Electromagnetic Dynamical Systems
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Abstract

81 describes the dynamics induced by the Biot-Savart-Laplace vector field
using Hamiltonians and new variants of Lorentz world-force laws on Riemann-
Jacobi or Riemann-Jacobi-Lagrange manifolds and points out some open prob-
lems. §2 transcribes the Lorentz world-force laws in the first paragraph in the
Hamiltonian language using suitable symplectic forms. §3 presents the classical
theory of motion of a charged particle in the electromagnetic field in order to
show that the classical Lorentz world-force law is different from those introduced
in the first paragraph. §4 proves that the dynamics induced by the electric field
E or the magnetic field H can be described by Hamiltonians and symplectic
forms intrisecally connected to the field, obeying to some Lorentz world-force
laws on Riemann-Jacobi-Lagrange manifolds whose structure is imposed just by
the vector field and by Maxwell equations. §5 analyses the electromagnetic dy-
namical systems appearing in the relativistic model. The results can be extended
to any C'* vector field on a Riemannian manifold.
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1 Biot-Savart-Laplace dynamical systems

Let U be an open and connected set (domain) of R?, with a piecewise smooth bound-
ary OU, and J be a C™ vector field on U = UUOU. The Biot-Savart-Laplace formula

- 1 J x pm
H(m) = gy /U o3 dv,
defines on R® a vector field H which is C*® on R3? — QU and of class C° on the
boundary 9U.

Suppose Jis solenoidal, and QU is a field surface of J.If Jis a stationary electro-
kinetic field (conduction current density), then Hisan approximation of the magnetic
field generated by J. The magnetic field H satisfies the relations

divll =0
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0 for meR\U

rotH (m) = { Jm) for meU.

Obviously the vector field J can have zeros on U. Also the domain U can be
replaced by a certain surface or a certain curve. In the case of a curve, J must be
nonzero everywhere.

Let m(z',22,2%) be a point of R and {i1,i2,i3} be the Cartesian frame. The
Biot-Savart-Laplace vector field can be express in the form H= H; Zl + H2Z2 + H35’3.
The magnetic line a which starts from the point mq(z3, 22, z3) at the moment ¢t = 0
is the oriented curve

o (_ava) - R3) a(t) = (1.1 (t),1‘2(t),1‘3(t))

which satisfies the Cauchy problem

2
djt = H;, 2(0)=z), i=1,223
The set of all images of the maximal magnetic lines is called the phase portrait of
the magnetic field H.
Let f: R* — R, f=i(H?+ H3+ H3) be the energy of the magnetic field H,
leaving aside the multiplicative factor u. The following theorems are true [7]-[11].
1.1. Theorem. Every magnetic line in R®> — U is a trajectory of a potential

dynamical system with 3 degrees of freedom associated to the potential V = —f, namely
d*x  of

1 =—, i=1,23.

( ) A2 oz’ v ) &y

1.2. Theorem. Every magnetic line in U is the trajectory of a nonpotential dy-
namical system with 3 degrees of freedom determined by the potential V = —f and by
rot H, namely

2 a2 oz oxi Ozt ) dt

d2£l7i 8f <8Hl 6H]> d.T]
1.3. Theorem.1) The trajectories of the dynamical system (1) are the extremals

of the Lagrangian o

1. da*da’ 1 9

L=50i—p—r + flz,2 @)
2) The trajectories of the dynamical system (2) are the extremal of the Lagrangian
1. dztdx? dx’
L= i v + f(z', 2, 2%).

o a
3) The dynamical systems (1) and (2) are conservative, the total energy (Hamil-
tonian) being in both cases

00 ¢€ ¢ |—§OO |—§€|—§3 0 |—§> |—§| 0o eE ¢
(3) H<§ 7§ 7§ ,|——|_|’|—_|_||—_|_|> _E(S>||—_|_||—__{(§ )§ 7§ ))

where §;; is the Kronecker symbol.
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1.4. Theorem (new variant of Lorentz world-force law). Every nonconstant
trajectory of the dynamical system (1) which has the total energy H is a reparametrized
geodesic of the Riemann-Jacobi manifold

(e:z:t(U) \57 })l = (H + {)6)|7 >7| = 0, €, 9)7

where & is the set of zeros of H.

