
Connetions on Embedded ManifoldsJ. Cnops
AbstratIn this paper we onsider lassial notions of di�erential geometry, suh asCli�ord and spinor bundles, together with their onnetions, from the point ofview of their embeddings in (pseudo-)Eulidean spae. It turns out that the useof an embedding allows for fairly simple expression of these notions.Mathematis Subjet Classi�ation: 53C07, 53C40Keywords: onnetions on bundles, embedded manifolds.1 IntrodutionHistorially speaking, the notion of manifold originally meant what we now would alla submanifold of Eulidean spae, and, more spei�ally, a surfae in three-dimensionalspae. It is in this ontext that most notions (suh as tangent vetors, urvature) wereoriginally de�ned, and where they have a meaning whih is fairly easy to grasp. Muhmore reently, it was shown by the famous theorems of Nash and Clarke (see [7℄ and[2℄) respetively, that up to a minor ontinuity ondition, any metri manifold an beembedded isometrially in a (pseudo-)Eulidean spae of suÆiently big dimension.We an then embed the tangent and Cli�ord bundles in the orresponding entitiesof the embedding spae, whih makes it possible to desribe onnetions in a quitenatural way.In this text we then onsider manifolds whose Spin struture an itself be embed-ded in the Spin struture of the embedding spae (it seems to be an open questionwhether any Spin manifold allows for suh an embedding). Again, the spinor bundle,and the relevant onnetions obtain an easy form.While this approah may not appeal to some beause of the introdution of super-uous entities onneted with the embedding spae, the method has the advantage ofbeing quite transparent. As an example, it turned out to be very easy to determinethe eigen setions, rather than only the spetrum, of the spinor Dira operators for thesphere and for Poinar�e spae, as will be shown in a forthoming artile ([3℄). In therest of this setion we give the neessary onventions and notations used throughoutthis paper.Orthogonal spaes and Cli�ord algebras. An orthogonal spae V is a (�nitedimensional) vetor spae with a symmetri salar produt. With Rp;q is meant theBalkan Journal of Geometry and Its Appliations, Vol.2, No.2, 1997, pp. 23-34Balkan Soiety of Geometers, Geometry Balkan Press



24 J.Cnopsn-dimensional vetor spae over R, where n = p+ q, whih onsists of all n-tuples ofreal numbers x = (x1; : : : ; xn) with the salar produt(1) B(x; y) = � pXi=1 xiyi + nXi=p+1 xiyi:The Cli�ord algebra over V is denoted by C̀ (V ). It is the free algebra generated byV modulo the relation(2) ~x2 = �B(~x; ~x):This implies (by the polarisation formula) that orthogonal vetors antiommute, whileparallel vetors ommute.For the Cli�ord algebra over the standard orthogonal spae Rp;q we shall use theshort notation C̀ p;q instead of C̀ (Rp;q). Taking the standard basis e1; : : : ; en of Rp;qwe see that the basis vetors antiommute. Atually equation (2) is equivalent to therelation(3) eiej + ejei = �2B(ei; ej):A basis of C̀ p;q is given by ordered produts of di�erent basis vetors. We shall usetwo shorthand notations for suh a produt:et1 : : : etk = et1:::tk = eft1;:::;tkg; t1 < : : : < tk:Sine all produts of generators an be written (up to sign) in the form eA, whereA is a subset of f1; : : : ; ng, these eA's form a basis of the Cli�ord algebra, and thedimension of C̀ p;q over R is equal to 2n. The set f1; : : : ; ng will in the sequel bewritten as n for short.Elements of C̀ p;q are alled Cli�ord numbers. Three (anti)automorphisms will beused (here ~x is an arbitrary vetor, and a and b are arbitrary Cli�ord numbers):(i) The main antiautomorphism is de�ned by�~x = �~x (ab) = �b�a:(ii) The reversion is de�ned by~x� = ~x (ab)� = b�a�:(iii) The main automorphism is de�ned by~x0 = �~x (ab)0 = a0b0:These (anti)morphisms will mainly be applied to produts of vetors. Expliitly oneobtains for a produt of k vetors:(~x1 : : : ~xk) = (�~xk) : : : (�~x1)(~x1 : : : ~xk)� = ~xk : : : ~x1(~x1 : : : ~xk) 0 = (�~x1) : : : (�~xk):



