , for any positive integer n and
any submodule N of ExtnA(M,A), we have jA(N) ≥ n.

3. If an algebra A is noetherian and has finite gkdim, then A is said to satisfy the
Cohen-Macaulay property if and only if for every finitely generated A-module
M , we have that

gkdim(M) + jA(M) = gkdim(A).

For example, if X is a smooth elliptic curve, σ ∈ Autk(X) and L is a very ample
invertible sheaf on X, then B = B(X, σ, L) is Auslander-Gorenstein of dimension 2
and satisfies the Cohen-Macaulay property [37, 84]. Moreover, as shown in [10], reg-
ular algebras of dimension 3 are Auslander-regular and satisfy the Cohen-Macaulay
property. Auslander-regular algebras are known to be domains [37] and so are regu-
lar algebras with global dimension and Gelfand-Kirillov dimension less than or equal
to 4, by [10].

10 Let us restrict to quadratic algebras from now on, i.e., r = 3. Before summa-
rizing the main results about the modules over A, we need some definitions. Let
M be a finitely generated (left) module over an arbitrary algebra. We say that M
is Cohen-Macaulay if pdim(M) = j(M). On the other hand, we call M a linear
module of dimension d, if M is cyclic and HM (t) = (1− t)−d.
For example, the d-dimensional linear modules over the polynomial ring
R = k[x0, . . . , xn] are of the form R/(f1, . . . , fn−d), where f1, . . . , fn−d are linearly
independent elements of R1. Linear modules of dimension 1, 2 and 3 are called point,
line and plane modules. Over a 3-dimensional quadratic regular algebra A, these
modules may be defined by their homological properties. Indeed, an A-module M
is isomorphic to the shift of a point, resp. line module if and only if M is Cohen-
Macaulay, e(M) = 1 and gkdim(M) = 1, resp. 2. The point modules of A corre-
spond to the points of E, for if p ∈ E, then we obtain a point module M(p) =

∑
i kei

by xi.ej = xi(σ
−j(p))ej+1. In general, if one defines a module as the quotient of A by

the submodule generated by all linear forms vanishing on a point p, then one gets a
module of finite length if p 6∈ E and M(p) if p ∈ E. Therefore, E is called the point
variety of A. Similarly, line modules correspond to lines in P(A∗1), for if a ∈ A1,
then the line l with equation a = 0 corresponds to the line module Ml = A/Aa. A
line module Ml maps onto a point module Np if and only if the point p lies on the
line l in the ordinary projective space! However, the automorphism σ complicates
the picture. Indeed, shifting a point module by 1 and chopping off at degree 0, one
gets the point module (Np[1])≥0 = Nσ−1(p) corresponding to the image of the original
point under σ−1. If the line l intersects E in three distinct points {p, p′, p′′}, then
one obtains the exact sequence

0 // Ml1[−1] // Ml
// Np

// 0
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where l1 is the line through σ−1(p′) and σ−1(p′′).

We refer to [1] for supplementary information about the above concepts.

11 Fix scalars α1, α2, α3 in k such that α1 + α2 + α3 + α1α2α3 = 0. The four-
dimensional Sklyanin algebra S = S(α1, α2, α3) is the quotient of the tensor algebra
on V = kx0 + kx1 + kx2 + kx3 by the ideal I generated by

x0xi − xix0 =αi(xjxk + xkxj)

x0xi + xix0 =xjxk − xkxj

where (i, j, k) is a cyclic permutation of (1, 2, 3). Thus S has 6 quadratic relations
f1, . . . , f6. The ring-theoretical properties of this algebra were studied in [57] using
the same methods as in [9]. Suppose that

{α1, α2, α3} ∩ {0, 1,−1} = ∅,

or that αi = 1, αj = −1 and αk 6∈ {0, 1,−1}. Then one can again define Γ ⊆ P3×P3

the common locus of zeros of the multilinearizations of the relations fi.

