Geometry, Statistics and Decision Making in Gene
Therapy

Victor Patrangenaru

Abstract

One emphasizes the role of geometry in normal parametric statistics and
introduces the pi-beta distributions. Using a standard geometric interpretation
of a random effect model, one explains the origin of tests for means useful in a
statistical analysis of the effect of adenovirus treatments of tumors in vitro and
in vivo.

Introduction

This paper is addressed to a large audience, some of which at times has to teach
an introductory course in analytic geometry. It the past years some departments of
mathematics, have eliminated such courses from their undergraduate curriculum.

The present paper comes with a very concrete example as of why a multidimen-
sional geometry course is necessary both in a mathematics or statistics department.

One of the most important results in probability is the central limit theorem
(CLT). The CLT states that variates which are sums of many independent and iden-
tically distributed effects tend to be normally distributed as the number of effects
becomes large [10].

A normally distributed random variable has the probability density function

(0.1) dp = \/21”_0 exp (—T;(x - ;ﬁ)) dz.

When possibly related measurements such as heights and weights of individuals of
same group are made, the quadratic term under the exponential in (0.1) is substituted
with a quadratic form in more variables. It does not take an eye of an expert to see
that the hidden correlation parameters (coefficients of the quadratic forms) of these
measurements can be expressed in terms of some Euclidean objects such as various
projections, volumes, etc. It is less obvious , still straightforward [2], [10] to find the
distribution function of these measurements, under certain linear hypothesis. This
will be taken care of in the first two sections. The Wishart distributions are derived in
section 1. In section 2, we will make standard geometric assumptions on the covariance
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matrices, to write computable tests in terms of ANOVA (analysis of variance) tables.
These tests are used to decide to what extent the mean value of a multivariate normal
distribution of an orthogonal model, lies in a vector subspace L versus being in a larger
subspace M. In very few cases such a test may be based on the popular F- distribution;
in general they are unknown, and under additional splitting constraints on L and M,
one is lead to pi-beta tests, that is products tests based on powers of independently
beta distributed r.v.’s, which are rarely tabulated, leading to interesting numerical
problems.

Which brings us to the second goal of this paper, a question regarding decision
making in recent gene therapy models experimented at Dr. Milton W. Taylor’s biology
lab [11]. We will put it in two ways:

One is do decide if there is a significant difference at the end of the application of
various treatments in vitro of randomly the MDA-MB-435 breast cancer cells. This
leads to an F' test.

The other concerns the difference in time between treatments with recombinant
adenovirus on K562 melanoma cells in vivo, in animal models. We will explain in
details the design we use, which is called by some a 3 way ANOVA. This leads to a
pi-beta test.

It is interesting to note that other modern approved immunotherapeutical pro-
tocols [9], using TTL ( tumor infiltrating leukocytes ) who have an established 40%
response in patients with melanoma or kidney cancer, were not successful in breast
carcinoma [6], which makes the successful preclinical trials in [11] even more impor-
tant.

The relationship between geometry and statistics, goes beyond this introductory
paper [5]. Parametric statistics is viewed by some researchers as the study of statistical
manifolds, which are Riemannian manifolds of distributions, where the metric is the
Fisher information on the space of parameters [1] .

1 The geometry of multivariate normal distribution

Multivariate analysis deals with ordered lists of data, representing a number of aspects
of the same phenomenon. These numbers or measurements are indexed by the ordered
set I, of size p, so that one such list can be regarded as a matrix-valued random variable
(rv.) X = (X,,), where X,, are independent multivariate normal distributed r.v.’s,
with same covariance matrix ¥ = that is has the probability density

function (p.d.f.) :

(Uij)(i,j)EIxI )

P 1
(1.1) (2m)~ 2 det(E)_% exp <—§ < Tp = fin, XN Tn — pn) >> ,
where <, > is the usual scalar product on RP.
Assume X, are identically distributed. We would like to make inferences about the
”hidden parameters” (u,Y) in R? x P(I) from the given numerical data (z,), 13-
In this respect we will follow the mazimum likelihood estimator (MLE) [2] approach

The joint distribution function of X = (X,,)
the likelihood function

o1 is a multiple of the so called
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1
(12)  L(uSiz) =det(Z)" % exp | —5 > <wa—p, T (@a —p) >
n=1,N

The MLE of (fi, $) = (1, 3)(x) is the point of maximum of L(-, ;) and may be easily
determined with a geometric argument. Indeed, for ¥ fixed, define on RP the scalar
product < -,- >v:=< -, ¥71(-) >, which obviously extends to a scalar product on
(RPN labeled << -, >>y .