1.5. Theorem (new variant of Lorentz world-force law). Every nonconstant
trajectory of the dynamical system (2) which has the total energy H is a reparametrized
horizontal geodesic of the Riemann-Jacobi-Lagrange manifold

(U\g7 })\ = (H+ {)6>|7 M> = _|>||TH +‘7:>\v >v| = 005659)7
where

I}, = Riemannian connection induced by g;;,

_OH; OH,

Fj=—2
4 ort oxJ

:H],l_Hl,ja Fz] :gZhth

Open problems. 1) Obviously the differential systems (1) and (2), which describe
the dynamics of some particles sensible to the magnetic field H , have also solutions
that are not field lines of H. Till the present time for us is not clear which is the
physical meaning of these trajectories though the preceding theorems show that they
are not only mathematical entities.

2) The Lorentz law of Theorem 1.5 was obtained using an idea of Kawaguchi-Miron
[4]. New variants of Lorentz world-force law associated to the dynamical system (2)
can be obtained via the interesting and original ideas of Beil [1], [2], of Crampin [3],
or of Obadeanu-Vernic [6].

3) The preceding theory can be extend to any vector field on a Riemannian mani-
fold. In other words every dynamical system of order one can be prolonged to a suitable
dynamical system of order two whose trajectories are geodesics of a Lagrangian de-
fined by the velocity vector field (Lagrange structure of first order). In a similar way
every dynamical system of order two can be prolonged to a suitable dynamical system
of order three whose trajectories are geodesics of a Lagrangian defined by velocity and
acceleration vector fields (Lagrange structure of order two). This point of view can
create better examples for higher order Lagrange spaces [5].

4) The preceding Jacobi-Riemann-Lagrange structure blows up at equilibrium
points. Is it possible to eliminate this deficiency ?

2 Hamiltonian formulation of the Biot-Savart-Laplace
dynamical systems

Let us show that the differential systems (1) and (2) can be described like Hamiltonian
systems.

Let M be a differentiable manifold and Q be a 2-form on M. The pair (M, ) is
called a symplectic manifold if () satisfies

1) d2 =0 (i.e., Q is closed),
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2) Q is nondegenerate.
Let (M, Q) be a symplectic manifold and let ¢ € F(M). Let X, be the unique
vector field on M satisfying

Qp(Xy(p),v) = do(p) -v, Vv e T,M.

We call X, the Hamiltonian vector field of ¢. Hamiltonian equations are the differ-
ential equations on M given by
dp

Let T} be the flow of the Hamilton equations, i.e., T;(p) is a field line of X, starting
at p. Then the energy ¢ is conserved, i.e., p o Ty = ¢ (conservation of the energy).

2.1. Theorem. The dot ”-” will stand for the derivative with respect to the pa-
rameter t. On TR® ~ RS, the equations of motion of a particle sensible to the Biot-
Savart-Laplace magnetic field are Hamiltonian with respect to the total energy (3) and
the following symplectic form:

1) If the particle belong to int(R® — U), then the symplectic form is

Q= §;dz’ A di?.
2) If the particle belong to U, then the symplectic form is
Q = 6;;dx N3 + J,
where the current density J is viewed as a closed 2-form
J = Jidz? A dz® + Jodz® Adx' + Jydxt A da?
to whom is associated the solenoidal vector field
J = Jiiy + Jaio + Jais.
Proof. Let H be the function (3) and

0= 6ijda:i Adii+J on U ><7R3
T ijdxt Adid on (extU) x R3.

Denote Xy = (u!,u?,u?, 4,42, 43) and let us discuss the case U x R3. The condition
ix, Q= dH,
which defines X4, may be written as

utdi' — aldz' + w?di® — uPdz? + vidi® — WPdad+
+Jiulde® — Jiulda? + Jhuldz! — Jyulde® + Jyulda? — Jsulds! =
= ildi! + @2di? + i — (Zhdet + Zhdo? + 2rda?) .