Connetions on Embedded Manifolds 25If A has k elements, then eA is alled a k-vetor. Likewise any linear ombination ofk-vetors is alled a k-vetor, and the vetor spae of k-vetors is written as C̀ kp;q ; ak-vetor whih an be written as the produt of k vetors is alled a k-blade. In lessthan four dimensions every k-vetor is a k-blade, but for n � 4, e1e2 + e3e4 is not ak-blade.Obviously C̀ p;q is the diret sum of all C̀ kp;q for k � n, and the projetion of aCli�ord number a onto C̀ kp;q will be written as [a℄k. Instead of 1-vetors the termvetors is used, and vetors are identi�ed with elements of Rp;q . Also the term bive-tors is used for 2-vetors, while the elements of C̀ np;q are alled pseudo-salars. Then-vetor en is alled the pseudo-unit. Notie that the produt of the n basis vetorsin a di�erent order always is en, at least up to sign: atually en de�nes an orientationof Rp;q . The wedge produt on the Cli�ord algebra is de�ned by~x ^ ~y = ~x~y + B(~x; ~y);and an be extended using assoiativity. In general, for two Cli�ord numbers a andb, [a℄k ^ [b℄` = [ab℄k+`. In a similar way there is a dot produt de�ned by[a℄k � [b℄` = � [ab℄jk�`j if k and ` are stritly positive0 if k` = 0:Let a = [~x1 : : : ~xk ℄k be a k-blade. Then a is invertible (i.e. �aa 6= 0; for any k-blade bwe have that �bb is real) if and only if V = spanfx1; : : : ; xkg is a k-dimensional vetorspae, suh that the restrition of B to V is non-degenerate. The orthogonal projetionof a Cli�ord number  onto C̀ (V ) is given by a�1(a�)+[℄0. The onvention a�[℄0 = 0is quite unpratial for our purposes, but it is quite general.Spin and Pin groups. For any a in the Cli�ord algebra suh that aa0 = �1 it islear that a0�1 exists, and so the the de�nition of the linear transformation on theCli�ord algebra �(a) : C̀ p;q ! C̀ p;q~x ! �(a)~x = a~xa0�1is well de�ned. The Pin group is now de�ned as the group of suh elements whihleave the underlying vetor spae invariant:Pin(p; q) = fa 2 C̀ p;q : aa0 = �1 and 8~x 2 Rp;q : �(a)~x 2 Rp;qg :� obviously provides a group morphism of Pin(p; q) to a subgroup of GL(Rp;q). Itan be proved that, for every element a of the Pin group, �(a) (when restrited toRp;q), is an element of the orthogonal group O(p; q). Moreover Pin(p; q) is a doubleovering of O(p; q), the kernel of � : Pin(p; q) ! O(p; q) being f�1; 1g, and Pin(p; q)is generated as a group by the vetors ~x for whih ~x~x0 = �1.In a similar way we have the Spin group, Spin(p; q) whih onsists of the produtsof even numbers of unit vetors and as suh gives a double overing of SO(p; q).The Lie algebra of the Pin group (whih is also the Lie algebra of the Spin group,and hene isomorphi to so(p; q)) is the spae C̀ 2p;q of bivetors, with the Lie braket[a; b℄ = ab�ba. Starting from the representation � of Pin(p; q) on the Cli�ord algebra,we arrive at the derived representation d� given by



26 J.Cnopsd�(b)a = ba� ab;for an arbitrary bivetor b and a Cli�ord number a.Submanifolds. LetM be anm-dimensional submanifold ofRp;q , let a be an arbitrarypoint of M . There is a natural identi�ation of an element of the tangent spae TaMwith a vetor ofRp;q as follows:anyX 2 TaM will be identi�ed with (a; ~x) 2M�Rp;qif and only if, for any C1 funtion f on M , and any C1 extension F of f in aneighbourhood (in Rp;q) of a we have that(4) DXf = �tF (a+ t~x)jt=0:In the sequel we write (a; ~x), or simply ~x instead of X ; any manipulation (mul-tipliation, derivation et.) is implied to at on the seond entry. So, for example(a; ~x) + (a; ~y) = (a; ~x + ~y). Formally, the tangent bundle is embedded this way inRp;q � Rp;q ; less formally of ourse the tangent spae TaM is onsidered as a sub-spae of Rp;q.A metri manifold (M; g) with signature (r; s) (the metri g an be Riemannianor pseudo-Riemannian) is alled isometrially embedded if and only ifg((a; ~x); (a; ~y)) = B(~x; ~y);where B(�; �) is the salar produt of Rp;q . For an isometrially embedded manifold,the Cli�ord bundle an be embedded in Rp;q � C̀ p;q in a way quite similar to theone used for the tangent bundle. Considering TaM as a subspae of