Let A = A((R?)Y) be the diagonal of elements of the form (z,z,...,z), = € R?,
and let P be the orthoprojection of ((R?)N, << -,- >>y) on A, which is actually
independent of 3.

Let T be the baricenter with equal weights of the R” - components of z =
(Zn),—77- Then
(1.3) P((zn)etw) = @) o1w-

Q = Id — P is the orthoprojection on the orthocomplement A+ (again w.r.t. any of
the scalar products << -,- >>x). It is obvious that

(1.4) e = (p 1y e 115, 2 Q@15
and the equality holds iff 4 = Z. The value of the likelihood function at such points is

N
2

(15) L@, 9;2) = det(8)~ F exp(~1 Q)2

Assume {z, — T} _15 spans R”, which happens iff the rows of Q(x) are Li., or if
the Gramm determinant det(Q(x) Q(x)t) is positive. Then if Q is a positive definite
square root of ¥~!, then

(1.6) L(z, %) =

N
2

— det(Q(@) Q(@)') ¥ det(0Q(x) Q()' ) ¥ exp(~ LTr(0Q(x) Q(2)'1)).
If we set A = QQ(z) Q(z)!Q2, then L(Z,¥;x) is proportional with

N 1
2

G(A) = det(A) exp(—iTrA)

and since A is symmetric, there is an orthogonal matrix T, such that TAT? = A
is diagonal. Then G(A) = G(A) and w.l.o.g., one may suppose that A = diagA;.

Therefore N 1
g(A) =InG(A) = Z (5 InA; — §Ai> .
el
1

The max of u(t) = §(N Int — t) occurs for ¢ = N, and therefore the max of g(A)
occurs when A; = N, that is A = N Id, or 371Q(z) Q(x)! = N Id.

Let & : R @ RV — (RP)N be the isomorphism ®(z ® y) = (y'z,...,yVz), and
for a vector subspace V' of R? consider S = ®(R? ® V). Since £S = S, for any ¥ in
P(I), S+ is independent of X.
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Assume the mean p = (u,,) of the distribution in (1.1) is in S. Along the same
lines, if Ps is the orthoprojector on S, and Qs = 1 — Ps, we get, at no additional effort
the following classical result:

Theorem 1.1 If N > dim M + p. Then the MLE of L(u,%;x) exists in general and
fi="Ps, £ =% Qs(z) Qs(z)t.

Let Dg = {z € R? | Qs(z) Qs(w)tis positive definite} and assume Fs associates
the MLE with data, that is

Fs:Ds—>SXP(I)

Fs(@) = (Ps(x), + Qs(x) Qs(2)").

In order to answer specific inference questions, one has to find the distribution function
of Fs(z). Behind the answer to this standard question, there is again a nice geometric
idea. If €2 is positive definite on W & U and W, U are ) -invariant then for any W e U-
valued multivariate normally distributed r.v. Y of covariance matrix 2, the U and
W parts are normally distributed and independent as r.v.’s. It turns out that Pg(z)
is normally distributed and furthermore +Qs(z) Qs(z)! and Ps(z) are independent.
Moreover if we select a basis in RY | the first vectors of which are in M, then
S = (R”)? x {0} and St = {0} x (R?)N~<. As such, w.l.o.g. one may assume that
z =Qs(z) = (1,2, ...,2N_q) is a sample of N — d independent N (0, X)-distributed
r.v’s. As such we are interested only in a distribution of § = #(z) = z 2?, given that
the joint distribution of z is

m 1
dN(z) =det(X)™2 exp <—§Tr(2_1z zt)> d\(z), m =N —d.
By the change of variable formula, # has the density
m 1
(1.7) det(X)™2 exp <—§Tr(2_1®)> dt(N\)(0).

