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Abstract

In this paper are introduced principal directions and principal normal vec-
tors of arbitrary n-dimensional submanifolds of the Euclidean space R"**. The
canonical normal vectors and curvatures for the submanifolds of the Euclidean
spaces are introduced as for the curves.
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1 Introduction

In the theory of the hypersurfaces are introduced the principal directions and princi-
pal curvatures [2]. It is natural to ask why it is not done for n dimensional surfaces
imbedded in R"t* for k£ > 17 In special case, when n = 1, it is introduced canon-
ical orthonormal frame of the curve in the space and also the corresponding scalar
curvature, connected with the Frenet equations [1]. It is also natural to ask why it
is not done for the manifolds of arbitrary dimension n? Indeed we have two special
cases: (1) £ = 1 and (ii) n = 1. In this paper is considered the general case, intro-
ducing the principal directions and so called principal normal vectors of any manifold
imbedded in R"** and also are introduced canonical ¥ normal vector fields and the
corresponding curvatures, which do not depend on the choice of the parametrization
of the surface.

2 Notations and basic results

Let M be an n-dimensional submanifold of R"** and let P be an arbitrary point
of M. Because the examination of the principal curvatures and directions has a local
character, we will consider only a neighborhood U of the point P instead of the whole
manifold M. The Euclidean norm of z will be denoted by ||z||. Let ¢ > 0. For each

Balkan Journal of Geometry and Its Applications, Vol.2, No.l, 1997, pp. 117-127
©Balkan Society of Geometers, Geometry Balkan Press



118 K. Trencevski

point S € U determined by a radius-vector x, let Ng be the following subset of the
orthogonal subspace of the tangent space at .S,

Ns = {y €eR""* | y — x is vector orthogonal to Ts(M) and ||y —x|| < €}.

If € is sufficiently small, then S; # S, if and only if Ng, and Ng, do not intersect
and moreover Uscy N is an open subset of R"T* of dimension n + k. Since Ns, and
Ng, do not intersect for S; # Ss, it allows us uniquely to transport parallel on Ng
all the vectors defined at S, according to the Euclidean flat metric in R"**. Thus for
each vector field defined on U we have uniquely defined vector field on Ugciy Ng, and
moreover

(21) VN = 0,

for each orthogonal vector N, where V denotes the covariant differentiation with
respect to the Euclidean metric. Usually, by N we will denote a unit vector (field)
which is orthogonal to the basic manifold.

For arbitrary vector field X, (2.1) implies

(2.2) [N,X] = VNX — VxN = -VxN
and hence N L[N, X] because
(2.3) N[N, X] =0,
since |[N|| = 1. Let ¢ be the linear mapping defined by
(2.4) (X) = [N, X].
Lemma 2.1. For each tangent vector fields X and Y, it holds
(2.5) #(X)-Y = p(Y) - X.
Proof. p(X) Y —¢(Y) - X=[N,X]- Y - [N,Y]- X =-Y - VxN+
+X -VyN=N:-VxY -N:-VyX=N:(VxY - VyX) =N'X,Y] =0.

In the special case when &k = 1, it follows from (2.3) that [N, X] is a tangent vector
on U, and according to (2.2) and (2.4) we have p(X) = —VxN, and ¢ coincides with
the mapping A : T(U) — T(U) whose eigenvalues are principal curvatures and the
eigenvectors determine the principal directions [2]. Moreover, (2.5) shows that ¢ = A
is symmetric operator, and hence the principal curvatures are real numbers and the
principal directions are orthogonal.

3 Introduction of principal directions and principal
normal vectors in general case
Let Ny,..., NN be arbitrary k£ orthonormal vector fields on U, i.e. N, - Ng = 6,3 for

a,fB € {1,...,k}. For each tangent vector fields X; and X, we define a normal vector
field N(X;, X,) as follows
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k

(3.1) N(X1,X;) = Y No(X; - [Ng, Xo)).

a=1

k
First we prove that N(Xj,X) is well defined. Let N/, = Z:l P,sNgs be another

system of orthonormal vectors, such that P is orthogonal k£ x k£ matrix. Then

k k
Xy - [N, Xo] =X - [Y PagNg, Xo] = Y PogXi - [N, Xo]—
B=1 B=1
k k
=Y Xy - (Ng-X5(Pag)) = Y PapXy - [Ng, Xs],
g=1 g=1

and

NI(Xl,Xz) = Z ZPMSNJ ' ZPaB(Xl : [Nﬁ)XQ]) =
a=1 =1 B=1

.
= 3" Nu(X; - [Na, X)) = N(X1, Xo).

