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Abstract

Within the framework of higher-order geometry, the paper describes the
osculator bundle of order two (the bundle of accelerations) and develops the
equations of geodesics and of their deviations; important particular cases are
evidentiated.
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1 Introduction

Lagrange geometry of higher order was recently defined and studied by R.Miron and
Gh.Atanasiu [15,16], and represents the geometry of Lagrange spaces L*¥)* = (M, L),
where L : JE(M) — R is a regular Lagrangian of order k > 1 and J¥(M) is the total
space of the bundle of velocities of k-order.

The replacement of the bundle of k-jets (J§(M), 7, M) by the osculator bundle
(Osc* (M), n, M) infers profound changes, the last bundle having a deeper geometrical
meaning and being more suitable for applications; any point of the total space is in
fact a contact element of k-th order for curves in M, and has as representative an arc
of curve on the base manifold M.

This concept is extremely useful in the geometrization of higher-order Lagrangians
[13,15] and for prolongation of Riemannian, Finslerian and Lagrangian structures
[1,13,16].

In the present paper, we develop the basics for the study of stationary curves for the
case k = 2, which provides the so-called ”bundle of accelerations” - a particular, but
suggestive example of the general case.

2 The bundle of accelerations

Let M be a C* real differentiable, n-dimensional manifold. Two curves
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po: I CR—MO0el,

such that p(0) = 0(0) = zo € M have a contact of order 2 at xg if Vf € F(U) - with
x9 € U C M,U open set, we have

{ (f o p)'(0) = (f 20)(0)
(fop)"(0) = (f00)"(0)

The relation above is an equivalence one. Denoting it with ~, and its classes like
[plee = {0 | p ~ o} will form the 2-osculator space at zo; then the osculator space of
M will be the set Osc® (M) = |J Osc?.

ToEM
Therefore, representing locally the curve like p(t) = (2(¢),...,2"(t)), we remark
) ) t . 2 .
that p ~ p, where p is given by p'(t) = 2*(0) + F:L‘“(O) + 53:“'(0). Thus, [ps, is
uniquely determined by the triple of n-uples ’ ’

('(0), 2" (0),2™(0)),

and therefore a convenient local chart on Osc(?) (M) in the neighborhood of [p],, will
be described by a mapping of the type

[l = (2, Y1, 97) = ((0), 27 (0), 2" (0)/2);

the last 3n-ulple provides the coordinates of the point [p],, € Osc®) (M).
The change of coordinates on Osc(® (M) is given by

7t = 3i(2)
(;i _ 8:&’: (z})f'
oxI
(1) ” 16(1") . a(p. -
2, 1 y’(nj y’(z)]- Tt
§i=5 Y+ o yi,det (5 ) #0

The mapping 7 : Osc® (M) — M, 7([p].) = z,Y[pls € Osc'?) (M), is a surjective sub-
mersion, and thus, & = (Osc®) (M), w, M) becomes a fiber bundle, called the osculator
bundle of second order. We shall denote hereafter F = Osc(®) (M).

Counsidering on ¢ = (E,w, M) a non-linear connection [13,14], given by its coeffi-
cients {(Jl\gﬁ, (JQ\)T;}, X (E) is locally spanned by the adapted basis

J ymot J 1not d

ot 0 mot not
B = 612_ :{6i)6a>6p}:{604}’

i~ @ 0 T T 0% T ey

ozt 54 5y 5y
with the indices running as follows: 4, j, k,... = 1,n;a,b,c,... = n+ 1,2n;p,q,7,... =
2n+1,3n; a, 8,7, ... = 1,3n. While computing, the first three types of indices carry

information on the tensor-type (h,v1,v2) (horizontal, velocity and acceleration-type,
respectively) and are determined from the first cathegory by adding the corresponding
multiple of n. The fields of the adapted basis are
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) ;0 ;0
0 _ 0 id
2) sy oY W' 87
s _0
6(§)i 8(§)i‘

\

The dual adapted basis relative to B will be denoted by
B* = {69 da’ 6", 61} (o', 6", 6yP} = {67}
given explicitly by
6(23)i":°ida:i
(3) 5t = Y+ Midet
8t = dy 4 MidyT + Mida
. @), . )
with M = (]X;,M; = N+ NNj.

@7 W
These bases correspond to the direct-sum decompositions

(4) T,E=N,&N, &V,,, T:E=N:eN. aVy.

Then any vector field X € X(E) can be locally decomposed like
©, o) @
X = X’él + X“éa + X”ép,

with the three right terms belonging to the distributions N, Ny, V5 provided by (4);
also, any 1-form w € A'(E) can be decomposed as

(1) 2)
Wad0® + wpdP.

w = (C(t)l)i(si +

Similarly, any tensor-field T' € 7 (E) can be split into components, which will be

called d-tensor fields. As particular cases of d-tensor fields, the h-tensor fields form the

algebra generated by {1, 4;,8'}, and the v; and vs-tensor fields, the algebras generated
by {1,d4,0%} and {1,d,, 0P} respectively.

