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Abstract

The reflector spaces over the 4-dimensional para-Hermitian symmetric spaces
in Kaneyuki-Kozai’s classification, are determined.
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1 Introduction

As is well known, the non-simplicity of SO(4) enriches 4-dimensional Riemannian
manifolds with some special features. Similarly, the non-simplicity of SO(2,2) endows
4-dimensional neutral manifolds with special characteristics. For instance, in the al-
most para-Hermitian case (see [2, 3]), Jensen and Rigoli [9] have defined analogs to
Riemannian twistors, called reflectors. In the case of a Riemannian 4-manifold (see [13,
p. 97]), the twistor space can be defined as the set of oriented almost complex struc-
tures, and we thus have a bundle with fibre SO(4)/U(2) ~ S2. The reflector spaces are
defined as the sets of either positively or negatively oriented almost para-Hermitian
structures on an oriented neutral 4-manifold. So, analogously to the complex case, we
have almost paracomplex spaces of real dimension 6 as total spaces of bundles over
such 4-manifolds, with fiber also an almost paracomplex space, specifically one of the
homogeneous spaces SO(2,2)/B+(2) ~ S?, which are the factors of the decomposition
of the Grassmannian SO(2,2)/SO(1,1) x SO(1,1) (see §2).

In the present paper we determine the reflector spaces over the 4-dimensional sym-
metric spaces corresponding to the symmetric pairs in Kaneyuki-Kozai’s table in [10].
(We shall not consider here the 4-dimensional Kaneyuki-Kozai’s symmetric spaces
obtained as combinations—direct products or not—of two 2-dimensional spaces.) We
give as a corollary the homotopy classification of oriented almost para-Hermitian
structures on such spaces.
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2 Preliminaries

Definitions 1. An almost paracomplex manifold (M, J) is an almost product manifold
(i.e. J is an (1,1) tensor field on M with J? = 1) such that the two eigenbundles
TTM and T—M associated to the two eigenvalues +1 and —1 of .J, respectively,
have the same rank. An almost para-Hermitian manifold (M,g,J) is a differentiable
manifold M equipped with an almost paracomplex structure J and a neutral metric
g, compatible in the sense that

g(JX,)Y)+g9(X,JY)=0, X, Y e XM).

For more details on (almost) paracomplex and (almost) para-Hermitian manifolds see
[3] and references therein.

On the other hand, let By (2) denote the usual almost para-Hermitian group in
the 4-dimensional case

B.(2) = {( A ) :AEGL(2,]R)} C SL(4,R):;

and B_(2) denote its conjugate subgroup [9, p. 430], defined by
B_(2)={A€80(2,2): AI_ =I_A, I_ = diag(~1,1,1,~1)}.

The groups SO(2,2)/B+(2) are (]9, p. 430]) diffeomorphic to the Lorentz space form
S~ S x R.

The nonsimplicity of SO(2,2) induces the decomposition of the Grassmannian
G1.1(2,2) of oriented neutral planes in R*? as

G11(2,2) » SO(2,2)/S0(1,1) x SO(1,1) =
~ (SO(2,2)/B4(2)) x (SO(2,2)/B_(2)) ~ S} x 5.

This fact determined Jensen and Rigoli to define the reflector spaces on an oriented
neutral manifold:
Definitions 2 ([9]). The reflector spaces ry: ZL(M) — M on an oriented neutral

manifold M are the two bundles of positively (resp. negatively) oriented almost para-
Hermitian structures on M, with respective total spaces

Zy (M) ={(p,J): Jis a para-Hermitian tensor on (T,M, g|,) of & orientation}
~  SO(M) Xs0(2,2) (50(2,2)/B+(2)) = SO(M)/B+(2),
where SO(M) stands for the total space of the bundle of oriented null frames over
M; and the projections are given by r4(p, J) = p.

The fact that the groups SO(2,2)/B.(2) are diffeomorphic to the Lorentz space
form S? ~ S! x R, can be easily visualized at the Lie algebra level: in fact, since we
have ([7, p. 520]) the isomorphism so(2,2) =~ sl(2,R) x sl(2,R), from the Iwasawa
decomposition of s[(2, R) one has
(1) 50(2,2) #s0(2) + R+ R+50(2) + R+ R,

in such a way that any element of s0(2,2) can be written as

o)) 0)e ()0 2 ) 07

so that we can write s0(2,2) =~ gl(2,R) + s0(2) + R.



