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Abstract

The central topic of this paper is the problem of turning points. The
paradigm is the stationary unidimensional Schrödinger equation, with various
potentials. The first step is to transform the linear equation of second order
into a Riccati equation. The non standard analysis and the theory of canards
allow to compute the first eigenvalue and the corresponding solution. With
a change of variables, it is possible to reduce the problem of the n-th energy
level to the (n − 1)-th. The first result (already proved by others methods)
of the paper is an algorithm to compute the asymptotic expansion of the
n-th energy level in powers of the small parameter ~. The second (new)
result is an algorithm to compute an expansion of the corresponding solution.
This expansion is a fraction so that the singularity is resolved. For example
it is possible to determine the zero of the eigenfunctions of the Schrödinger
operator up to any power of ~. The algorithms are given with Maple programs,
and illustrated with a double symmetrical well as potential.

1 Introduction

A classical problem is the stationary unidimensional Schrödinger’s equation

−~2ψ′′ + V (q)ψ = E ψ (1)

where E is the energy, and V (q) the potential. The Planck’s constant ~ is small,
and in this paper it will be supposed infinitely small, in the sense of Non-Standard
Analysis. The usual question is to find the values of the parameter E for which
there are bounded solutions (or L2 solutions). The problem is studied for various
potentials, for example :

• The simple well V (q) = q2 give a harmonic oscillator.

• All the functions V (q) with a unique quadratic minimum give almost the same
behaviour.
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• The double symmetric well as V (q) = (q2− 1)2, is studied for the exponential
splitting of the energy levels (see [14, 18]).

• All the potentials V (q) with quadratic or degenerated minima, and such that
V (∞) = +∞.

Various methods can be used (see [12, 13, 8, 7, 16, 17],. . . ) : the WKB-method
gives asymptotic formal divergent expansions in powers of ~. We can sum this
expansion with the Borel summation and we can define an exact solution with the
theory of resurgents functions. Other asymptotic methods are also developed around
the problem of turning points.

In [4], J.L. Callot transform the second order linear equation (1) into a first order
Riccati equation

εẋ = −x2 + V (t) − E (2)

where ψ′ = 1

ε
xψ ~ = ε q = t ˙=

d

dt

If ψ is in L2(R), it is obvious that x = εψ′/ψ has the sign of (−t) outside a given
interval. In [4], J.L. Callot gave a weaker constraint on the wanted solutions : he
searches the functions ψ such that, the maximum of ψ is reached in the interior of
some standard given, not too small, interval. Such functions are called “visibles”
and they match the canards (with or without poles) of equation (2) (see [4]). In the
case of a simple well as potential, the work of J.L. Callot shows with non standard
methods (see [2, 10],. . . ) the existence of the energy levels, their exponentially small
thickness, and he computes the first term of their asymptotic expansion (see [4, 14]).

In this paper, I will give an effective algorithm (and his program in Maple lan-
guage) to compute the asymptotic expansion of the n-th energy level, for any po-
tential with quadratic minima. Moreover, I will compute an expansion of the corre-
sponding solution x of equation (2). This expansion will be not a series of powers
of ε. It will look like a fraction, and this structure allows to understand the turning
point, better as the classical ones : the singularity at the minimum of the potential
will be resolved, and we could for example, compute an expansion in powers of ε1/2

of the zeroes of the solution ψ.

One of the known question in the study of slow-fast vector fields in R2 is the
existence of canards∗ in one parameter family

εẋ = ε
dx

dt
= f(x, t, e) ε ' 0 ε > 0

where the slow curve L( ◦f(x, t, e) = 0) has a singularity. In the generic case, this
singularity is the transverse intersection of two branches, as in figure† 1.

∗A canard is a solution of a slow-fast vector field which first go along an attractive branch of
the slow curve, next go along a repulsive branch (see [2, 10]).
†In figures 1 to 4, I took one specific equation which is interesting only for the pictures. The

reader has to look for the qualitative behaviour of the curves and for the order of magnitude of
the distances. The horizontal axis is the t-axis, and the vertical one is the x-axis.
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Figure 1: A canard without poles. (The dashed line is the slow curve).