3 N-linear connections

On the total space E = Osc(®) (M), there exist linear connections which are com-
patible with the decomposition (4). Their coefficients are in the adapted basis (2)
geometrical objects which are much simpler than for a general connection. A linear
connection D on FE is said to be an N — connection if D preserves by parallelism the
distributions of the decomposition (4).
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A linear N-connection D is given locally by its coefficients

W w1 ()
D = {Lj(z,y,9), Ciw(®: ¥, ¥), O, ¥, V)}

determined by the relations

0 4]

DL_ =L" , = 0, 2
527 6(§)i 1 6(§)m
(5) 5 5
D_s =C5 ,CM:0,2,6:1,2

(), o ()
SPa sy 0T gym

= P mot 5 -1
or, briefly, D;_dg = g)ga -0y, = 7%, where we denoted Ly :(C)’;k and = {’BT}
0

is the type of the index 3,3 = 0,2. One can prove [13,14,15] that the coefficients

C ; w0 = 1,2 provide d-tensor fields; also, if M is paracompact, then there exist an non-

(@)

linear connection on E, N = { N i N i1, and hence the Berwald N-linear connection
S

BT(N) = {Lj;, = 51@N§'7 Cl =0,05, =0}
w7 @)
Corresponding to the type of the leading d-vector field in (1), the N-linear connec-

tion produces the rules of covariant derivation (h-, v1- and ve-covariant derivations)
for d-tensor fields, described by

6 . (2)
DxT = Xer;t- f” o ®...® ——®di ©...00y,
oz 6(y)ir
with
i (a) i1...1 i hig...i ll ~Jr—1h
1- 1- i 1 2. i r— _
TJ1 Js |0‘ =9 TJ1 Js + ChaTJ1 Js -t Cha Ji--Js
l _ _ h i1
CJla th Js CJSale...js,lhv

(@
and X = X%,,a =0,?2 fixed, L = (C; For & = 0, 1,2, the h-, v;- and vy-derivations
]

are respectively defined by the relations above.

Theorem. Any N -linear connection is compatible with the following natural struc-
tures, whose matrices with respect to the adapted bases are given:

I, 0O 0

I, 0 ,P? = Id,

a) The almost product structure P,[P] =

0

0
b) The n-almost contact structure F,[F] = ( 0

0

0

¢) The 2-tangent structure J,[J]) = | In
0 I, O
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4 Torsions and curvatures

The torsion tensor 7 € T3 (E) of the N-linear connection D has the coefficients given
by the relation
()
T(X,Y)=VxY -VyX - [X,Y]= (g;)gﬁyaxﬁaw,vx,y € X(B),
@, B,7=0,2.

@)
Also, we can introduce the non-holonomy coefficients é Zyﬁ given by
(a5)

The detailed expressions and the inter-relations of the coefficients of non-holonomy
and torsion can be found in [16].

The curvature tensor field R € T;'(E) has the coefficients given by

R(X, Y)Z = VXVYZ —_ VYVXZ —_ V[X’y]Z

- R na XYP 296, VXY, Z € X(E),
(aB7)

where

(%) _
R(0a,33)8, = R Ssads, 35,7 =02

5 Equations of stationary curves on Osc® (M)

Let E = Osc!® (M) be endowed with a 3-block metric tensor field
© . Sw W@ @) (2)
G=9yde'@de’ + 9;;0Y"' @6Y7 + 9;0y' @0y’
© W @ S
where we set G = {95, 945, 94} = {Gap},a,8 =1,3n,

Let ¢: I = [a,b] C R — E be a smooth curve in the osculator bundle, such that
its image lies in a chart (U, h) of E,

oft) = (2 (1), ¥i(t), V() t € [a,b].

Let be the Lagrangian given by L(t) = (G’O(BVO‘VB)I/2 where V = (V%) =
(V*, V%, VP) is the covariant velocity tensor-field, given by

o daxt
[ —
Vi= t
d (33) a dx?
a — a t -
1% 7 + M; (c(t)) 7
(2) (1) )
_dyp (1) dy @ (2) dz?