Rp;q , we seethat, beause g is non-degenerate, the restrition of B to TaM is also non-degenerate.Hene it makes sense to onstrut the Cli�ord algebra C̀ (TaM), whih naturally isa subalgebra of C̀ p;q . The Cli�ord bundle, denoted by C̀ (M) is the submanifold ofRp;q � C̀ p;q onsisting of those elements (a; b) for whih a 2M and b 2 C̀ (TaM).A setion of the Cli�ord bundle is a C1, Cli�ord algebra valued funtion f onM ,suh that for eah a 2M , (a; f(a)) is in the Cli�ord bundle C̀ (M). Suh a setion willalso be alled a (tangent) Cli�ord �eld. Beause of the identi�ation of the Cli�ordalgebra with the exterior algebra, a tangent Cli�ord �eld an be identi�ed with adi�erential form.In eah Cli�ord algebra C̀ (TaM), there are two andidate pseudo-units. The hoiebetween them de�nes the orientation of TaM . We say that M is orientable if suh ahoie an be made in a ontinuous way. More formally, M is orientable if there is aCli�ord �eld eM , whih in eah point is a unit m-vetor (i.e. eM (a)eM (a) = �1). IfM is orientable, there are two of these �elds. After hoosing one, M is oriented, andeM is alled the pseudo-unit �eld. A tangent Cli�ord �eld an be haraterised by thefat that f = e�1M (M � f) + [f ℄0:Notie that a vetor valued tangent Cli�ord �eld an be identi�ed with a setion ofthe tangent bundle.2 Exterior derivatives and urvatureLet f be a tangent Cli�ord �eld. Sine, with the embedding above, f is a funtion withvalues in a vetor spae (the Cli�ord algebra C̀ p;q) it is possible to take derivatives of



Connetions on Embedded Manifolds 27f in the lassial sense. It is not neessarily true that DXf is a tangent Cli�ord �eld.Hene, for these �elds, we introdue the exterior derivative rXf by(5) rXf(a) = PaDXf(a);where Pa is the projetion operator onto the Cli�ord algebra generated by SaM .Notie that rX [f(a)℄k = e�1M (a)(eM (a) � [DXf(a)℄k);for k > 0, while rX [f(a)℄0 = [DXf(a)℄0. Notie that derivation, and hene also exte-rior derivation preserves homogeneity: [DXf(a)℄k = DX [f(a)℄k, and also [rXf(a)℄k =rX [f(a)℄k. We shall shortly prove that r is the lassial torsion-free Koszul onne-tion on the Cli�ord bundle. Before that we introdue the notion of parallel transport.Let f be a tangent �eld de�ned on a urve , with image going from x to y on M . Ifr�tf = 0, then it is said that f(x) is parallel transported to f(y).Some aution is needed as the projetion operator is not distributive with respetto Cli�ord multipliation: in general it is not true that Pa(��) = Pa(�)Pa(�) (this ise.g. false when � = � is a non-isotropi vetor orthogonal to SaM). It is true howeverthat(6) Pa(��) = Pa(�)Pa(�)if either � or � are tangent to SaM .2.1 The relation between D and rThe hange of the pseudo-unit �eld gives a measure for the urvature of the manifold,i.e. the way in whih M loally is di�erent from an m-dimensional pseudo-Eulideanspae. Sine the pseudonorm eM (x)eM (x) = (�1)p is onstant, for any tangent vetor~x, D~xeM is orthogonal to eM itself, and r~xeM = 0. Moreover, the pseudo-unit alwaysis an element of the Pin group.The derivatives of the pseudo-unit are important enough to merit a separate no-tation. We de�ne bX by(7) DXeM = bXeM (x);and, if a oordinate system is given, bi by DieM (x) = bi(x)eM (x). Sine the pseudo-unit always is an element of the Pin group, bX and bi are elements of the Lie algebraof the Pin group, i.e. they are bivetor valued funtions on M . Notie however thatthey are not tangent Cli�ord �elds, unless they are zero.Moreover � = e2M = �1 is onstant, and so 0 = DX� = bXe2M + eMbXeM ,whih implies that bXeM = �eMbX . This is only possible if bX is the produt of avetor orthogonal to eM and a vetor parallel to it, or a sum of suh produts. As aonsequene, if ~v 2 TxM , then d�(bX)~v is orthogonal to eM . This follows in a fairlystraightforward way from the rule ~x~y~z � ~z~x~y = �B(~y; ~z)~x + B(~x; ~z)~y.The bivetor bX leads to an eÆient desription of the di�erene between DXand rX . We start with a tangent vetor �eld ~f . DX ~f an be split into a part(DX ~f)k tangent to M and a part (DX ~f)? orthogonal to M , both vetor val-ued. Notie that ~feM + (�1)meM ~f = 0, (DX ~f)keM + (�1)meM (DX ~f)k = 0 and