The two following theorems are proved :

• There exist values of the parameter e called “canards-values” for which the
equation has canards solutions. See [2, 11]

• The canards values and the canards solutions have ε-shadows expansions and
there are algorithms to compute this expansions. See [9, 15, 6].

With non standard methods, we prove the theorems, and after we can compute the
ε-shadows expansions with formal identifications. With resurgents methods, we first
compute the formal expansions, we prove that this expansions are Gevrey, and the
Borel-summation of the series are the exact canards solutions.

If f(x, t, e) is a polynomial of degree 2 in x, the equation is a Riccati-equation,
the point x = ∞ is a regular point : the change of variables x = 1/u moves this
point to the origin u = 0 and the vector field in u is C∞ even at the point u = 0.
In fact the vector fields in x and in u are two charts of a vector field on the cylinder
R×S1. Therefore, it is allowed to follow a solution when it goes to infinity, and the
solutions can have poles. I will generalize the two theorems above. For that, I will
answer the two questions below (see fig. 2) :

• Do exist some canards-values ēn of the parameter e with canards-solutions
with n poles near the bottom of the well ?
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Figure 2: A canard with 2 poles.

• Do exist ε-shadows expansions of ēn and of the corresponding canards-solu-
tions ? There exist some algorithm to compute them ?

J.L. Callot answer the first one (see [3]) in a particular case with the local model
of Riccati-Hermite equation :

εẋ = −tx + ex2 + ε

It is easy to generalize his results for all Riccati equations with a slow curve consti-
tuted into two transversal branches (see [1]). With the proof of Callot, we have also
the first term of the ε-shadow expansion of ēn.

In this paper, I will give the full expansion of ēn in powers of ε. I will also give
the expansion of the corresponding canards-solutions. However, this expansion is
not a series in powers of ε. It is written with fractions because we have to take into
account the n poles in the

√
ε-neighborhood of the bottom of the well. Moreover, I

will not use the proofs of Callot : I will prove his results easier and in the way of
my own proofs.

The semi-classical method to solve the problem with poles is more difficult : The
series one have to sum have singularity at the bottom of the well. So one can not use
a Borel summation, and one have to use all the details of the theory of resurgents
functions (see [7, 8]).

2 Notations-Hypotheses

I will study a family of one parameter e of Riccati equations :

εẋ = c (x− a) (x− b) + εd (3)

where ε is a positive infinitesimal fixed real number, a, b, c and d are functions
of the time t and the parameter e. I will consider these equations on the domain
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D =]t−, t+[×]e−, e+[ where t− and t+ are two standard real numbers. Here is the
list of the assumptions on the functions a, b, c, d :

• On D, the functions a, b, c and d are of class C∞ (with respect to the variables
t and e). It is possible to consider that these functions are only of class Cn,
with a given n (not necessarily the same for all functions), but, for simplicity
I will not do it.

• On D, the functions a, b, c, d, ȧ and ḃ are S0 (i.e. they have a continuous
shadow). They have a ε-shadows expansion. It will be still possible to suppose
that these expansions are valid only until a given order, but for simplicity, I
will not do it.

• The function c is appreciable on all the domain D. Its sign is constant. (Geo-
metrically, this hypothesis shows that the slow curve doesn’t intersect the axe
of infinity).

If necessary, we make the change of variables x→ −x, so that, on D we have
c > 0, c 6' 0.

• For each e in ]e−, e+[, there exists a unique t0 in ]t−, t+[ such that a(t0, e) =
b(t0, e) (The two branches La (x = ◦a) and Lb (x = ◦b) of the slow curve have
a unique intersection with abscissa ◦t0).

• Moreover, ȧ(t0) 6' ḃ(t0) (So this intersection is transverse).