In order to determine dt(\), we make a digression on invariant measures we learned
from the senior author of [4].We are looking for GL(p) -invariant measure on P(I),
given that GL(p) acts transitively on P(I) by

(1.8) (A4, %) - AT AL

Let G be a group, acting on Y, on the left. If 4 is a measure on Y, and ¢ is a
transformation of Y, g~y is the measure defined by g 1u (M) =: u(gM).
Definition a. A measure p on Y is relatively invariant, with multiplicator y, if for
any g in G, g *u = x(g)u. Since x has to be positive, and it follows that x(1g) = 1.
b. A measure p on Y is invariant, if p is relatively invariant with multiplicator 1.
Example 1.1 The Lebesgue measure on R? is relatively invariant w.r.t. the natural
action of the affine group GL(p) x R? on R with multiplicator

x((g,u)) = det(g).

Remark 1.1. Assume p is a relatively invariant measure on Y with multiplicator y;,
and n : Y — R is a measurable function, such that n(gx) = x(g)n(x). Then n 'y is
an invariant measure.
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Lemma 1.1. The Lebesgue measure A on P(I), is relatively invariant w.r.t. the nat-
ural action (1.6) of GL(p) on P(p) with multiplicator x(g) = (det g)P*!.
Proof (sketch). Assume A = cId, then A-© = AOA' = ¢?0. In this case

A-IN(S) = / drl ..dr? = 2+ Dr)? / drl ..dr? = (det A)PHIA(S).
c2S S

+1

It is obvious then that n(0) = (det ©)™> satisfies the conditions in Remark 1.1.
and therefore
Corollary 1.1. Let (4,0) — AOA?! be the transitive action of GL(p) on P(I) and

A be the Lebesgue measure on P(I) = GL(p)/O(p). Then density function relatively

to the Lebesgue measure given by (det 9),@;1)

P(I).
We recall that the Lebesgue measure X is GL(p) invariant, that is if A is in GL(p)
transformation will justify the formula:

defines G L(p) invariant measure on

AN = det AP

Notice that GL(p) acts on the left on (R?)™. Since t is equivariant, ¢(\) is relatively
invariant with multiplicator

X(A) = | det A"

since

A7) (G) = tA(AG) = /

dX, = / d\; =
{z,22t€c AGAt} {z,A=12(A-12)teG}

— | det A|m/ A, = | det AP0 ().
{u,uuteG}

Let then n : P(I) = R, n(0) := (det ©)%, satisfies to the condition in Remark
1.1, and thus (det ©) 2 ¢()) is an invariant measure on P(I). Two invariant measures
are equal up to a constant on each orbit of the group action. In our case since P(I)
is homogeneous for the action (1.6) is transitive, it follows that

dt(\)s = (det ©)%F (det ©)~ " dAp(s).

Then, due to (1.8), we have shown that
Proposition 1.2. If z is a sample of N(0, X), then the p.d.f. of z 2t := © is propor-
tional to

m—

(1.9) det(2) % det(0) "5 exp(—%Tr(zfl(a)).

The probability distribution proportional to (1.9), is named Wishart distribution [2]
with n degrees of freedom, and form parameter X, and is labeled as W (X, m).
Corollary 1.2. Assume X = (X,,), 7 is a sample of N(u,%), p € S. Then the

sample variance %i) is distributed as W (53, N — d).
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2 Orthogonal designs

Many problems in multivariate statistics are concerned with test for means. One would
like to estimate from experimental data the subspace S, where the parameter p of
the N(p, ¥) distributed r.v. X = (X;),_y7. Such tests can be expressed in terms of
some Wishart distributions. Still given the peculiar form of the subspace S, we would
like to relax the conditions on ¥. We will assume that X = (X;),_i7 is a sample
from RP-valued r.v. that is N(u, ¥) - distributed.

a. To start with let us first assume that ¥ has the simplest possible form, that is
¥ = ¢2Id. In this case the likelihood function is

N o2
(2.1) L(p,o52) =0 NPexp <_T Z |z, — N||2> :

Let L C M be two vector subspace of RP. We would like to test to what extent
the hypothesis H : p is in L, versus p is in M, holds true ([10], p.33 ).
Let prr denote the orthoprojection of R” on L and T as before denote the baricenter
with equal weights of (zn),,_15-
Remark 2.1. Since there is only one variance component, one may substitute list
the data in a single observation of size N p, and substitute L by the diagonal of LV,
as subspace of (R?)"N. As such w.l.o.g., one may assume that N = 1.