The vector field N(X;,X5) has the following properties:
i) N(X1,X3) = N(Xz, Xy),
ii) N(X; + X{,Xs) = N(X,X5) + N(X", Xy),
N(Xy, X5 + X5) = N(Xy, X3) + N(X4, X3),
iii) N(fXy,Xs) = fN(Xy,Xs)
N(Xy, fX2) = fN(X1,Xa),
where f € C1(U). The proof is trivial.
Further, for each vector field N we define a mapping hyn : x(U) — x(U) by

n

(3.2) hn(X) =) Yi(Yi - [N, X))

i=1

where Y1,...,Y, is orthonormal basis of tangent vectors. Obviously, hn(X) is the
projection of the vector [N, X] on the tangent space. Hence for arbitrary tangent
vector field Z, we have

hn(X)-Z =7Z[N,X].

Similarly, it holds
hn(Z) - X = XN, Z].
Hence,

(3.3) hn(X)-Z = hn(Z) - X

which means that hxn is a symmetric tensor filed on U. Thus all eigenvalues are real
numbers and the eigenvectors are orthogonal.

Further, the vector N = N(X, X3) can be substituted in (3.2). Hence we obtain
a mapping H (X1, Xs) : x(U) = x(U), defined by
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H(X1,X2) = hnx, Xa)

ie.,

k
(3.4) H(X1, X)X =), Z - [Na, Xs]), X]).

i=1

Since N, - X(X; - [N, X2]) is orthogonal to Y;, from (3.4) we obtain

k n
(3.5) H(Xy,X5)X Z Z - [Na, X)) (X1 - [Na, X))}
Now let us put H (X, X, X35,X4) = Xy - H(Xy,X3)X5. Then

k n
H(Xy,X5,X3,Xy) = ZZY - X4) (Y - [Na, X3]) (X - [N, Xa)).
=1

Since the left side of this equality is independent of the choice of the orthonormal
basis Yi,---,Y,, we can assume that Yy = X4/ ||X4||. Then Y; - X4 =0 for i > 1,
and we obtain the identity

.
(3.6) H(Xy,X5,X35,Xy) = > (Xy - [Ng, X5]) (X - [Ng, Xa)),

a=1
and the following properties follow immediately.
Z) H(X17X27X37X4):H(X25X15X37X4)7
i7) H(X,X,,X3,X4) = H(Xy,X2,Xy,X3),
iii) H(X,X5,X3,Xy4) = H(X3,Xy4,X1,Xo2).
Further we will prove another property. Let X3 and X4 be fixed vectors,

K
Sij = H(Y:,Y;,X3,Xy) = > (Y;-[Na, Y;]) (X5 - [Na, X4]),

a=1

and let Y} = Er 1 @iy Y, be another orthonormal basis. Then

k k k
Y; ' [NayY}] = ZairYr . [Non Zasts Z
r=1 s=1

r=1 s=

k
air Y, - [Ny, Y ]a
1

But the matrix A = (a;;) is an orthogonal matrix, and hence we obtain the following
transformation law

S'=A.5-A7L
Thus the eigenvalues of the matrix S;; are invariant of the basis Yi,...,Y,. Also,
if (A1,...,An) is an arbitrary eigenvector of the matrix S;;, then the vector A; Y; +

..+ A Y, is eigenvector for the corresponding (1.1) tensor field S]’:, and it does not
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depend on the basis Yi,...,Y,. These eigenvalues and eigenvectors depend on the
choice of the vectors X3 and Xjy.