• c(t0)ȧ(t0) > c(t0)ḃ(t0), so La is attractive for ◦t < ◦t0 and repulsive for ◦t > ◦t0.
A canard solution will go along La.

Definition 1 Let n be a natural nonnegative standard number. A solution x̄ of the
equation (3) is a canard with n poles if and only if there exist standard numbers te
and ts such that :

• te 6∼< t0 6∼< ts

• If ◦t ∈ [te, ts] and ◦t 6= ◦t0, then x̄(t) ' a(t).

• The function x̄ has n poles in the halo of t0.

Definition 2 The index of the equation (3) is the real number

k =
d(t0)− ȧ(t0)

ȧ(t0)− ḃ(t0)

Remark The polynomial c(x−a)(x− b)+ εd, of degree two in x is given with four
coefficients a, b, c and d. That is one more than necessary. Only c, c(a + b) and
cab+ εd are useful. For example, the equation

εẋ = x2 + (t+ ε)x+ εe

can be written in the two forms

εẋ = (x+ ε)(x+ t) + ε(e− t) or εẋ = x(x+ t+ ε) + εe
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However, I have a bent for the functions a, b, c and d which allows more elegant
computations.

There is some consequences of this remark : the same equation has several forms.
The properties of the functions a, b, c, and d will be called intrinsic if they do not
depend on the choice of the form. For example, the properties of ◦a and ◦b are
intrinsic. The point t0 is not intrinsic, but ◦t0 is. The hypothesis ȧ(t0) 6' ḃ(t0)
is intrinsic only because we have supposed that ȧ and ḃ are S0. The index is not
intrinsic, but his standard part is.

3 Main propositions

3.1 Statements and proofs

Proposition 1 Suppose that the function d − ȧ is not infinitesimal in the domain
D. Then, the change of variables

x = a − ε
d − ȧ
c(y − b) (4)

transform the equation
εẋ = c (x− a) (x− b) + εd (3)

into the other equation of the same type

εẏ = c (y − a1) (y − b) + εd1 (5)

where the functions a1 and d1 are given by

d1 = d + (ḃ− ȧ)

a1 = a − ε

c

(
ḋ− ä
d− ȧ −

ċ

c

)

Proof It is a straight forward computation which substitute (4) in (3). �

Remark The hypothesis “d− ȧ is not infinitesimal in D” is not intrinsic. But the
weaker hypothesis d(t0) − ȧ(t0) 6' 0 is. And this weaker hypothesis is enough to
prove the existence of a standard domain around t0 where the change of variable is
valid.

Proposition 2 Let n ≥ 1. A solution x̄(t) of (3) is a canard with n poles if and
only if it is transformed by the change of variables (4) into a canard ȳ(t) with n− 1
poles of (5).

Proof • Let ȳ a canard of (5) with n−1 poles. Let x̄ the corresponding solution
of (3). The formula (4) shows that the poles of x̄ are the t where ȳ(t) = b(t).
We will count this values with a qualitative geometric study (see figure 2) of
the equation (5) in the interval [te, ts]:
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– The points t such that ȳ(t) = b(t) are all in the halo of t0.

– At this points, the function ˙̄y − ḃ = d1 − ḃ = d − ȧ has always the same
sign. So the curves ȳ(t) and b(t) have transversal intersections always in
the same direction.

– For geometrical elementary reasons (see figure 2), there is exactly n in-
tersections of the curves ȳ(t) et b(t).

• Conversely, if x̄ is a canard with n poles, ȳ − b is vanishing exactly n times,
and ȳ has exactly n − 1 poles.

�

3.2 Geometrical meaning

The change of variables (4) is a sequence of elementary geometrical change of vari-
ables I will explain. All are homographic so that all the equations are Riccati
equations.