Let Ei ⊆ P3 be the image of Γ under the ith projection map. Then E1 = E2 is
the union of an irreducible non-singular elliptic curve E and 4 more points labeled
e0, . . . , e3. These special points are the only ones lying on infinitely many secant lines
of E, or alternatively, the only singular points on the pencil of quadrics containing
E. Since I2 consists of all f ∈ V ⊗V which vanish on Γ, we get that S is completely
determined by E and σ. Moreover, πi induces an isomorphism between Γ and Ei,
and σ = π1 ◦ π−1

2 is an automorphism of E1 which restricts to the identity on
{e0, . . . , e3} and to the addition with some point τ ∈ E on the elliptic curve.

Again point modules correspond to points of E1 and if M(p) =
⊕
i kei is the point

module corresponding to p ∈ E1 then xi.ej = xi(σ
−j(p))ej+1. If i denotes the

embedding of E in P3 and L the pull-back i∗OP3(1), then B = B(E, σ, L) is a
quadratic algebra generated by B1.

There is a natural homomorphism from S to B which is an isomorphism in degree
1. The kernel is generated by two central elements Ω1,Ω2 of degree 2.

The main theorem of [57] states that S is Koszul with Hilbert series (1 − t)−4 and
that {Ω1,Ω2} is a regular sequence, i.e. Ω1 is a non-zero divisor in S and Ω2 is a
non-zero divisor in S/(Ω1). Since S is also Frobenius, one gets that S is Gorenstein
and hence regular. Furthermore, S is Auslander-regular and satisfies the Cohen-
Macaulay property, because B is Auslander-Gorenstein of dimension 2 and satisfies
the Cohen-Macaulay property, cf. [37].

Note that there exists another way [65] to prove Auslander-regularity without using
the geometric ring B.

Let us mention what happens in the so-called degenerate cases: S(α1,−1, 1) is not
regular, S(0, α2 6∈ {0, 1}, α3) and S(0, 0, 0) are iterated Ore-extensions and have a
PBW-basis in the sense of [50], hence they are regular noetherian domains of global
dimension 4.

We finish this paragraph with some results of Stafford’s [60], who analyses all al-
gebras on four generators with six quadratic relations that map onto the geometric
ring B and have the same good properties as S. By carefully translating these
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properties to the Koszul dual, one may exhibit a 1-parameter family of isomorphism
classes and show, along the way, B to be Koszul.

12 The module theory of the 4-dimensional Sklyanin algebra may be found in [38].
Point, line and plane modules may again be characterized homologically: a module
M is the shift of a plane, resp. line, resp. point module if and only if M is Cohen-
Macaulay, e(M) = 1 and gkdim(M) = 3, resp. 2, resp. 1. Plane modules correspond
to hyperplanes in P3 and line modules to secant lines of E. A point p of E1 lies on a
secant line l of E if and only if the corresponding line module M(l) maps onto the
corresponding point module M(p).

The kernel of this map is again the shift of a line module. Indeed, let l∩E = {p, q},
then

1. if l ∩ {e0, e1, e2, e3} = ∅, then

0 // M(p + τ, q − τ )[−1] // M(p, q) // M(p) // 0

2. if l ∩ {e0, e1, e2, e3} = ei, then

0 // M(p− τ, q − τ )[−1] // M(p, q) // M(ei) // 0

If the order of τ is infinite, then for each positive integer k there are k+1-dimensional
simple S-modules and all such modules are quotients of line modules, cf. [58]. On
the other hand, if τ is a point of (finite) order n, then every simple S-module is
of dimension at most n and S is a finite module over its center (cf. [56]). The
generators and relations of the center of S (and also of the 3-dimensional Sklyanin
algebra) were determined in [59]. The generators are certain liftings of generators
of the center of the geometric ring B, together with the members of the regular
sequence.

13 A new class of 4-dimensional regular algebras has been described in [66]. Sup-
pose that a non-singular quadric Q and a line L in P3 meet in two distinct points.
Let σ be an automorphism of Q ∪ L such that

1. σ(Q) = Q and σ(L) = L;

2. the restriction of σ to Q ∪ L is the identity;

3. the restrictions of σ to both Q and L are restrictions of a linear automorphism
of P3;

4. σ is not the restriction of a linear automorphism of P3.