28 J.Cnops(DX ~f)?eM + (�1)meM (DX ~f)? = 2(DX ~f)?eM . Taking the derivative of the �rstequation gives0 = (DX ~f)eM + ~fbXeM + (�1)mbXeM ~f + (�1)meMDX ~f= 2(DX ~f)?eM � d�(bX)f:Sine rX ~f = DX ~f � (DX ~f)? this results in rX ~f = DX ~f � d� � bX2 � ~f . From theprodut rule (6) it then follows that this relation holds for any Cli�ord valued tangent�eld, and we an use it to de�ne r for general C̀ p;q valued funtions(8) rXf = DXf � d��bX2 � f:Notie that the fat that d�(bX)~f is orthogonal to eM provides an independent proofthat bX is the produt of an orthogonal and a tangent vetor, or a sum of suhproduts.2.2 The urvature tensorThe urvature tensor is given, for two parallel vetor �elds, byR(X;Y ) = rXrY �rYrX �r[X;Y ℄:The geometrial interpretation is the following: let f be a tangent �eld, and take alosed loop  with size � in the X and Y diretions (notie the presene of the termin [X;Y ℄, whih assures that the loop will be losed), starting in x. f(x), paralleltransported along  will result in a new tangent vetor, say �f(x), and the di�erenebetween f(x) and �f(x) will be �R(X;Y )f(x), up to higher order terms in �. Obviously� is an orthogonal transformation, and as a di�erential of orthogonal transformationsR(X;Y ) must be an antisymmetri transformation. We prove this more formally interms of the derivatives of the pseudo-unit �eld.Theorem 2.1. The urvature is given byR(X;Y ) = d�(bXbY � bY bX);where bXbY � bY bX is a tangent bivetor.Proof. The proof onsists simply of inserting (8) into the de�nition of R(X;Y )f , andthen simplifying. First alulater[X;Y ℄f = DXDY f �DYDXf � (1=2)d�(b[X;Y ℄)f;where b[X;Y ℄eM = (DXDY �DYDX)eM= DX(bY eM )�DY (bXeM )= (DXbY )eM + bY bXeM � (DY bX)eM + bXbY eM :Then subtrat this from



Connetions on Embedded Manifolds 29rXrY f = DXDY f � (1=2)d�(bX)DY f�(1=2)DX(d�(bY )f) + (1=4)d�(bX)d�(bY )f= DXDY f � (1=2)d�(bX)DY f � (1=2)d�(DXbY )f�(1=2)d�(bY )DXf + (1=4)d�(bX)d�(bY )f;and subtrat the similar equation with X and Y interhanged. This givesR(X;Y )f = 12(d�(DY bX)f � d�(DXbY )f + d�(b[X;Y ℄)f+14(d�(bX)d�(bY )� d�(bX)d�(bY ))f= �14(d�(bX)d�(bY )� d�(bY )d�(bX))f= �14(d�(bXbY � bY bX))f;where the last line follows from the relation d�(a)d�(b) � d�(b)d�(a) = d�(ab � ba)whih is valid for all bivetors a and b, as is easily proved by writing out d� inmultipliation form, or alternatively an be seen using the fat that d� is a derivedrepresentation and therefore preserves the braket. It is obvious from the de�nitionthat if f is tangent then R(X;Y )f must be tangent, and so bXbY � bY bX is itselftangent.Finally we prove that the onnetion de�ned above is the lassial Levi-Civitaonnetion (i.e. that onnetion whih parallel transports vetors to vetors with thesame norm, and whih is torsion-free) on the tangent bundle, and therefore indepen-dent of the embedding hosen. Notie that for a vetor �eld ~f and a urve , theequation r�t ~f = 0 implies ��t ~f is orthogonal to ~f , and hene that the norm of ~fis onstant, and we only have to prove that r is torsion-free. Reall that the torsionof a onnetion is given by(9) T (X;Y ) = rXY �rYX � [X;Y ℄:Assume now loal oordinates are given in an open set U of M . We an assumethat there is a hart  : V ! W , where V and W are open in Rp;q , U = M \W , (V \ Rr;ss) = U , and that  is non-singular on V , i.e. that the hart an beextended to a neighbourhood of V in Rp;q. We then have the oordinate vetor �eldsEif = �i( �1 Æf), whih, aording to the embedding (4) an be identi�ed in a pointa with elements of Rp;q �Rp;q byEi(a) = (a; �i ):Proving that T = 0, is equivalent with proving that T (Ei; Ej) = 0 for any i and j. Butsine they are oordinate vetor �elds [Ei; Ej ℄ = 0, and aording to the de�nition ofr we have that riEj = P (�i�j ), where P is orthogonal projetion onto the tangentspae. Sine �i�j = �j�i , this proves that riEj = rjEi, and so the exteriorderivative is torsion-free.