• First we use a magnifying glass around the branch La of the slow curve :

x = a + εu which gives us

εu̇ = c(a− b)u+ d − ȧ + εcu2 (6)

The slow curve of this new Riccati equation is u = ◦
(

d−ȧ
c(b−a)

)
. She has one

simple pole at t = ◦t0. If x̄ is a canard with n poles, the corresponding
solution ū of (6) go along the slow curve and has exactly n poles in the halo
of t0.

• Now we are going to angular coordinate ϕ (modulo π) on the cylinder of the
Riccati equation :

u = tanϕ gives εϕ̇ = c(a− b) sinϕ cosϕ+ (d − ȧ) cos2 ϕ+ εc sin2 ϕ

We have now a slow curve with two branches : the first is ϕ = ◦arctan d−ȧ
c(b−a)

,

and the second ϕ = π/2. They intersect at ◦t0. If x̄ is a canard with n poles,
the corresponding solution ϕ̄ is a canard. It intersect n times the axis ϕ = π/2
(the poles of x̄). At this points, the sign of ϕ̇ = c is always the same. When
ϕ = 0, the sign of ϕ̇ = d − ȧ is always the same, so we have exactly n − 1
intersections between ϕ̄ and the axis ϕ = 0, all of them in the halo of t0.

• Now we put ϕ = ψ + π/2 to rotate the cylinder with an angle of π/2. It is
possible to write directly with the variable u :

u = −1/v gives εv̇ = −c(a− b)v + (d − ȧ)v2 + εc

The slow curve has two branches : v = 0 and v = ◦
(
c(a−b)
d−ȧ

)
the canards are

going along. The solution v̄ corresponding to x̄ is a canard with n− 1 poles.
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• For aesthetic reasons, we use one more change of variables, so that the slow
curve has the same equation as initially :

v =
c(y − b)
d− ȧ

The change of variables (4) of the proposition 1 is the composition of all the changes
of variables above.

3.3 Index

Lemma 1 From the equation (3) to the equation (5), the standard part of the index
is decreasing of 1.

Proof It is a straight forward computation :

◦
(
d1(t0)− ȧ1(t0)

ȧ1(t0)− ḃ(t0)

)
= ◦

(
(d(t0) + ḃ(t0)− ȧ(t0))− ȧ(t0)

ȧ(t0)− ḃ(t0)

)

= ◦
(
d(t0)− ȧ(t0)

ȧ(t0)− ḃ(t0)

)
− 1

�

4 Theorems

4.1 Canards without poles

In addition to the hypothesis of paragraphs 2 and 3, we suppose that the standard
part of the index, as a function of the parameter e, has a simple zero at e0. The
reason we put such a hypothesis is that the equation has to depend of the parameter.

To study the solutions without poles, we can now ignore that the equation (3)
is of Riccati type. We apply non standard techniques and theorems (developed in
[2, 9, 5]) to prove

Theorem 1 If the equation (3) has a canard solution x̄ without poles for some value
ē of the parameter, then :

1. The index k of (3) is infinitesimal, so ē ' e0.

2. The real number ē has an ε-shadow expansion, i.e. there exist standard real
numbers e0, e1,. . . ep, . . . such that, for any standard integer p,

ē = e0 + e1ε+ e2ε
2 + . . .+ epε

p + o/εp

where o/ is an infinitesimal real number.
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3. The function x̄(t) has an ε-shadow expansion, i.e. there exist standard func-
tions x0(t), x1(t),. . .xp(t), . . . such that, for any standard integer p,

x̄(t) = x0(t) + x1(t)ε+ x2(t)ε
2 + . . .+ xp(t)ε

p + o/εp

where o/ is an infinitesimal function of t.

4. It is possible to compute the two expansions above with an identification in the
equation (3) where e and x are substituted by formal series.

Conversely, there exist some values of parameter e for which equation (3) has canards
without poles.

Remark I put emphasis on the feasibility of the computation of the expansions
(see [6] and below, paragraph 5.2)

4.2 Canards with poles, expansion of canard-values

Let n be a standard positive fixed integer.

Suppose, as before, that the standard part of k − n , as a function of e, has a
unique simple zero in the studied domain.