One defines an algebra A in terms of these geometric data as follows. If V is the
vector space of linear forms on P3, then A is the quotient of the tensor algebra on
V by the ideal of all bilinear forms vanishing on the graph of σ. A suitable choice
of coordinates allows to assume that L = ν(x1, x4) and Q = ν(x1x4 + x2x3). There
are two cases to be considered:
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1. if σ preserves the two rulings of the quadric, then A is generated by x1, . . . , x4

with defining relations

x2x1 = αx1x2 x3x1 = λx1x3 x4x1 = αλx1x4

x4x3 = αx3x4 x4x2 = λx2x4 x3x2 − βx2x3 = (αβ − λ)x1x4

for some non-zero α, β, λ ∈ k with the property that λ 6= αβ.

2. if σ interchanges the rulings on the quadric, then A is generated by x1, . . . , x4

with defining relations

x3x4 = αx1x3 x2x4 = λx1x2 x2
4 = αλx2

1

x4x2 = αx2x1 x4x3 = λx3x1 βx3x2 − x2x3 = (λ− αβ)x2
1

for some non-zero α, β, λ ∈ k with the property that λ 6= αβ.

The algebra A is determined by these geometric data. Conversely, the defining
relations determine the geometric data. Indeed, the graph of σ is precisely the zero
locus of the multilinearizations of the relations. The family of algebras which may
be defined in this way contains Mq(2), the quantum 2× 2 matrices. Any algebra A
of this family is an iterated Ore-extension and hence a noetherian domain of global
dimension 4. Its Hilbert series is (1− t)−4 and it is a Koszul algebra. Up to scalar
multiples, there is a unique element Ω in A2 which vanishes on the {(q, σ(q)) with
q ∈ Q}, but not on those with x ∈ L. This element Ω is normal and A/(Ω) is
isomorphic to B(Q, σ,L) where L = i∗OP3(1) if i denotes the embedding Q ↪→ P3.
Consequently A is Auslander-regular and satisfies the Cohen-Macaulay property.

Again the properties of the point, line and plane modules are very similar to the
previous cases. Plane modules correspond to planes in P3, point modules to points
of Q∪L and line modules to lines on Q or lines intersecting L. Every point module
is the quotient of a line module and the kernel is again the shift of a line module.
For instance, if a line l contains at least 3 distinct points p, q, r of Q ∪ L, then:

0 // M(l′)[−1] // M(l) // M(p) // 0

where l′ is the line through σ−1(q) and σ−1(r).

14 Another class of 4-dimensional regular algebras consists of central extensions
of 3-dimensional regular algebras, i.e., regular algebras D of dimension 4 which
have a central regular element z of degree 1 such that D/(z) is isomorphic to a
3-dimensional regular algebra A. Note that any normal regular element may be
turned into a central one via a twist. Given a 3-dimensional regular algebra A, all 4-
dimensional regular algebras D and surjective homomorphisms θ : D → A such that
Ker θ is generated by one central regular element of degree 1 are classified in [33].
This is accomplished by an analysis of when the property of A being Koszul may
be lifted to D. Other properties like being noetherian, being a domain, Auslander-
regularity [40] and the Cohen-Macaulay property [37] may also be lifted.

Moreover, it is shown that the first and the second projection of ΓD coincide and
that ΓD is the graph of an automorphism σD of the point variety PD of D. It turns
out that PA = PD ∩ ν(z), that σD = σA on PA and that σD is the identity on



Noncommutative Algebraic Geometry: from pi-algebras to quantum groups 581

PD∩ν(z)c. If A is elliptic, then D is determined by its geometric data. It is possible
to determine PD for each generic member of each family of 3-dimensional regular
algebras. If M is a line module over D, then z annihilates M or z acts as a non-zero
divisor. In the first case M is a line module over A, in the second case we get that
M/zM is a point module over A. For each point p ∈ PA, there is a pair of lines (not
lying in ν(z)) through p which varies continuously with p.