30 J.Cnops3 Embedded Spin struturesFor the Cli�ord bundle it was suÆient to have an isometri embedding in some(pseudo-)Eulidean spae. If we want to introdue Spin strutures however, we shallneed a muh stronger ondition.De�nition 3.1. A set of C1 vetor valued funtions ~n1; : : : ; ~nn�m on M is alled aglobal trivialisation of the normal bundle if and only if in every point a of M and forevery i and j(i) ~ni(a) is orthogonal to TaM(ii) ~ni(a) � ~nj(a) = �Æij .The term global trivialisation reminds of the fat that the vetor �elds~n1; : : : ; ~nn�m de�nes a ontinuously varying basis of the orthogonal omplement ofTaM in Rp;q . We assume that M (or rather the embedding of M in Rp;q allows aglobal trivialisation of the normal bundle. We shall hoose a referene point ~N onM ,and identify the spae Rr;s (reall that (r; s) is the signature of the metri onM withT ~NM . Then we an de�ne a Spin struture on M .De�nition 3.2. A Spin struture � onM is a submanifold ofRp;q�Spin(p; q) de�nedby the following ondition: a point (a; �) 2 Rp;q � Spin(p; q) is in � if and only if(i) a 2M .(ii) The orthogonal tranformation �(�) maps TaM onto T ~NM , and moreover mapseah ~ni(a) to ~ni( ~N).Notie that there is a left ation of Spin(r; s) on �. Indeed, if � is an element ofSpin(r; s), and (a; �) is in �, then learly (a; ��) 2 �. Moreover eah �bre �a =f(a; �) 2 �g is equivalent to Spin(r; s), sine (a; �) 2 � and (a; �) 2 � implies thatthere is a � 2 Spin(r; s) suh that � = ��. It turns out that � is a so-alled priipalSpin(r; s)-bundle over M (see e.g. [5℄ for more information on this notion).It is immediately lear that every orientable hypersurfae (i.e. a submanifold wheren�m = 1) has a Spin struture, sine the orientation an be equalled to the hoie of anormal vetor. There is a general de�nition of Spin strutures on manifolds, whih doesnot make use of the embedding. Not every manifold has a Spin struture in this sense;a manifold whih has is alled a Spin manifold. It seems not to be known whethereah Spin manifold allows for an isometri embedding with a global trivialisation, itis however ertain that a Spin manifold an have an isometri embedding whih doesnot allow for an embedding of the Spin struture.As an example we have the irle S1. With its traditional embedding in R2, it isa hypersurfae, and hene has the obvious Spin struture. There is however a seondSpin struture whih annot be realised in R2, but whih an be realised in R3. Wehoose an orthonormal basis e1, e2, e3 of R3, and the parametrisation of S1 given by�(�), where � = os �e1+sin �e2, and �� < � � �. Notie that Spin(1) = f1;�1g. Thereferene point ~N is hosen to be e1, so �( ~N) = 0, the following piture is obtained:(1) The Spin struture of S1 as a hypersurfae is given by ~n1(�) = � (and, in R3,~n2(�) = e3). Then ~n1( ~N) = e1 and the Spin �bre in an arbitrary point � is givenby



Connetions on Embedded Manifolds 31�� = ���os �(�)2 � e12 sin �(�)2 �� :Notie that this Spin struture is onneted: going round the irle one hangesthe sign of the Spin element.(2) A seond Spin struture given by ~n1(�) = � os �+e3 sin � and ~n2(�) = �� sin �+e3 os �. Then ~n1( ~N) = e1 and ~n2( ~N) = e3. The Spin �bres in this ase are givenby �� = ���os �2 � e13 sin �2��os �2 � e12 sin �2�� :This Spin struture is not onneted: it is homeomorphi to S1 � Spin(1).Using the Spin struture we an give an important alternative haraterisationof the Cli�ord �bres: (a; b) is an element of the Cli�ord �bre C̀ a if and only if�b�� 2 C̀ ~N = C̀ r;s for any (a; �) in �a. As the mapping �(�) is a diret orthogonaltransformation on Rp;q, and moreover the vetors ~ni(a) have the same orientation astheir image under �(�), ~ni( ~N), this means that the mapping �(�) restrited to TaMis a diret orthogonal transformation onto T ~NM , and so that �(�)eM (a) = eM ( ~N).4 Spinor bundlesAssume that M has a Spin struture �, with referene point ~N . We then an de�nean embedded spinor bundle S in Rp;q � C̀ p;q as the submanifold onsisting of pairs(a;  ) for whih(i) a 2M .