By identification we find
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. of . of . of
1 _ 2 _ 1 3 3 _ 2 1
u a 1+J2'U, —J3'U, u —@‘FJ{;U —Jlu, u —%‘{—Jlu —JQU,
ie.,
. of . . . of . of . .
1 _ 3 2 2 _ 3 _ 2 1
T —@4-(]2:6 — J3z°, & 82+J3:n —Jla: T —%-{—Jlx — i,

which is the same with the differential system (2).
Obviously divXy = 0 and hence the flow generated by X4 preserves the volume.

3 Classical equations of motion for a charged par-
ticle in a stationary electromagnetic field

To avoid some misunderstandings, we recall some well known facts. Let
B = Byda® A da® + Byda® Ada' + Bsda' A da?
be a closed 2-form on R?® and
B = Biiy + Bais + Bais

the associated divergence free vector field. The connection between the magnetic
induction B and the magnetic vector field HisB = ugH Thinking of Basa ‘magnetic
field, and taking the eletromagnetic field on R? given by the electric field E and the
magnetic field B , the equations of motion for a particle with charge e and mass m in
the electromagnetic field are given by the Lorentz force-law

dv _, N
E B
mg ~ (B +TxB),

where ¥ = #'i; + 20y + @3ig is the field of velocities and the dot ”-” denote the
derivative with respect to the parameter .

Since rot E = 0 (8,B = 0), we can write (locally) E = grade.

On R? x R®,i.e.,on (z', 22,23, 4,42, 43) -space, we consider the symplectic form

Op = m6l]dm’ Adi’ —eB

and the Hamiltonian (total energy)

=69 +1¢(8)

Denoting X (u!,u?,u?®) = (u!,u?,u? 4!, 4% 43) the condition of defining Xy, i.e.,
ix, Qp = dH

becomes

m(utdit —atdet +u?di? — u?dz? + uddi® — udda®)—
—e(Byu?dz® — Biuddx? + Byuldr! — Bouldr® + Bsuldr? — Bauldzt) =

=m(itdit + #2di? + 23di’) + e ( of de' + —fd L —fdx > .

Oz! Ox? ox3
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Consequently

ut =3t W =42 WP =d3,

mi' = e(Ey, + Bsu® — Bou®), mi® = e(Fs + Biu® — Bsu'),
mu® = e(Es + Byu' — Byu?)

or
mi' = e(Ey + Bsi® — Bai®)

mfi’2 = €(E2 + Bli’3 — B3i‘1)
mi® = e(Fs 4+ Byi' — Byi?),

which are the same with classical Lorentz equations. Thus the equations of motion
for a charged particle in an electromagnetic field are Hamiltonian, with total energy
H and with the symplectic form Q5.

4 Electromagnetic dynamical systems

The physical-mathematical objects of the electromagnetism are:
U C R? = domain of linear homogeneous isotropic media,
t = the time,
E = the electric vector field (electric intensity),
H = the magnetic vector field (magnetizing force),
B = the magnetic flux density (magnetic induction),
D = the electric displacement (electric induction),
J = the electric current density (conduction current density),
p = the electric charge density,
0y = the time derivative operator,
1 = the scalar permeability,
€ = the permitivity.
The previous fields are defined on U x R and satisfy the Maxwell equations

divD =p, rotH=J+8,D
div B = 0, rot E= —até,
the associated constitutive equations relating the fields being
B=pH, D=cE.
. Let E = E1i1 + E»i» + Esis be the electric vector field on the domain U x R,ie.,

E = E(z,t). The electric line o which starts at the moment s = 0 from the point

mo(zy, 3, z3) is the oriented curve

=

Q: (—a,a) - U7 Oé(S) = (wl (S),ZUQ(S),.’I,'3(S)),
the solution of the Cauchy problem

dzt

=E, @) =g, i=123
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The set of all images of maximal electric lines is called the phase portrait of the electric
field E. Obviously the parameter s is different from the time parameter t. The time
parameter ¢ can produce bifurcation in the equilibrium set of E or Hopf bifurcation of
the flow of E. The coincidence between the parameters ¢ and s remains open though
we can use the ideas of the paper [6] in order to study the case s = ¢.

Let f: U —- R, f = %(Ef + E? + E2) be the energy of E, leaving aside the
multiplicative factor e.