Reflector spaces over the 4-dimensional 43

3 The reflector spaces

Proposition. The total spaces and the fibres of the reflector bundles

H/K < Z.(M)~G/K
!
M =~G/H ~T*N

of either positively or negatively oriented almost para-Hermitian structures over the
4-dimensional Kaneyuki and Kozai’s symmetric spaces M = G/H (which are dif-
feomorphic to the cotangent bundle T*N of a Riemannian symmetric space N) are
diffeomorphic to the spaces G/K and H/K, respectively, given in the two tables:

H/K G/K M =G/H N
1 SL(2,R) SL(3,R) SL(3,R) S2
a S(GLo(1,R)?) S(GLo(1,R)?) S(GLo(2,R)xGLo(1,R))
SL(2,R) SL(3,R) SL(3,R)
1b S(GLR)?) * 2 S((GL(1,R)2)oxGLo(1,R))  S(GL(2,R)xGL(1,R)) Py (R)
GL(1,0)? GL(2,0) GL(2,0)
2 AGL(L,C) AGL(L,C) GL(1,C)2 P (C)
3 GL(2,C) 50(4,C) 50(4,C) 50(4)
2(50(3,0)) 50(3,0) GL(2,C) U(2)
4a  SO(2)-R* S0(3,1) SobRr Q3,1 (R)
S500(1,1)-RT S0, (2,2) S0, (2,2)
4b =7 7 500(2,1)-R+ Q2,2(R)
50(3,C
5 GL(1,C) S0(3,C) GLE?,ci Q1 ()
Sp(1,C Sp(1
6 GL(1,C) Sp(1,C) atne e

Proof. The infinitesimal classification of para-Hermitian symmetric spaces with
semisimple group was obtained in [10], from which we have the following table of
para-Hermitian symmetric (semi)-simple Lie algebras:
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(g,b) Mg (= N)

1 (sl(m + n,R),sl(m,R) + sl(n,R) + R) Gmn(R)

2 (sl(m + n,C),sl(m,C) +sl(n,C) + C) Gm.n(C)

3 (su*(2m + 2n), su*(2m) + su*(2n) + R) Gmn(H)

4 (su(n,n),sl(n,C) +R) U(n)

5 (so(n,n),sl(n,R) + R) SO(n)

6 (s0*(4n), su*(2n) + R) U(2n)/Sp(n)

7 (s0(2n,C),sl(n,C) + C) SO(2n)/U(n)

8 (so(m +1,n + 1),s0(m,n) +R) Qm+1,n+1(R)

9 (so(n + 2,C),s0(n,C) + C) Qr(C)
10 (sp(n,R),sl(n,R) + R) U(n)/O(n)
11 (sp(n,n),su™(2n) + R) Sp(n)
12 (sp(n,C),sl(n,C) +C) Sp(n)/U(n)
13 (E§,s0(5,5) + R) G2,2(H)/Z2
14 (Eg,s0(1,9) +R) P (0)
15 (ES,50(10,C) +C) Eg/Spin(10) x T*
16 (E} E} +R) SU(8)/Sp(4) x Zs
17 (E2,E¢ +R) T' x Es/F,
18 (ES,E§ +C) E;/Es x T!

In the above list, G, »(F) denotes the Grassmann manifold of m-planes in F™tn,
where F' = R, C or H. @y, »n(R) denotes the real quadric in Py, 4,—1(R) defined by the
quadratic form of signature (m,n). @,(C) denotes the complex quadric in P,11(C).
P»(0) denotes the octonion projective plane. The list on the right of the table contains
those Riemannian symmetric spaces Mg (which we have denoted in the present paper
by N) with the property that if M = G/H is a para-Hermitian symmetric space
corresponding to the symmetric pair (g,h) associated to the specific My, then M is
diffeomorphic to the cotangent bundle T*Mj of a covering manifold My of M].

It is immediate that the respective (real) dimensions of the spaces G/H are:

1) 2mn 2) 4mn 3) 8mn  4) 2n2 5) n(n — 1) 6) 2n(2n — 1)
) 2n(n—1) 8)2(m+n) 9 4dn  10)n(n+1) 11)2n(2n+1) 12) 2n(n+ 1)
13) 32 14) 32 15) 64  16) 54 17) 52 18) 108.

Thus, as it is easily seen, the only 4-dimensional Kaneyuki-Kozai’s symmetric spaces,
corresponding to symmetric pairs in the table, are the eight spaces M = G/H ap-
pearing in the fourth column of the table of the assertion in the Proposition, which
we have numbered la to 6. Each such M = G/H is diffeomorphic to the cotangent
bundle of the corresponding 2-dimensional Riemannian symmetric space N appearing
in the fifth column of that table. Since they are almost para-Hermitian manifolds, all
of them are orientable and we can define their reflector spaces, which:

(i) are in fact bundles because of their structure H/K — G/K — G/H;

(ii) have as total space a space of real dimension 6;

(iii) have fibre diffeomorphic to S? (hence diffeomorphic to SO(2,2)/B(2) and
(2

)
S0O(2,2)/B_(2)), so the fibre is almost paracomplex.
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Now, we consider the six cases in the Proposition. The first case has two sub-
cases, with base spaces G/H ~ GLo(3,R)/GLy(2,R) x GLo(1,R) (the 0 denoting
the identity component) and G/H = SL(3,R)/S(GL(2,R) x GL(1,R)), which are
respectively diffeomorphic to the paracomplex projective model P»(B) ~ T*S? and
to the reduced paracomplex projective model P»(B)/Zs ~ T*P2(R) (see for instance
[5, 3]). The respective reflector spaces have the flag spaces in the table as total spaces.