Theorem 2 If the equation (3) has a canard x̄n(t) with n poles, for some value ēn
of the parameter e, then :

1. The index k of (3) satisfy ◦k − n ' 0.

2. The value ēn has an ε-shadow expansion.

3. One can compute this expansion with a formal identification of series.

Conversely, there exist some values of parameter e for which equation (3) has canards
with n poles.

Proof The idea is : do n times the change of variables (4); apply theorem 1 of
canards without poles to the result; use the lemma 1 to watch the index.

It would be enough if the hypothesis on d(t0) − ȧ(t0) is satisfied at each step.
This hypothesis can be written ◦ki 6= 0 where ki is the index of the i-th equation.
To prove that ◦ki 6= 0, we will prove successively :

• If the index k is negative, non infinitesimal, there is no canard without poles
(it is a corollary of theorem 1).

• If the index k is negative, non infinitesimal, there is even no canard with n
poles. We can easily prove that by induction with propositions 1 and 2 and
lemma 1.
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Figure 3: The trajectory y0 is caught by ȳ and y = −∞.

• If k ' −1/2, one will prove that a solution y0 which go along the attractive
branch La for t 6∼<t0 has no pole, even in the halo of t0 :

We fix the parameter e (with index k near −1/2), and we introduce a new
parameter h to study equation

εẏ = c(y − a)(y − b) + ε(d+ (ȧ(t0)− ḃ(t0))h) (7)

The index is k + h. With theorem 1, we find a canard without pole ȳ and the
corresponding value h0 ' 1/2 of equation (7).

We can suppose that the initial condition of ȳ is standard, between the two
branches of the slow curve (see figure‡ 3). It is easy to see that, in some
standard neighborhood of t0, the curves y = ȳ(t) and y = −∞ make a trap,
so that y0 has no pole.

• The curve y0 above intersect the curve y = b at most one time in the halo
of t0. That is because in the halo of t0, when the function y0 − b vanish, his
derivative d − ḃ has always the same sign.

• If k ' 1/2, a solution x0 which go along the attractive branch La for t 6∼<t0
has at most one pole in the halo of t0. The reason is that, after the change of
variables (4), the corresponding solution y0 will satisfy the above conditions,
and the poles of x0 are the zeros of y0 − b.

• If k is infinitesimal, we will prove that there is no canard with poles.

Let x̄ be a canard, solution for h = 0 of equation

εẋ = c(x− a)(x− b) + ε(d+ (ȧ(t0)− ḃ(t0))h) (8)

with an initial point in the halo of La. Let x0 be the solution of equation (8)
for h = 1/2, with the same initial point. According to the paragraphs above,

‡In the case c < 0, one have to make the figures upside down
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x0 is not a canard and has at most one pole in the halo of t0. At a point t
where x̄(t) = x0(t), we have ˙̄x − ẋ0 < 0, so x0 is a trap for x̄ (see figure 4).
Because x̄ is a canard, we can see that he has no pole.

Figure 4: The trajectory x̄ is caught by x0. In fact, the trajectories are plotted on the covering
of the cylinder.

The last assertion above prove that, when there is a canard with pole, it is
possible to do the change of variables (4). So the idea of the proof, given first is
valid. �

4.3 Expansion of canards with poles

Theorem 3 If the equation (3) has a canard x̄n(t) with n poles, for some value ēn
of the parameter e, the canard with poles has an expansion :

x̄n = a+
−ε(d− ȧ)/c

−b+ a1 +
−ε(d1 − ȧ1)/c

−b+ a2 +
−ε(d2 − ȧ2)/c

−b+
. . .

+
−ε(dn−1 − ȧn−1)/c

−b + z

(9)

• where the ai and di are given by induction by :

ai+1 = ai −
ε

c

(
ḋi − äi
di − ȧi

− ċ

c

)

di+1 = di + (ḃ− ȧi)

• where the expansion of theorem 2 is substituted to e,
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• where z is a ε-shadow expansion computed with an identification of formal
series.