A straightforward computation shows that under the hypothesis that u is in L,
the MLE of (u, 02) is

(2.2 (ia.01) = (o7, QeI
and the corresponding maximum of the likelihood function is

(2.3) Ly = (3) "% exp(-5).

The components of = are uncorrelated, and being normally distributed, they are
independent. If d = dim L, since 0 =1 Q1,(z) is a vector valued r.v. all of that splits into
a sum of independent unit normally distributed r.v.’s —2507?(|Qr (2)||* follows a chi-
square distribution with p—d degrees of freedom, X12)7d' The likelihood ratio associated
whit the hypothesis H, is

Ly/La = (63,/67)P.
Before we proceed further we recall some facts on beta distributions. The beta

integrals with form parameters (a, b) are B(a,b) fo ea=1(1 — r)o=ldr. The beta
distribution with parameters (a, b) has the den51ty function on (0, 1):

B(a,b) tr* (1 —r)bL,

Recall also that I'(a fo 7% Lexp(—x)dzr and the gamma distribution with form
parameter a has the dens1ty function on (0, 00) :

[(a) 'z ' exp(—2).

A straightforward calculation shows that if z, y are independent r.v’s with gamma
distributions of form parameters a, b, then z +y, r = z/(z + y) are also independent
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and r has a beta distribution with form parameters (a,b). In particular, since a x2,
m
distributed r.v, follows a gamma distribution with form parameter 5 from the above

argument, it turns out that
Proposition 2.1. 63,/6% has a distribution function g on the interval
(0, codimM /codimL) given by

(2.4) g(u) = codimL/codimM f(u codimL/codimM),

where f is a beta distribution with form parameters (codimM, codimy;L).
Proof. We have to add only the remark that ||Qas(z)||? and ||QL(z) — Qr()||* are
independent and orthogonal.

Still the beta distributions are seldom used in this case. Historically another dis-
tribution related to the beta distribution appeared first. The larger the ratio 6% / 63,
the less likely the hypothesis that p is in L. This ratiois 1+ || Qr(z) — Qum () ||* / ||

Qu(@) [I*.
Assume dim M = m. The hypothesis H is rejected if the ratio of orthopro-
jections R(z) =|| Qr(z) — Qum(z) > / || Qum(z) ||* is large enough. Since

Qr(z) — Qu(z), Qum(x) are independent as random variables, and —1—o=2 ||

Qr(z) — Qu(x) || follows a x%(m — d), and sinc<|a It}|1e (cilenominator and numerator

of R(z) are independent r.v.’s, the ratio F'(z) = R(x), as a quotient of two

independent chi-square distributions with prescribed degrees of freedom, will follow
an F distribution with bidegree (| I | —m,m — d), Fleodimm,codimag 1)-
An F, ; distribution function on (0, co) is given by

f(x) = B(a,b)" a2 J(az + b)*TP , £ >0

for small bidegrees, their cumulative distributions are tabulated in textbooks.
Proposition 2.2. Let a € (0, 1). H is rejected at level the confidence level 1 — a, if
F(x) > F,, where F, is such that f;: flx)dx = a and f is the distribution function
of Feodim m,codim -

b. The symbol L stands for a direct sum of orthogonal subspaces. Assume that
the sample space has an orthogonal decomposition R = S; 1L Sy L ... L S., and
w.r.t. this decomposition, the components of the vector valued random variable are
uncorrelated. Also assume for each j, the S; - component has the covariance matrix
¥ = 0]2- Id. Such a decomposition is usually called in statistics orthogonal design.
Note that for an orthogonal design, the probability distribution function obviously
factors

(2.5) L(p, 35 0) =T L (g, 55 75)

and each of the factors L; is given by a (2.1) type of expression. It is then obvious
that if L has a decomposition L =1 L;, with L; C S;, then by a similar argument as
in Rem. 2.1, one may assume that N = 1. For each j ,

1
26) (i, 5%,) = (ors,7. 77lbQu @)