4.1. Theorem. Every electric line is the trajectory of a nonpotential dynamical
system with 3 degrees of freedom determined by the potential V = —f and by rot E,
namely

>z’ Of

_ dz? dzk
ds? — Oxt

+8tBk¥ 81;ng,

(4)

{i,j,k} being a cyclic permutation of {1,2,3}.

T o o

Proof. Deriving = E; along a solution «, using rot £ = —0; B and replacing
) s

3

ds

only in terms which permit to recover V f we find the prolongation

da Of (0E 0K\ dal
ds?2 Ozt Oxi Ozt ) ds’

which is the same with (4).
In this context we can prove the following propositions.
4.2. Theorem. The dynamical system (4) is conservative, the total energy being

oo . [§ [§!
5 H:_(S Tr T §007§E)§3'
©) TR :

4.3. Theorem. On TR?® ~ RS, the equations (4) of motion of a particle sensible
to the electric field E are Hamiltonian with respect to the total energy (5) and the
symplectic form ' .

0= 6ijd$l Adz! — 8tB,

where the magnetic induction is viewed as a closed 2-form
B = Bydz® Ada® + Bada® Adx' + Badx' A da?

to whom is associated the solenoidal vector field B = Blfl + Bgfg +B3Z3, and the dot
7.7 denotes the derivative with respect to the parameter s.

4.4. Theorem (a new version of the Lorentz world force-law). Every non-
constant trajectory of the dynamical system (4) which has the total energy H is a
reparametrized horizontal geodesic of the Riemann-Jacobi-Lagrange manifold

(UNE hy=H+Ddy, N ==i1+P, )lll=0,623),

where
i _ . . . .
I}y = Riemannian connection induced by g;;,
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OE; OE; ) ,
J ——?:E"—Eiﬂ', Flj:gZhth.

Fy; = 22
Y 9xt Ozl e

—

d -
Remarks. 1) The vector field d_a x 0B does not produce a dissipation of energy
s

along the electric line « since it is orthogonal to a. .
3

d
2) Other prolongation on U of the dynamical system da:
s

=F;, i=1,2,3,is
the nonconservative dynamical system of order two
&’z _of
ds? Ozt

+ E;0,By, — Eyx0,Bj, {i,j,k} = permutation of {1, 2, 3}.

3) The flow generated by Xy, conserves the volume.

4) For the magnetic lines (the field lines of H) one obtains similar results. The
difference is that the associated symplectic form contains the closed 2-form J + ;D
associated to the solenoidal vector field J + atﬁ.

Open problem. Find the properties of the field lines of the Poynting vector field

S=ExH.

5 Electromagnetic dynamical systems in the rela-
tivistic model

Let M be a connected 4-dimensional differentiable manifold and g a Lorentz metric
on M. The pair (M, g) is called Lorentz manifold.

5.1. Definition. A spacetime (M,g,V) is a connected 4-dimensional, oriented,
and time-oriented Lorentz manifold (M, g) together with its Levi-Civita connection
V.

Let F' be the electromagnetic field like a 2-form on M, and J be the charge-
current density of the matter model M. The relativistic model will be denoted either
by (M, M,F) or by (M, F,J).

5.2. Definition. (M, M, F) or (M, F, J) verifies Mazwell equations iff:

1) F is closed, i.e., dF = 0;

2) div F' = J, where F is the (1,1)-tensor field physically equivalent to F' via the
Lorentz metric g.

As a consequence of 1), locally, there exists a 1-form 5 such that F = dn. We
denote by & the vector field physically equivalent to 1 via the Lorentz metric g.

Obviously, J is a solenoidal vector field, i.e.,

div J = div div F = 0.

Usually, the authors study the influence of spacetime M and of the matter model
M on the electromagnetic field F'.
Let Fj; be the componets of F'. Then dF' = 0 is equivalent to

Fij + Fjki + Frij =0

and
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divE = J

is equivalent to
FJZ'J' = _Ji-

If M and J are given ab initio, and the influence of F' on M and on M is neglected,
then the Maxwell equations become conditions determining F'. Here we use Maxwell
equations to obtain information about the dynamical systems generated by n and J.