Remark All the coefficients of the series above are regular at ◦t0; the poles of the
canard are readable on the explicits quotients.

Proof It is only an application of the preceding theorems : one use n times the
change of variables (4); in the result, one compute with formal identification the
expansion of the canard without poles z; one use the reverse change of variables. �

Remark If we make the formal divisions in the formula (9), we obtain an expansion
of x̄n of this type :

x̄n = ◦a + x1ε+ x2ε
2 + . . . + xpε

p + o/εp (10)

but the xi(t) have poles at ◦t0.
In fact, this expansion (10) may be obtained by direct identification of formal

series. But, first it is not possible to characterize the canards-values ēn by this
method, second, the expansion doesn’t give any approximation on the solutions in
neighborhood of t0 of size of order

√
ε.

5 Examples and effective computations

5.1 The simplest example

In this paragraph, I will only illustrate the theory above on a very well known
example : the Hermite equation

d2X

dT 2
− T

dX

dT
+ eX = 0

and the asymptotic behaviour of the solutions at infinity.
To move the problem from infinity to visible domain, we use a macroscope on the

variables T and X. To have a Riccati equation, we do the usual change of variable.
So T = t/

√
ε and x = X

dX/dt
give the slow-fast Riccati equation§

εẋ = ex2 − tx+ ε = e(x− t/e)x+ ε (11)

We put
a = t/e b = 0 c = e d = 1

This functions satisfy all the hypothesis of the paragraphs above, provided that e is
appreciable. An easy computation give e−1 for index. The inductive computations
of ai and di are here exceptionally simple and give

ai = t/e di = 1− i/e
§The change of variable x = y + t/2e gives the equation εẏ = ey2 − t2/e+ ε(1− t/2e) which is

the Ricatti equation related to the quadratic-potential Schrödinger equation.
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To have a canard solution with n poles of equation (11), we know that the index
must satisfy e ' n+ 1. The n change of variables give

εż = e(z − t/e)z + ε(1− n/e)

The general method of this paper consist now to substitute formal series to e and z
and to identify the formal series. Here, we have an exceptional case : the expansions
have a unique nonzero term : for any standard integer p, we have :

ēn = n+ 1 + o/εp z̄n =
t

n+ 1
+ o/εp

Of course, we can see directly that e = n + 1, z = t/(n + 1) is a canard without
poles, but we have to remember that there are others canards, exponentially near
this one (see [2]).

With the reverse change of variables of (4), we obtain the expansions of the
canards with n poles of (11) :

x̄n =
t

ēn
+

−ε
(
1− 1

ēn

)
/ēn

t

ēn
+

−ε
(
1− 2

ēn

)
/ēn

t

ēn
+

−ε
(
1− 3

ēn

)
/ēn

t

ēn
+

. . .

+
−ε

(
1− n

ēn

)
/ēn

z̄n

We can make it easier readable :

ēnx̄n = t +
−ε(ēn − 1)

t +
−ε(ēn − 2)

t +
−ε(ēn− 3)

t+
.. .

+
−ε(ēn− n)

ēnz̄n

Substituting ēn and z̄n with their expansions :

(n+ 1 + o/εp)x̄n = t+
−ε(n+ o/εp)

t +
−ε(n− 1 + o/εp)

t +
−ε(n− 2 + o/εp)

t+
.. .

+
−ε(1 + o/εp)

t + o/εp
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The particular solution

ēn = n+ 1 (n+ 1)x̄n = t +
−εn

t +
−ε(n− 1)

t+
−ε(n− 2)

t+
.. .

+
−ε
t

correspond to the Hermite polynomial of degree n+ 1.

5.2 Algorithms

In the general case, it is very hard to do the computation by hand. So I have written
a Maple-program to compute the expansions of theorems 1, 2 and 3, as soon as the
functions a, b, c, and d are given by explicit C∞ formulas. The program is given
below in appendix. I hope it is readable, and I know it is not the most speedy.