In (2.6), ;Qr, represents the orthoprojection on S; N Lj-. Note that ;Qr, () is
a vector valued "unitary” normally distributed random variable of rank | I; | —d;,
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where d; = dim L; and | I; |= dim S; and mtfj_Q @, (:v)”2 follows a X7 _
distribution. The likelihood ratio associated with the hypothesis H in a., where M is

also assumed to have an orthogonal splitting M =1 Mj,

o N AT
(2.7) p(x) = L /Ly =Ti; (Uij/Uij) '

According to Proposition 2.1, each of the factors &?MJ_ / &?LJ_ involved in the likelihood

ratio, has up to a constant a beta distribution of form parameters (| I; | —m;, m; —
d;). It is also obvious that these factors are independent. We set

Fia) = S (10,0 = Qu @/ @, @)

There is only one situation in which the question whether H is true has a straightfor-

ward answer, that is when L and M differ only on one component of the decomposition

of S. Then we may use an F-test.

Proposition 2.3. Let a € (0,1). Hj, be the hypothesis H in which L; = M;, if

J # jo. Hj, is rejected at level the confidence level 1 — «, if Fj,(x) > F,, where Fy is
o0

such that [ f(x)dz = a, where f is the distribution of a
F

Flfjo\ — My, M, — djg.

The situation encountered in Proposition 2.3 occurs seldom in practical situations.

For the general case, we need a definition. Let s be a notation for the multi index
(85)j—157-
Definition 2.1. A pi-beta distribution with parameters the multi indices (a,b) and
powers the multi index n is a distribution of a product r independent powers of beta
distributed random variables, the j- factor, being the n; power of a r.v. following
a beta distribution with form parameters (aj,b;). Such a distribution is denoted by
wB(a,b;n).

Let b be the p.d.f. of mf3(a,b;n) distributed r.v. and let pgp;n(c) =t be a value

t
such that [ b(s)ds = a. We proved the following

0
Theorem 2.1.. Assume L =1 L; C M =1 M; and « € (0,1). Then H is rejected
at level the confidence level 1 — v, if p(z) < pg,pin ().

In concrete situations, since tables of 7(a, b;n) distributions are scarce one runs
into numerical problems, solvable on a computer algebra system.

3 Two and three way layouts with applications to
genetherapy

In this last section, we give two examples of orthogonal designs, as an application of
the theory considered in the previous section.

a. The two way layout (with one observation per cell) is a classic example of orthogonal
model [7]. I = R x C, where R stands for rows and C for columns; identify R
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with R x C real matrices, with the convention (r,¢) = re. The natural projection
R x C — R, rc — r, induces the inclusion of R — RI!, given by (z,) = (z,.),
where for each ¢, X,.. = z,.. The image of R under this monomorphism is Lg, the
set of all R x C' matrices with equal components within each row. Similarly, Lo is
set of all R x C' matrices with equal components within each column, and Lo = the
set of R x C matrices with equal entries. Also let Lryc = Lr + L. Thus the main
subspaces for this design are the vertices of the lattice

(3.1)

The scalar product in L = R/ is in matrix notation z - y = Tr(zy?) which induces
the following orthogonal decomposition w.r.t.:

(3.2) R'=LoL(LrpnLy)L(LenLy) L Ly c.
Note the following useful decompositions :

LR:L[)J_(LRQLOL)
LC:L()J_(LCr\ILOL)
Licc =Lo L (LrnLE) L (Lo N LY.

If we set I to be a matrix with all entries = 1, the projection Ry := P, is given
by
Tr(zT)
(3.3) Ro(x) = ——-1=2.1=(z.).
|R||C]
One dot as index means average of the data, w.r.t. that index.
The orhtoprojections onto the other summands in (3.2) are

Rg := Pr — P,

Rc == FPc — Ry,

Ry = IRI — PR+C = IRI — (PR + Po — Pg),

Roz :=(Z.), is the contrast vector for the level

Rrzx = (%, — Z..), 1is the contrast vector for the rows

Rex = (z..—1T.), is the contrast vector for the columns

Rix = (Tre — Tyr. — T+ T.), 1is the contrast vector for the interaction.