In order to introduce principal directions which are independent from any choice
of vectors (like X3 and X4), analogously to S;; we define tensor field T;; as follows

k n
(3.7) Ty =Y (Yi-[Na, Y ))(Y, - [Na, Y5)).

a=1r=1

Analogously as for S;; this tensor is also symmetric tensor field invariant of the or-
thonormal basis Yi,...,Y,. Also, if (A1,...,A,) is an arbitrary eigenvector of the
matrix Tj;, then the vector Ay Y, + ...+ X, Y, is eigenvector for the corresponding
(1.1) tensor field T}, and it, does not depend on the basis Y1,..., Y, or Ny, -, Ny.
The eigenvectors are orthogonal and they determine the principal directions. Its eigen-
values are real numbers and moreover they are non-negative according to the following
lemma.

Lemma 3.1. Let (Al, AQ, cey An), (Bl, BQ, . ,Bn), cey (Cl, CQ, N Cn) are arbi-
trary vectors. Then the eigenvalues of the following matriz

Sij:AiAj+BiBj+...+CiCj (lgl,jg’n)

are non-negative real numbers.

Indeed these eigenvalues are squares of the ”principal curvatures” which we would
like to define. They are determined up to the sign. The following discussion shows
why it is impossible to determine the n-typle (Ay,---,\,,) of "principal curvatures”
up to the sign, as it is done for the special case k = 1. If it is possible, then it is
natural to suppose that A; and A; have the same signs if and only if the sectional
curvature of the plane determined by the corresponding eigenvectors (i.e. principal
directions) is positive. This may not be satisfied always because if X,Y and Z are
three eigenvectors, then K(X,Y)-K(Y,Z)- K(Z,X) is not always positive for k£ > 1,
where K (A,B) denotes the sectional curvature for the plane generated by A and B.
This problem will be solved by introducing principal normal vectors instead of the
principal curvatures.

Suppose that Zq,---,Z, are orthonormal vectors which determine the principal
directions. Then we define the corresponding principal normal vectors U;(1 < i < n)
as

k
(3.8) U; = Z(Zi - [Na, Z;])Nag.

a=1

and also define vectors
k
(3.9) Uij =Y (Zi-[Na,Zj])Na
a=1

such that U; = Uy;. From the definition (3.7) it follows that these vectors are canoni-
cal. Indeed, it verifies easily that they do not depend on the choice of the orthonormal
system {N,} and do not depend on the signs of the vectors Z;. Now we have the fol-
lowing proposition.
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n
Proposition 3.2. The sums Y ||Uij||2 fori € {1,---,n} are the eigenvalues of T.
j=1

Proof. If we put Y; = Z; for i € {1,---,n}, then the following matrix

(3.10) Z Z Non Z (Zr : [Nou Zj])

a=1r=1

similar to 7', has the same eigenvalues. This is a diagonal matrix by construction, and
hence the eigenvalues of T" are

ZZ -[Na, Z:)(Z, - [Ny, Zi]) Z||U”,|| (1<i<n).

a=1r=1

Note that the matrix (3.10) is diagonal and hence

k n

(3.11) YD (Zi-[NayZ)(Zr - [Na, Z5]) =0 (i # j).

a=1r=1
It is of interest to consider surfaces such that (Z; - [Ng, Z;]) = 0 for i #j. We will
consider the special case k = 1. Let denote Ny = N. Now

(3.12) T(X,Y) = (X:[N, Y])(X[N, Y]) = A(X, Y)A(X,Y),

where A(X,Y) = (X:[N,Y]) and it is symmetric tensor field. The eigenvalues of the
tensor A are principal curvatures according to the classical definition. Let us suppose
that the symmetric matrix A has different eigenvalues. Indeed, it is sufficient the
eigenvalues of T to be different. Then A(Z;,Z;) must be diagonal matrix, because
T(Z;,Z;) is a diagonal matrix. Hence

(3.13) Z;-[N,Z;] =0 (i #J).

The principal directions defined by A and by T are the same while the eigenvalues
of T are squares of the eigenvalues of A. Note that the classical definition of the
principal curvatures determines them up to the sign, i.e. it depends of the sign of the
unit vector N, but now the principal vectors

U;=(Z;-[N,Z,)N (1<i<n)
are uniquely defined, U;; = 0 according to (3.13) and [UI? (1 <i < n) are the

squares of the principal curvatures.
Some further research about principal directions will be done in another paper.