To show the complexity of the obtained formulas, I will give the results in the case
of the double symmetric well V (t) = (t2 − 1)2, for the third energy-value (canards
with two poles). The terms of magnitude ε3 will be neglected in the approximations.

e = 10− 19

2
ε − 555

32
ε2 + o/ε2

z(t) = − (t2 − 1) − 9t2 − 86t + 145

(t− 5)(3t− 5)(t + 1)
ε −

− 399t6 − 4218t5 + 14285t4 − 4252t3 − 89031t2 + 188918t− 159925

4(3t− 5)2(t + 1)3(t− 5)3
ε2 +

+ o/ε2

x(t) = −(t2 − 1) + ε
−e + 2t

−2(t2 − 1) + ε
2

−e+ 2t
+ ε

−e+ 6t + 4
ε

(−e + 2t)2

−t2 + 1 + z(t)

We have to remember that e and z(t) will be substituted by the series above.

Figures 5 and 6 show how good the approximations are :
The figure 5 is the graph of the function x(t) above, where the infinitesimal

functions o/ are replaced by 0, and ε = 1/25. The value of e is then 9.59225.
On the figure 6, I have plotted a numerical solution of the same equation, with the

arbitrary initial condition (−0.55, 0). The parameter e is selected with a dichotomic
process so that this numerical trajectory has two poles and go at best along the slow
curve. The value of e is then 9.587227...

On the figure 5 we can see that the truncated expansion of x is a very good
approximation of the solution in a standard neighborhood of the studied point t = 1.
But, we can also see that for t < −1/2 the approximation becomes very bad. In the
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Figure 5: Numerical plot of the expansion of a canard with poles.

Figure 6: Numerical plot of a canard with poles.
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change of variable of the main proposition, we supposed that d − ȧ didn’t vanish.
It is true near the studied point t = 1, but far from it, we have zeroes of this
function, at some level of the recursive computations. This zeroes can give poles in
the expansion of x.

Howewer, the trajectory in the figure 6 is drawed only for t > −0.55, and for
t ' −1 we should have poles, and the trajectory is almost surely not a canard.

6 Conclusion

6.1

If the functions a, b, c or d are not analytic, the series computed in this paper are
not Gevrey. But the results here are still available, although the theory of resurgents
functions is not available.

If the functions a, b, c or d are only Cr, the same computations are available up
to an order p. It is possible to determine p as in [15]. We obtain the “Matkowski
conditions”.

6.2

An open problem is now to understand the computations above when the number of
poles n is non limited, of order 1/ε. All the formulas stay true, but the expansions
are not easily understandable because the di are not limited, the ai are not all
infinitely near of a.

This is connected with the problem of the determination of canards in the equa-
tion

εẋ = α(t)x2 + β(t)x + γ(t)

where β2 − 4αγ can be negative appreciable.

Appendix : The Maple -program

#

# This is a program to compute the eps-shadow expansion of the
# canard with n poles in the Riccati equation
#
# eps dx/dt = c ( x - a ) ( x - b ) + eps d
#
# where a , b , c , d are functions of the time t and the energy e
#
#SYNTAX :
# a , b , c , d , are the functions in the equation
# n is the number of poles
# p is the order of the computed expansions
# t0 is the intersection of the two branchs of the slow curve,
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# where we are looking for the canards.
#

#The result has the following form:
# ee[0],ee[1],ee[2],... gives the expansion of the energy
# zz[0],zz[1],zz[2],... gives the expansion of the canard
# without poles
# xxx will be the expansion of the canards with poles
# yyy will be the meromorphic expansion

############## Some examples of data : ###############

#EXEMPLE : Hermite
# a:=t/e; b:=0; c:=e; d:=1; t0:=0; n:=4; p:=5;

#EXEMPLE : Double symmetric well :
a:=(-t*t+1); b:=t*t-1; c:=-1; d:=-e; t0:=1; n:=2; p:=2;