Their lengths are called effects, and are key elements for the test statistics, are usually
found in the so called ANOVA tables under various abbreviations, coming from their
analytical formulae.
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degrees of freedom SSD
[ I]-|R|-]C[+1] [[Ruz|* =SSD,
R| -1 RRI‘ 2 = SSDR
Cc|-1 Rcw 2 = SSDC
1 |IRoz||* = SSDy

The covariance matrix has the decomposition
Y(o?, 0%, 0k, o2 ’R R R R
(01, 0%, 0%, 03) =¥ =07 Ry + 03 Rg + 02 Rc + o3 Ry,

where 0%,0%, 02,08 are the covariance components, and various orthogonals submod-
els , can be obtained by setting them equal in accordance with the partial order of
the lattice (3.1). They are

1. (6 = 0% = 0% = 0})
2. (6} =0} =0?, o >0)

3. (61 >0, 0}, = 0% =0?)

e~

- (of, 0} >0, 0 = 07)

ot

(61, 02 >0, 0§ =0o})

og > 0)
o3)

8. (U% =0R> U%’v O-(% > 0)

2_ 2 2
6. (0f = o0q, 04

=l

7.(ci=0k, 0

_ 2 2 2
9. (0 =0, o}, 05 > 0)
2 2 2 2
10. (017 ORr> 0¢C» 0p > 0)
Note the covariances are:

—0h — 0% +0p)

)+ lel™ (o0& —o7)

D+ IR (02 —0?) r#r,c=(
0) )

—ottod) el (0h -0

Erc, rle! = |I |71 g
| |7 (of -

(0f -0
| 117" (0f — 0% — 02 + a3
(f o2 —UC+UO
2 _ g2

R
R

L +|R|™! (0& —0}) + 07 r=r,c=c".
The covariance structures together with the five subspaces define all the orthogonal
models in this variance component design. There are 50 of them. There is a total of
13 models with unique solution for the MLE.

As far as the likelihood ratio test is concerned there are even less cases.
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Out of these models those that are not boxed, are uninteresting ( general linear
model ), those boxed are ill posed from mathematical or random effect standpoint,
those double boxed will be studied.
The names of these diagrams show which of the variance component models are
equal, and tell the subspace of means. For example OR,C1,C is a distribution, with
0? =0b, 0% =03, pn€ Le.

An example of random effect problem in two indices is the following. Assume the
r.v.’s X,. are given by

Xee =Y +Y, + Y.+ Y,

where Y, Y., Y., Y, are independent normally distributed, Y,. from N(«,,w,), Y. from
N(a.,w.), Y from N(a,wp), and Y;.. from N(a,..,w1), w; and the covariance matrix

for X’s is
wo rET, cE
) wo +wr r=r,c#c
B(Xre, Xprer) = wo + we r£r,c=¢

wtwtw+w r=r,c=c.

We identify the two way layout with the random effect model,

(0f — ok — 02 +07)
| I17" (0f — ok — 02 +03) + C| Yok —of)
(01 —o% —02 +03)+ | R| ™ (02 —0}) = wo + we
(%’ ) )

—rf%—rfcwo et (o —of) + IR (02 — o) +of =

That is
| I[7" (of — 0% — 02 +03) =wo

ot (o} —o?) = w,
| R |~ (02 — 0f) = we
0’% = Wwi.
Reading off this correspondence, we see that
R1 1S wr =0
C1 s we=0
ORC1 is w, =w.= wp
ORC is
| |7 (0 — 0%co) = wo
—|e|™ (0 = 0heo) = wr
— | R[™" (0f = 0heo) = Wes
thatis | I |7 wo = — | ¢ |7 w, = — | R|7! w,, which is quite strange;

oC,Rl is w,=wyp=0
oR,C1 is w,=wg=0.
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As an example one may consider the following problem, in connection with the gene
therapy data [11]: assume | ¢ | gene therapy treatments from the same category (
modified adenovirus vectors Ad5-lfu, Ad5-ifn, etc ) are injected in | R | cultures
of MDA-MB-435 breast carcinoma . The data, measures the area of the tumor per
culture treated after a fixed period of time. We would like to test the following simple
hypothesis H: all the cultures grow in the same way independently on adenovirus
type, versus K: cultures react the same way to each of the adenoviruses, but different
adenoviruses yield different reactions. Their reactions to these adenoviruses are the
| ¢| | R| observations which are assumed to be modeled in the random effect form:

Xre=a+ Y, +ac+ Y,

or
Xpe=Y +V, + Yo+ Ve, with w.=uwp=0.