4 Introduction of canonical normal vectors and nor-
mal curvatures

Let us define the following k& x k matrix
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(4.1) -%2=2323 S [Nw, Y)Y - N5, Y5)).

i=1 j=1

It verifies that PSB) do not depend on the choice of the basis {Y;}, such that the
matrix P(!) is well defined. It depends on the choice of the orthonormal basis {N,}
and the matrix P(!) is symmetric. Its eigenvalues are non-negative (see the lemma,

in section 3) real numbers and the eigenvectors are orthogonal. Let ky = mnk(PSB)),
(1)

such that that there exist k; non-zero eigenvectors N( ) ---, N}, and corresponding

k, positive eigenvalues /\g ), - -,/\,(611). Indeed, if (Aq,-- -,/\k) is an eigenvector, then
indeed it is the vector AN + --- + A Ny. According to this identification similarly
as in the section 3, it verifies that these eigenvectors and eigenvalues do not depend
on the choice of the basis {N}.

The geometrical interpretation of the vectors Ngl), . ,N,(Cll) follows. If P is
zero matrix at each point, then it is easy to verify that locally M is affine subspace of

R™ %, So suppose that k; > 0. Then the vectors Yy,---,Y,,,Ny,---, Ny, generate the
(1) )

osculating space at the considered point. The positive scalars A; 7, ---, A}’ we define
to be the squares of the first normal curvatures and the corresponding eigenvectors
Ngl), s Ngcll) we define to be the first normal vectors.

Since the matrix P(!) is a sum of n? matrices of the special form ” C.Cg”, it follows
that

(4.2) k; < min(n?, k).
Specially, if n = 1 then k1 = 1 or k; = 0, the eigenvector is
(43) N{Y = (YN0, YN + -+ (YN, YNy

and (Y-[Ngl),Y])(Y-[Ngl), Y]) is the square of the first curvature.

Note that the vectors Ngl),---,Ngl) are uniquely determined (up to permuta-
tion) if and only if the eigenvalues Agl), e )\,(611) are different numbers. If some of the
eigenvalues are equal, then instead of normal vectors we have normal subspace. For
example let us consider a 2-dimensional Euclidean subspace of R*. In this case it is
not possible to distinguished two normal vectors, but we have only normal space.

Now we are going to give the second step. Without loss of generality we suppose
that N; = Ngl), <o Ny, = N,(Cll). Hence N; L N;l) for ¢ > ki and 5 < k;. Let us write
temporary Y,4+1 = Ny, -+, Y, 4k, = Ny, . Now we define the second (k—k;) x (k—k;)
matrix

n+k1 n+kq

(4.4) P2 =5 S (Y- [Na, Y)Y - [Ng, Y.

i=1 j=1

for a,8 € {k1 +1,...,k}. Since [N,,Ng] = 0 and according to the choice of the
vectors Ngl), e Ngl), (4.4) implies

(5) P = 3OS N NG Y DN [N Y )

i=1 j=1
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Similarly to (4.2) now we have
(4.6) ke = rank(P%)) < min(nki, k — k).

It can be verified that if k2 = 0, i.e. PD%) = 0, then the manifold can locally be
imbedded in n + k; dimensional affine subspace of R"t*. So, suppose that ks > 0.
Let (A1, -, Ak—k,) be an eigenvector of the matrix PC(Y?, then we consider the fol-
lowing vector A{Ny, 41 + AaNpg, 12 + -+ + Ap_i;, N as an eigenvector. With respect
to this identification, all the eigenvectors of Pfﬁ) do not depend on the choice of the
basis {N,}, and also the eigenvalues do not depend on the basis {N,}. The eigen-

vectors N§2), ce Nﬁ) of Pgﬁ) have the following geometrical meaning. The vectors
Yi,---, Y, N(l), e ,N(l), N(2), - ,N(Q) generate the osculated space of second or-
1 k1 1 ko

der at the considered point. The eigenvalues )\52), e )\5622) we define to be the squares
of the second normal curvatures and the corresponding eigenvectors N§2), .- -,Nﬁ)
we define to be the second normal vectors.

Specially, if n = 1 then ks = 1 or ks = 0, the eigenvector is
(4.7) N = (T - [Npyt, YD) Ng s+ oo+ (N - [N, Y)N
and (Ngl) - [NgQ), Y])(Ngl) - [NgQ), Y]) is the square of the second curvature.