15 Again let Q be a non-singular quadric in P3 and τ ∈ Aut(Q). In [67], the
authors classify all 4-dimensional regular algebras R with Hilbert series (1 − t)−4

which map onto B = B(Q, τ,OQ(1)). It follows that R must have a normal element
Ω of degree 2 and hence that R is a noetherian domain, Auslander-regular and
satisfying the Cohen-Macaulay property. If P denotes the point scheme of R, then
Q ⊆ P and σ|Q = τ .

If P 6= Q, then R is determined by the geometric data (P , σ). These algebras
are classified by twisting them to an algebra R′ mapping onto the homogeneous
coordinate ring of Q and classifying the algebras R′ and their possible twists. One
finds that either P = P3, or P is the union of the quadric Q and a line L such that
L∩Q is 2 points counted with multiplicity, or Pc = Q and P contains a double line
L of multiple points on Q. In the first case, the line modules correspond to lines in
P3, in the latter two cases the line modules are parametrized by lines on Q or lines
which intersect L. Moreover, there is a regular normalizing sequence {v1, v2} ⊂ R1

such that L = ν(v1, v2). All these algebras are twists of the algebras studied in [33].

If P = Q, then R cannot be studied in the previous way. Actually, R is the
first example of an algebra not determined by its geometric data since these data
determine B. However, R may be twisted (by a twisting system) to a member of a
1-parameter family. This family is the subject of [78]. It turns out that it consists
of finite free modules over their center, which is a polynomial ring in 4 variables.
They are also closely related to Clifford algebras. For the first time also, there are
left line modules over R which do not correspond to right line modules, although
the isomorphism classes of left and right line modules still correspond.

The authors of [67] also prove the next general theorem:

16 Theorem. Let A = T (A1)/(W ) be a quadratic noetherian algebra, with W ⊂
A1 ⊗ A1. Suppose that A is Auslander-regular of global dimension 4 and satisfies
the Cohen-Macaulay property. Let

πi : P(A∗1)× P(A∗1) −→ P(A∗1)

be the ith projection map. Then

1. the automorphism classes of left (and right) point modules over A correspond
to the graph Γ of an automorphism σ of some subvariety P of P(A∗1);

2. σ corresponds to shifts, i.e., (M(p)[1])≥0 = M(σ−1(p));

3. if πi(ν(W )) contains 2 distinct points for both i = 1 and i = 2, then Γ is
precisely the set of closed points of the scheme ν(W ).
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17 The examples of 4-dimensional regular algebras we have met so far have very
nice properties, although some of these properties were lost in the previous example.

So, how does a generic 4-dimensional regular algebra behave? In [69], M. Van den
Bergh showed that such an algebra has at most 20 point modules and a 1-dimensional
family of line modules and introduced a class of examples, which have precisely 20
point modules.

In fact, it suffices to consider a symmetric n×n-matrix Y with entries in k[y1, . . . , yn]1,
and to construct the Clifford algebra A = A(Y ) with generators x1, . . . , xn, y1, . . . , yn
and relations

xixj + xjxi =Yij

xiyj − yjxi = 0

yiyj − yjyi = 0

If one writes Y = Y1y1 + . . . Ynyn where the Yi are symmetric n×n matrices over k,
then A is regular of global dimension n if and only if the quadrics corresponding to
the Yi have no common intersection point, cf. [31]. In that case, A is generated by
the xi only, is a finite module over its center and hence noetherian.

Such graded Clifford algebras have a two-dimensional family of line modules. More-
over, they are determined by their geometric data, cf. [68].

On the other hand, this is the first example we encounter of a regular algebra
with line modules which do not map onto any point module. In [68], there is also an
example of a deformed graded Clifford algebra which has precisely one point module
and a 1-dimensional family of line modules.

The geometry of points and lines is thus clearly insufficient in the general case. A
classification of all 4-dimensional regular algebras seems hopeless at the moment.