We have seen before that this is the mathematical model oR, C1 .

Let & (respectively &) be value of a associated with the MLE’s of the regular

model oR,C1,C ( respectively oR,(C1,0) .
" The evaluation spaces are
-for £: Lo L (Le N Lg) and € = Po(x) = (Z.),

-for6%,: Lo L (LgNLy) and 6%, = ﬁHRRl‘H2 = I%I (Z. —7.)%,

rc
52 52 _ 1 .7l
- for 67 and 67~ = =17 Lric and

1

||R1£E||2 = —) Z(xrc —Xp, — T+ i’)2

CIRI(CT-1

rc

" The evaluation spaces are
-for £: Lo and £ = Py(x) = (Z..)
-for 6%, : Lr N L3 and 6%, = ‘—]1;£‘||1131;¢a:||2 =

- for L§; : 6%, and

52 -t
YT - R

1 _
(1Bl + 1 Rel”) = =gy 2 (wre = . =

V.Patrangenaru
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(3.4) R'=Lo L (LgnLy)L(LenLy) L Ly c.
In the notation of section 2, R' =S, 1 Sy, S; = Lo L (Lg N L§) = L,
Sy =(LeNLy) L L, e, Ly = Lo, Ly =0, My =Lo L (LpN Ly), M, =0.

Since the evaluation spaces differ only on one component, we may use in this case
an F-test for means.
Let us derive this test. The likelihood ratio is

(3:5) L/L = (IRl /1 Rial® + | R l?) 2.

The hypothesis H : x € Ly is rejected if
[cl-1

[ I|-|R|-]C[+1

-1
|Rcz|||Ryz|| 72 > < > Fioj-1, 11— 1r—jcf+1 (1 — @).

b. Related to the gene therapy data [11], we consider now question of qualitative
responses of the adenoviruses in vivo when equal amounts of identical breast cancer
tumor cells are subcutaneously injected in breasts of | M | | T' | female mice and
then they are locally treated with | 7' | recombinant adenoviruses. One treatment
is administered to an equal number of | M | female mice. The superficial area of
the tumor is measured daily. One would like to compare the reactions to different
treatments. Like in the previous example the numerical computations are deferred to
a future paper. The index set is therefore a subset of I = D x T x M, so that dtm is
the index of the measurement on day d of the m-th mouse tested with the treatment
t.

|I|=|D||T||M]|,D=days, T = treatments, M = mice.

The area measured is modeled by a random variable X 4;,,,. The index ordered set is
(dtm) and we under the experiment the mouse is assumed to be random, as such we
use a random effect model

(3.6) Xatm = a+ ag + o + ags + Yem + Yaim,

where
Yim ~ N(atm,wrm), wrm >0

and
Yaim ~ N(agim,wprm), wprm >0,

are i.d.r.v. ’s (usually am = agim = 0). Since we have Y, and Y, random, this is
part of a three way layout

Xatm =Y +Yg+ Y + Y + Yar + Vi + Yam + Yaem-
The correlation of the rv’s in (3.6) is
0 tm # t'm’

(3.7) Yatm, drtrm' = § WM tm=t'm', d#d
wrym + WpTM dtm =d't'm’.
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Like in the previous example, we would like to test the hypothesis

Hy: the mice react the same way to all treatments, in time, that is E[Xaum]) = a,
versus

Hy: the mice react the same way, but in time there is a treatment effect, that is
E[Xaim] = a + ag;.

The random effect model:

KXatm = a+ag+ g+ ag + Yim + Yam
is obviously a submodel of
thm :Y+Yd+ym+yi-ﬁ+ydt+1/tm+Ydm+Ydtm

The idea is again to identify an orthogonal variance component submodel of a three
way layout with the random effect model. We use the lattice formulation in [3], but
our presentation is self contained. Consider the orthogonal design

This is a sub lattice of a lattice associated with a three way layout. In the subspace
language, testing problem can be translated as follows:

Hy: The mean p is in Ly;

versus

H,: The mean p in is Lpr.