As for the fibre in 1a, from the Iwasawa decomposition of SL(2,R) = KAN we
have:

SL(2,R)

— 7 L~ ~ ~ ~ 52
S(GLo(LR)D) (KAN)/A~ KN =~ SO(2) x R~ S7;
and for 1b:

GL2,R) x GL(LR) _  SL2R)
(GL(1,R)?)o x GLo(1,R) ~ S((GL(1,R)?)o)

X Za ~ SO(2) x R.

Note that we have bundles with fibre a Lorentzian space form and with base space a
para-Kéhler space form [4].

In the case 2, the base space is GL(2,C)/GL(1,C) x GL(1,C) ~ T*P(C).
Considering the usual diffcomorphism in terms of the diagonal AGL(1,C), i.e.
GL(1,C) = (GL(1,C) x GL(1,C))/AGL(1,C), we have the reflector space as in the
table, with fibre (GL(1,C) x GL(1,C))/AGL(1,C) ~ GL(1,C) ~ U(1) x R ~ S}.

In the third case, the base space is SO(4,C)/GL(2,C) ~ T*(SO(4)/U(2)) ~ T*S?
(the last diffeomorphism by [14, p. 215]). We first consider [11, p. 893]:

gl(2,0) = {( g) ?) ) 0 € s0(€,C), S € sym (E,C)} =

a+bi p+q r+si
—a—bi r+si x4yt
p+qi r+st a—+bi
r+si r+yi —a—h
Now, it is immediate that the subset § of elements obtained deleting the last row and
the last column in the above expression is a Lie subalgebra of g[(2, C). We have

a b b q
h =~ —a r | +i| —b s ,
p r q s

that is, h = s0(2,1) +is0(2, 1), but we know (see for instance [1, p. 32]) that so(2,1)
is a real form of s0(3,C), so we have h & p.(s0(3,C)), where p, is ([12, p. 53]) the
differential of an analytic representation p of SO(3,C) in GL(2,C), and the reflector
space is thus the one given in the table, where p denotes the given representation of
SO(3,C). This reflector has fibre

GL(2,C)/p(SO(3,C)) ~ {x +yi € C*} ~ GL(1,C) ~U(1) x R~ S},

as it must be.
The fourth case also has two subcases. In the case 4a, the base space is SOy (3,1)/SO(2)-
R ~ T*Q3,1(R), the cotangent bundle of the subspace of P;(R) obtained under the
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identification (z,y) ~ (—z,—y) in S? x S9 that is, S?. In fact, the space Q3 1(R)
in Kaneyuki-Kozai’s notation is the space @, (R) = Q4,1 (R) in Takeuchi’s notation
([15, pp. 144-8]), which is the quadric z3 — 2 — 23 — 23 = 0 in P3(R). As for the
sense of the dot in SO(2) - R™ see [11, p. 893]. The total space of its reflector bundle
is the identity component SOy(3,1) of the homogeneous Lorentz group, and the fibre
H/K is thus SO(2) - R" ~ S2.

In the case 4b, the base space is SOy(2,2)/SO0o(1,1) - RT ~ T*Q22(R), the
cotangent bundle of the sphere bundle in P;(R) obtained under the identification
(z,y) ~ (—z,—y) in S' x S', which is a new S' x S'. In fact, the space Q22 in
Kaneyuki-Kozai’s notation is the space @Qpn(R) = Q42(R) in Takeuchi’s notation
([15, pp. 144-8]), which is the quadric 22 + 27 — 2% — 22 = 0 in P3(R).

In order to obtain its reflector spaces, we consider the Lie algebra s0(2,2)’ isomor-
phic to s0(2,2), given by

50(2,2)' =s0(2) + R+ R+ 50(2) + R + iR,

with elements

o)) 0G0 ) (e )

(see the decomposition 1), and its corresponding Lie group, which we shall denote by
S00(2,2)/Z, and write in terms of the Iwasawa decomposition as

500(2,2)/Z ~ SL(2,R) x (SL(2,R)/Z) ~ KAN x KAK .

The space SO¢(2,2)/Z so defined is diffeomorphic to both total spaces of the reflector
bundles over SOy(2,2)/SOg(1,1) - RT, since it has real dimension 6, and the fibre is
(SOo(1,1) -R")/Z ~ S3.