Examples. 1) Constant magnetic field. Set E = 0, and F = 2Bdx® A dx' is
an electromagnetic field on the Minkowski space (R*,g); B is a scalar field on R*,
and the electric field E in covariant constant (parallel, inertial) reference frame 9y is
everywhere zero. The condition dF' = 0 is equivalent to 4B = 0 = J2 B. The condition
divF = 0 (zero source J) gives 838 = 0 = 9, B. Consequently B = constant.

2) Wawves. Let (R*,g) be a Minkowski space. Near the origin of 3-space are some
electric charges that move back and forth in the 0; direction of 3-space. An electro-
magnetic field is generated. In the observation region (”wave zero”), this field can be
described as

F = 2(f o ¢)d¢ A da',

where f : R — Ris C*, and ¢ = (2° — 2*) : R* = R. The set (R*, F,0) verifies the
Maxwell equations
dF = f'o¢ dpAdpAdx' =0
F=2(fo@)(0s+0s) Ay =
= the (2,0)-tensor field physically equivalent to F' via the Lorentz metric,
divF = 8,(f o ¢) — (85 4 04)(f o ¢) = 0.

F'is called a plane, linearly polarized electromagnetic wave on Minkowski space.
The stress-energy tensor T of an electromagnetic field F' on M is defined as a
(0,2)-tensor field on M of components

1

Tj; = FymF;™ — =
J J 4

5.3. Theorem. Let T' be the (2,0)-tensor field physically equivalent to T via the
Lorentz metric g.
1) T is symmetric and trace T =0.
2) T'(w,w) > 0 for every causal 1-form w.
3) If (M, F,J) verifies Mazwell equations, then div = —FJ.
Using the components Fj; of F', the condition divl = —FJ is equivalent to
TV ; = —F',J™.

)

Remark. The stress-energy tensor 7' unifies and replaces the classical energy
1 . - . I,
density 5(5||E||2 + u||H||?), Poynting vector field S = E x H and Maxwell stress

tensor field of components

1 , .
29 = —(eBE° + pH*H? — 25" el| | + | 1)),
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We consider the vector field ¢ of components %, i = 1,2, 3,4, physically equivalent
to the 1-form 7 via the Lorentz metric g. The energy associated to £ is f : M —

R, f= %g(f,ﬁ). Obviously

f= _gzjf 5] = _g 77177]

xé) at the moment,

),2%(s), 2%(s), z(s))

The field line a of ¢ which starts from the point (z},
s = 0 is the oriented curve a : (—a,a) = M, afs) =
which satisfies the Cauchy problem
(2
%%:y,me:%,izljﬁA.

Since £ is an irrotational vector field the following theorem is true.

5.4. Theorem. Every field line of ¢ is a trajectory of a potential dynamical system
with 4 degrees of freedom associated to the potential V = —f.

We can obtain automatically a new version of the Lorentz world-force law deter-
mined by £ and g.

Now we consider the vector field J of components J?, i = 1,2,3,4. The energy

1
associated to Jis o : M — R, ¢ = §g(J, J), and the field line of J which start from

3 563
L(s

(x

the point (x3,z2, 73, zd) at the moment s = 0 is the oriented curve a : (—a,a) —
M, a(s) = (z'(s),2%(s),2%(s), 2*(s)) which satisfies the Cauchy problem

dzt

ds
We can obtain easily the prolongation of this dynamical system to a conservative
differential system of order two and hence a new variant of the Lorentz world- force
law induced by J and g. The flow generated by J conserves the volume because J is
a solenoidal vector field.

Suppose that J has no zero on M. Then J = ||J||Jo, ||Jo|| = 1 and the restriction
of the energy ¢ to a field line a(s), s € I of Jy (s being here the curvilinear abscissa)
is well determined by the restriction of divJy to that line. Indeed, denoting I =
[|7]| o @, m = divJy and taking into account that

=J, 20)=2xf, i=1,234

0 =divJ = Dy, ||J|| + ||J||divJo,

we find
ﬂ
ds

I(s) = lo exp (- /s:m(t)dt>, I(s0) = lo.

If m is nowhere zero, the field line o cannot be closed (the field lines of Jy are
reparametrizations of the field lines of .J).
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