The decomposition of R’ in terms of contrast (orthogonal) subspaces is

RI:COJ_CDJ_CTJ_CDTJ_CTMJ_CDTM:
(3.9) =LoL(LpNLy)L(LrnLy) L ((Lp+Lr)"NLpr)L
1 (L7 N Lra) L (Lprm N (Lpr + Lra) ™).

Let Py, Pp, Pr, Ppr, Prayr, Porar = Id be the orthoprojections on the various
subspaces. They are given by
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Po(z)=(z.)=|I|7" (s0), whereso=> Tam

Pp(z) = (Za.) = (T || M |)""(s4.), wheresq. =3, Tam
(3.10) Pr(z) = (z+) = (D || M|[)"*(s+), wheress =3 ,, Tam
Ppr(z) = (Zar.) = (| M |)"'(sqr.), where sqe. =3 @am
(

(
PTM(x) = (i'.tm) = (| T |) (s tm) where s ¢, = Ed Tdtm
Ppry(z) = 2 = (Taim)-

The contrast vectors
(3.11)

Rp(z) = Pp(z) — Po(z) = (Ta. — ..)

Ry(z) = Pr(z) — Py(z) = (T — Z..)

Rpr(z) = Ppr(z) — Pp(x) — Pr(z) + Po(z) = (Tar. — Ba.. — T4, +T...)

Loar = (Lpr N Lyag) L (L0 Lyag) = Ly L (Lsp A Lyag)

Rru(2) = Pru(z) — Pr(z) = (Z.um — 2.0.)

Rpru(z) = (Id(x) + Pr(z) — Pru(z) — Ppr(2)) = (Tatm — T.4m — Tar. + 1)

In the three way layout the covariance matrix has 6 variance components

E = O'ORO + (TDRD + (TTRT + U'DTRDT + UTMRTM + UDTMRDTM =

(3.12) = (05 —0h — 07 +0hr)Po + (0 — ohr) P+
‘ +(07 —0hr — 0Fa + 0hra)Pr + (0br — 0hra) Por+

+(0Fa — prar) Prae + oy Id.
If one identifies the matrix Y in (3.7) with a linear endomorphism of R’,

(3.13) Z =| D | wrmPry +wprmld.

The models are the same if

2 2 2 2 2 2
op—0op—0p+opp=0,0p—0pr=0

(3.14) 0F — by = 0p + by =0, Ohy — Ohppr =0
05y —0hra =| D | wrn, 0hry = Wprm-

or
| D |7 (070 — ODrar) = WTM, Ohry = WDTM-

One can treat the random effect model as a 2 variance components model,
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In the notation of section 2, R =6 L Ss, S1=Coy L Cp L Cryy,

Sy =Cp L Cpr L Cprm
Ly =Cy, Ly =0,
M, =Cy L Cy, My=Cp L Cpr.

As such although the question in the examples in 3.a. and 3.b. are the same, using
the results in the previous section, we see that the test statistics has to be based on
a product of powers two independent beta’s.

Let h be the distribution function of a product of two independent distributions, a
beta with form parameters (|7 || M | — | T |, | T | —1) by the | D | —1 power of a
beta with form parameters

(IDITIM|=[TM|=|DHT|+[T|, |D|T|=]T)-

Theorem 3.1. Hy is rejected at level of confidence 1 — a, if
(ID]-1)
(1Bpraal / (|Rpal? + [ Rorel + |Rprmal®)) -

- (1Rzasall® / (I1Brall® + | Rraz]) ) < b,

/Oha h(z)dz = a.

Remark 3.1. Under this simple hypothesis testing problem, the main obstacles are
numerical rather then conceptual. The key steps in solving such a problem are not
only hidden in tables for the cumulative distributions of products of powers of beta
distributed r.v.” s, but equally for concrete questions the numerical work stays behind
the computation of various orthogonal components of the projections of the data x
onto the corresponding summands Lj.

Acknowledgement. I am very grateful to Steen Andersson, for sharing his insight
on multivariate normal statistics and orthogonal models and to Victor Goodman for
useful conversations.
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