VP = S MB(et) S + MY ()

Let F = % = (F*) = (Fi, F2, FP) be the force moving the test-body along the
curve c,
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A Z A%
dt — dt

@ __

+ cﬁnvﬁw a=1T,3n,
(R

where £ involves summation after K = 0,2 and we denoted L = C. Applying the
©)

variational principle to the Lagrangian L [2-3,5-9,12,20], we infer the following
Theorem. The expressions of the force d-tensor fields with respect to the connec-
tion D ={C,C,C} are

(0) (1) (2)
= i (ZUZL) paypsgim G(E/ - me) _yiys g
=V (ICZL) +yeysigab (%(3 aﬁ(rb - 77>a5> —yepsigarly bTB
e (;(5 wslo— qozB) Vv,

_ (&) (&)
where B =0,2 and g7 is the reciprocal d-tensor field of 9 op5,& = 0,2

We have denoted T3, = K, 5,{7— , 1.e. the lowering /raising of indices is performed

using the metric G. For a stationary curve, we have F = 0, and the three relations
above become the equations of stationary curves on the fibration &, relative to the
connection D.

6 Equations of deviations of stationary curves

Let the N-connection D be metrical, i.e. the following relations take place

but still having in general nonvanishing torsion. Let ¢(¢,u) be a family of stationary
curves, having t as arc-parameter, and u the deviation parameter. Then let Z =
(Z%) = (2%, 2%, ZP) be the deviation vector field, given by

Zt =9,

[CP TG ,
2% =0uY"+ MjOyuz'

e W m (@ ,
20 = 3,97 + MPO, Y + MPDua'

and let V = (V) = (V¥, V%, VP) be the overall velocity vector field

Vi = 6t1’i

W ,
Ve =0 Y+ Mjoa'

@ W () .
VP =0, yP + MEO Y + MY Oz’

where we assumed that ¢ : [; x I, C R?> = U C E = Osc® (M) with U an open
chart-domain for F, with
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W,

c(t,u) = (¢i(t,u), Vi(t,u), Vit,u)) € U,¥(tu) € I X L.

Considering the partial covariant derivatives

W = OV + C 5 WPV
&)
5 WV =W + O W27
=)
for any overall vector field on Im(c), W = (W®) = (W, W2 WP), we obtain, using
the second variation of the Lagrangian L the following
Theorem. The equations of deviations of the sheaf of curves (which determine
the deviation force Z), are

G20+ 6T = piV7 + 0, F°
GPZ% + 6, T = pfV¥ + 6, F°
07 ZP + 6, TP = pPVI + 6, F?,

where we denoted

0). (1) (2)
LeVOEP T = T 4gVezh, TP = TP Ve 2P,
aB ag P

ﬂ/\

Ti=

Q1
@I

and p§ = Rj  Z7V".
We remark that for stationary curves, the last term of each equation identically
vanishes.

7 Applications. Particular cases

Definitions. Let ¢ : I = [a,b] C R — Osc® (M) be a curve, D = BT(N), and
N the canonical non-linear connection induced by a Riemannian metric of M in

Osc? (M)[13). 1 2
5% (1) _ 89 ()

dt dt

a) The curve c is called h-curve (horizontal curve) if = 0.

b) The curve c is called v-curve (vertical curve) if

dx(t)
dt

=0 (z(t) =x9 € UVt € 1).

c¢) The curve ¢ is called ve-curve if

dz(t) 8 Y (¢)
at dt

If the curves in a), b), ¢) satisfy also the condition D:¢ = 0, (F* = 0), then they
are called h-path, v-path and vs-path, respectively.

In terms of velocity and force, these notions can be condensed as follows:
a) h-curve: V* = VP = 0; h-path: V* = VP = Fi = (;
b) v-curve: Vi = 0; v-path: Vi = F* = FP = (;
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¢) vo-curve: V¢ = V% = 0; vy-path: Vi = V* = FP = (;
We can easily remark that all the three kinds of paths are particular cases of stationary
curves.

Also, their equations of deviations are considerably simplified, as can be easily
seen from the following example

Proposition. If ¢ is an h-path and D is a metrical N -linear connection, then the
equations of deviations become

02204 6,T" = piVy
0720 +6,T% =0
02ZP 4 6,7 = 0.

It must be noticed, that if dropping the vs terms in the previous equations one
obtains the Osc) (M) = TM case, already investigated [9,21]; if dropping all the
vertical (v; and ve) terms, the equations of geodesics and of deviations of geodesics
for the classical Riemannian case are obtained [10,12]. Hence, the present framework
extends both the classical framework and the tangent bundle case.

8 Conclusions

The equations of stationary curves and of their deviations play a major role in finding
the curves that extremize the first and second variations of the length Lagrangian
[2,5,12]. In the present paper, these equations were obtained for the bundle of acceler-
ations, a particular case of the k-osculator bundle investigated within the framework
of higher-order geometry; on the other side, the obtained equations generalize the Rie-
mannian and tangent bundle cases. Also, the equations of deviations of paths have a
considerably simpler form, and hence, are easier to integrate.
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ence of Balkan Society of Geometers, Politehnica University of Bucharest, September
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