18 What is known about regular algebras of higher dimensions? Given an elliptic
curve E and some suitable point τ on it, there is definition [48] of a n-dimensional
Sklyanin algebras for any n ≥ 3. It is interesting to note that the point modules
over this algebra correspond to the points of E when n ≥ 5.

If g is a finite-dimensional Lie-algebra, then the homogenization of its enveloping
algebra U(g) is a graded algebra H(g) which has a central regular element t of degree
1 such that

H(g)/(t − 1) ∼= U(g) and H(g)/(t) ∼= S(g),

where S(g) is the symmetric algebra on g. More details about homogenizations may
be found in [39]. The latter isomorphism yields that H(g) is a regular algebra of
dimension dimkg + 1. If f is a one-dimensional representation of a codimension d
Lie subalgebra h of g, then the homogenization of

U(g)⊗U (h) Cf

is a d-dimensional linear module over H(g) and all d-dimensional linear modules
have this form ([32, 34]). The point variety has a subvariety such that every line
(not annihilated by t) intersects this variety.
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19 Several authors have investigated the homological properties of regular algebras.
Let us mention that results are known about dualizing complexes ([84]), about the
residue complex ([2, 3, 85]) and about injective resolutions ([4]).

Suppose now that R has finite global dimension d and satisfies the Gorenstein con-
dition. From results in [12], it follows that the cohomology groups of R are then
completely similar to those of projective d − 1 space:

• H0(π(R)) ∼= R;

• Hj(π(R)) = 0 for all j 6∈ {0, d− 1};

• Hd−1(π(R)) ∼= R∗[l], where R∗ =
⊕
n Homk(R−n, k) is the graded dual of R.

The converse also holds:

20 Theorem. [76] Let R be a noetherian connected k-algebra with finite global
dimension. Suppose there exists a natural number d and an integer l such that
H0(π(R)) ∼= R, H j(π(R)) = 0 for all j 6∈ {0, d − 1} and Hd−1(π(R)) ∼= R∗[l]. Then
d = gldim(R) and R is Gorenstein.

We conclude with a result proved independently in [86] and [82]. If the connected
noetherian k-algebra R is Gorenstein, then Serre-duality holds for R.

21 Theorem. Let R be a Gorenstein-algebra of finite global dimension d (with
Extd(k,R) = k[l]). Then:

1. for any finitely generated graded R-module M , the natural pairing

Hom(π(M), π(R)[−l])×Hd−1(π(M)) −→ Hd−1(π(R)[−l]) ∼= k

is a perfect pairing of finite-dimensional vector spaces for any finitely generated
graded R-module M ;

2. for any positive integer i, the vector space Exti(π(M), π(R)[−l]) is isomorphic
to the dual vector space Hd−1−i(π(M))′ of Hd−1−i(π(M)).

References

[1] K. Ajitabh. Modules over elliptic algebras and quantum planes. to appear.

[2] K. Ajitabh. Regular algebras of dimension 2. to appear.

[3] K. Ajitabh. Regular algebras of dimension 3. to appear.

[4] K. Ajitabh, S. P. Smith, and J. J. Zhang. Injective resolutions of Auslander-
Gorenstein rings. to appear.

[5] M. Artin. On Azumaya algebras and finite dimensional representations of rings.
J. Algebra, 2:532–563, 1969.



584 A. Verschoren – L. Willaert

[6] M. Artin. Specialization of representations of rings. Int. Symp. on Algebraic
Geometry, Kyoto 1977. 237–247, Tokyo 1978.

[7] M. Artin. Geometry of quantum planes. Cont. Math., 124, 1992.

[8] M. Artin and W. Schelter. Graded algebras of global dimension 3. Adv. in
Math., 66:171–216, 1987.

[9] M. Artin, J. Tate and M. Van den Bergh. Some algebras associated to auto-
morphisms of elliptic curves. In: The Grothendieck Festschrift, volume 1, pages
33–85. Birkhäuser, 1990.
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