################## Values of epsilon to plot ##############
epsN := .04;

######################### Index ###########################
bp:=diff(b,t) : ap:=diff(a,t):
indice:=normal(subs(t=t0,(d-ap)/(ap-bp)));

###########################################################

a[0]:=a : d[0]:=d : #a[] will be the sequence of a.i
bp:=diff(b,t) : cp:=diff(c,t) : #the "p" shows the derivation

############### Change of variables ########################

for i from 0 to n-1 do
ap := diff(a[i],t) :
d[i+1] := d[i] + bp - ap :
a[i+1] := a[i] - (eps/c)*( diff(d[i]-ap,t)/(d[i]-ap) - cp/c ) :
print(‘I did ‘,i+1,‘changes of variable‘):

od:

################### Identification of series ###############
##################### to compute z(t) ######################

zz[0](t) := subs(eps=0,e=ee[0],a[n]) :

zero:=subs(e=convert([’ee[i]*eps^i’ $ ’i’=0..0] , ‘+‘),
z(t)=convert([’zz[i](t)*eps^i’ $ ’i’=0..1] , ‘+‘ ),
eps*diff(z(t),t) -( c*(z(t)-a[n])*(z(t)-b) + eps*d[n])):

otherzero:=coeff(convert(taylor(zero,eps,2),polynom),eps,1):
ee[0]:=-coeff(expand(subs(t=t0,otherzero)),ee[0],0)/
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coeff(expand(subs(t=t0,otherzero)),ee[0],1):
print(e = sum(’ee[j]*eps^j’, ’j’=0..0)+infinitesimal*eps^0):

for i from 0 to p-1 do
zz[i+1](t):=factor(-coeff(expand(otherzero),zz[i+1](t),0)/

coeff(expand(otherzero),zz[i+1](t),1)):
zero:=subs(e=convert([’ee[i]*eps^i’ $ ’i’=0..i+1] , ‘+‘),

z(t)=convert([’zz[i](t)*eps^i’ $ ’i’=0..i+2] , ‘+‘ ),
eps*diff(z(t),t) -( c*(z(t)-a[n])*(z(t)-b) + eps*d[n])):

otherzero:=coeff(convert(taylor(zero,eps,i+3),polynom),eps,i+2):
ee[i+1]:=-coeff(expand(subs(t=t0,otherzero)),ee[i+1],0)/

coeff(expand(subs(t=t0,otherzero)),ee[i+1],1):
print(e = sum(’ee[j]*eps^j’, ’j’=0..i+1)+infinitesimal*eps^(i+1)):

od:

print(‘I am computing x(t)‘):
x:=z:
for i from n-1 by -1 to 0 do

x:=a[i]+(-eps*(d[i]-diff(a[i],t))/c)/(-b+x):
od:

print(‘I make the pictures‘):

for i from 0 to p do
zzz[i]:=convert([’zz[j](t)*eps^j’ $ ’j’=0..i] , ‘+‘):
eee[i]:=convert([’ee[j]*eps^j’ $ ’j’=0..i] , ‘+‘):
xxx[i]:=subs(e=eee[i],z=zzz[i],x):
yyy[i]:=convert(taylor(xxx[i],eps,i+1),polynom):

od:

print(’e’=subs(eps=epsN,[’eee[j]’ $ ’j’=0..p])):
interface(plotdevice=postscript,plotoutput=‘fig5.ps‘):
#plot({subs(eps=epsN,zzz[p]),zzz[0]},-2..2,-2..2,numpoints=500,style=LINE);
plot({subs(eps=epsN,xxx[p]),zzz[0]},-2..2,-2..2,numpoints=1000,style=LINE);
#plot({subs(eps=epsN,yyy[p]),zzz[0]},-2..2,-2..2,numpoints=500,style=LINE);
quit;
\#
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[9] F. Diener. Développements en ε-ombres. In I.D. Landau, editor, Outils et
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