Finally, in the fifth and sixth cases, with SO(3,C)/GL(1,C) ~ T*@Q1(C) and
Sp(1,C)/GL(1,C) ~ T*(Sp(1)/U(1)) as respective base spaces, we have the reflector
spaces appearing in the table, both with fibre GL(1,C) ~ S?.

Notice that in the 2nd, 3rd, 5th and 6th cases we are considering the cotan-
gent bundles of the Hermitian symmetric spaces P;(C), SO(4)/U(2), Q1(C) and
Sp(1)/U(1), respectively.

Corollary 2. The 4-dimensional Kaneyuki-Kozai’s para-Hermitian symmetric spaces
have only a homotopy class of either positively or negatively oriented almost para-
Hermitian structures.

Proof. The set of positively oriented (resp. negatively oriented) almost para-Hermiti-
an structures on each space M = G/H in the table in the Proposition, coincides with
the set of differentiable sections of the corresponding reflector space. The homotopy
classes of such sections are a subset of the whole set of homotopy classes [G/H,G/K].
To compute the last sets of classes we shall determine the homotopy type (h.t.) of
each of the total spaces G/K and base spaces G/H. We have the table

topology of G/K h.t. of G/H topology of G/K  h.t.of G/H
la SO(3) x R? S? 4a  (SU(2)/Z2) x R? S?
1b  (SO(3)-N)/Z-» P (R) 4b S'xS'xS'xR* S§'xS!
2 SU(2) x R? S? 5 SU(2) x R? S2

3 SU(2) x R? S? 6 SU(2) x R? s?
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In fact, the column at the right is obtained from the fact M = T*N as in the table
in the Proposition, and the homeomorphisms SO(4)/U(2) ~ Sp(1)/U(1) ~ S2. As
for the column at the left, we have:

la and 1b) Let SL(3,R) = SO(3) - AN denote the Iwasawa decomposition of
SL(3,R). It is immediate that
SL(3,R)/S(GLo(1,R)®) = (SO(3) - AN)/A ~ SO(3) - N ~ SO(3) - R*.
Similarly
SL(3,R)
S(GL(L,R)2)o x GLo(1, K))

SO(3) - N as in 1a and Z, being the subgroup {diag(1,1,1) U diag(—1,—1,1)} of

SL(3,R).

2) We have G/K ~ (U(2) - R*)/(U(1) -R) ~ SU(2) - R®.

3,5 and 6) They follow from the isomorphisms SO(4,C) ~ SL(2,C) x SL(2,C)
and SO(3,C) ~ Sp(1,C) ~ SL(2,C) ~ SU(2) - R®.

4a) It follows from SOy (3,1) ~ SL(2,C)/Zy ~ (SU(2)/Z>)-R?, where Z, denotes
the center of SU(2) (see [1, pp. 108, 513-515]).

~ (SO(B)-N)/Z,

Hence, the homotopy type of G/K is that of SO(3) for 1a, that of (SO(3)-N)/Z»
for 1b, that of SU(2) for 2, 3, 5 and 6, that of SU(2)/Zs for 4a and that of S x S!xS*
for 4b. Consequently, we have:

For 1la: [G/H,G/K] = m(SO(3)) = 0;

For 1b: [G/H,G /K] = [P:(R), (SO(3) - N)/Z3] C m2(SO(3)) = 0;

For 2, 3, 5 and 6: [G/H,G /K] ~ m(SU(2)) = 0;

For 4a: [G/H,G/K] =~ [S?,SU(2)/Zs2] = ma(P3(R)) = 0 (see [8, p. 105]).

For 4b one has [G/H,G/K] =~ [S' x S, 5! x S! x S!]. Now, according to [8, p.
4-5], given the topological spaces X, Y and Z, the C° map

0: Map(Z x X,Y) = Map(Z,Map(X,Y)),

which assigns to f(z,z) the C° map Z — Map(X,Y), where the image of z € Z
is the map = — f(z,), is a homeomorphism onto its image set if the spaces are
Hausdorff, and it is a bijective map if X is locally compact. Accordingly, denoting by
QX the space of loops of a given space X, we have, applying also [8, Th. 3.6, p. 6]:
Map (St x 81,8t x St x St) = (Map (S x St,SY))3

~ (Map (St, Map (S*,S1)))? = (Map (S*,Q(S1))? =~ (Map (S?,5'))? so that

[S' x SY St x S' x S'] & (m2(SY))® =0.

Finally, given two differentiable manifolds M and N, any continuous map from M
to N is homotopic to a differentiable map ([6, p. 64, Prop. 4.6]; and, moreover, two
differentiable maps which are homotopic by a continuous homotopy are in fact ho-
motopic by a differentiable homotopy ([6, p. 67, Prop. 4.11]. So, we have the above
results in this proof for differentiable maps, thus concluding.
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