Note that the vectors N?), . ,N,(i) are uniquely determined (up to permutation)
if and only if the eigenvalues )\52), cee, )\5622) are different numbers.

In order to give the third step, without loss of generality we suppose that Ng, +1 =
N, Npygr, = N Hence Ny L N for i > ki + ks and j € {1,..., k).
Analogously to (4.5) the third (k — ki — k2) x (k — k1 — ko) matrix can be formed and
the procedure can be continued. We give only the recurrent formulas

ks n
(4.8) PO =3T3 (NP NG, Y (N - NG, Y])
i=1 j=1
and
4.9 ksy1 = rank p? < min(nks,k — k1 — ... —ks),
af

which are analogous to (4.5) and (4.6). From (4.9) and (4.2) it follows the following
inequality

(4.10) ks <ntt
Thus finally we obtain canonical orthogonal vector fields
1 1 2 2 r r
NN NP NS N N
and canonical squares

1 1 2 2 r r
A A A AR Al A
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of the normal curvatures, such that k& + --- + k. = k. The normal curvatures are
determined up to the sign. Indeed they are unique determined if we suppose that
they are non-negative. The orthogonal vectors Ngl), ce Ngc:) can be chosen as unit
vectors.

We conclude this section considering the special case n = 1 and k¥ = 2. This
example also shows the practical method of calculation.
Example. Let us consider the helix £ = acost, y = asint, z = bt. In this case it
is well known that k1 = a/(a® + b%) and k2 = b/(a® + b*). We use the orthonormal
system of vectors

Y = (—asint,acost,b) - (a® + b*) /2,

N; = (—cost,—sint, 0),
N, = (bsint, —bcost,a) - (a® + b>)~1/2.
In general case, the normal plane at the point (zo, yo, 20) = (z(t0),y(t0), 2(to)) is
(4.11) (X —20) + Yo (Y — o) + 26(Z — 20) = 0.

In this case it holds

o _1d o _1d 9 _1d
0X  dX a9y  dY dt 0z  dZ day’
dt t dt
X dY dz
where —, — and — can be found from (4.11). Indeed,
dt ’ dt dt
! !
X =29 — (Y —yo) — ~2(Z — 20),
0 0
dxX yl ZI (mI)Q +(y')2+(z')2
E(iﬂo,yo,zo) = x5 — x—[,;(—y(l)) - m—z(—zf)) =2 3306 .
Similarly,
dy _ (z)* + (y0)* + (20)°
dt (l'o,yo,z[)) - y(/)
and dz ( /)2 ( /)2 ( 1)2
x + (v, + (2
%(mo,yo,zo) == Z[ZI) o
Hence
9 _ h d
0X  (x)% + (y0)? + (2)* dt’
o _ b A0 4 d
Y (mh)2 + (yh)2 + (20)2 dt 0Z — (mh)? + (yp)? + (20)2 dt’
In our case of the example of the helix, we obtain
i_—asinti i_ acost d and i_ b d
X  a?+0b2dt’ Y  aZ+b2dt 0Z  a?+b2dt’

Now by direct calculation one obtains
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0

9] 5] 9] 9]
(02 p2\—1/2[_ g —asi — 4b]=
[N, Y] = (a”+0°)" /7] COStaX smtay, aS1nt6X+aC0St6Y+b8Z]

= (a® + b*)"V/2 (- sinti + costi)

0X Y
and
0 0 0 0 0 0
(22w d Y .Y _asint- — 4+bh—]=
[N2, Y] = (a” +b°) [bsmtaX bCOSt6Y+a6Z’ aS1nt6X+aC0St8Y+b8Z

0 0
(a2 o 12 —1 :
= —b(a” 4+ b°) (COSt6X+Smt8Y)'

Further,

a2
PO — | (aZ+p2)? 0
0 0

2x2
and hence the eigenvector is (1,0), i.e. N = Ny, and k2 = a?/(a® + b*)2.

2
P = [(a2 —?— b2)2]1><1

and hence N'? = Ny and k2 = b2/(a2 + b?)2.
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