(ii) For any (a; �) 2 �a, � 2 C̀ r;s.As usual, Sa = f(a; �) 2 Sg is alled the spinor �bre in a, and spinor setions arede�ned in a way similar to that for setions of the Cli�ord bundles. Spinor setionswill also be alled spinor �elds.It is lassial to de�ne the spinor bundle using an irreduible representation of theCli�ord algebra C̀ r;s. Let A be suh a representation. In the ustomary de�nition,ondition (ii) has the form � 2 A. However, it is known that A is isomorphi to aminimal left ideal of C̀ r;s, so that our de�nition enompasses the lassial one. Theminimal left ideal an be written in the form C̀ r;sJ , where J is a primitive idempo-tent. When one wants to use irreduible representations of C̀ r;s, one an restrit theattention to spinor �elds (as we have de�ned them) whih satisfy the extra ondition J =  .Notie that, in a ertain sense, the Cli�ord algebra C̀ a is in the trae lass of thespinor �bre. Indeed, (a; b) 2 C̀ a if and only if b =  �� for some (a;  ) and (a; �) bothin Sa. Again we an de�ne a onnetion for spinor setions. Let  be a spinor setionand X be a tangent vetor in TaM . Then we de�ne the onnetion 6r by6rX = Sa(�X );



32 J.Cnopswhere Sa is orthogonal projetion onto the spinor �bre Sa. Again the bivetor valuedfuntion X ! bX plays an important rôle in a more expliit expression for the on-netion. However, there is a ertain arbitrariness in the trivialisation of the normalbundle, unless we are dealing with a hypersurfae.Theorem 4.1. The onnetion 6r is given by6rX = �X � 12(bX + eX) :Here bX is the bivetor given by (7), and eX is a bivetor in the Cli�ord algebragenerated by the normal �bre, i.e. in the Cli�ord algebra generated by ~n1; : : : ; ~nm�n.Proof. Fix a point a, and take a setion � of the Spin bundle in a neighbourhood ofa. Then � is a C̀ r;s valued funtion near a, andDX(� ) = (DX�) + �(DX ):This is also C̀ r;s valued, and so ��1DX(� ) is a loal spinor setion, i.e. its partorthogonal to the spinor �bre is zero:0 = (��1(DX�) )? + (DX )?:Now (DX )? = DX � 6rX , and we shall prove that (��1(DX�) )? = (1=2)(bX +eX) , where eX is fully orthogonal to the tangent spae. First notie that (��1(DX�) )? =(��1(DX�))? , by (6). We shall put ��1(DX�) = X . This is a bivetor, beause �is in the Spin group, and we split it up intoX = (X)k + (X )t + 12eX ;where (X)k is in the tangent Cli�ord algebra,(X)t is a sum of produts of vetors,one parallel and one orthogonal to C̀ a, and eX is fully orthogonal to C̀ a. We set outto prove that (X )t is (1=2)bX . Notie that both (X )k and eX ommute with thepseudo-unit �eld eM , while (X)t antiommutes with it.Starting point is that �eM��1 = eM ( ~N) is onstant. Hene0 = (DX�)eM��1 + �(DXeM )��1 + �eM (DX��1)= �XeM��1 + �(bXeM )��1 � �eMX��1= � [2(X)teM + bXeM ℄��1:This ompletes the proof.It an be easily seen that, while bX is determined by eM , X is ompletely deter-mined by the trivialisation of the normal bundle, ~n1; : : : ; ~nn�m. Indeed, eX is in thenormal setion, and for all i we have that �~ni��1 = ~ni( ~N). Therefore the derivativeis zero, and 0 = DX(�~ni��1)= �X~ni��1 + �(DX~ni��1 � �~niX��1):Now (X)k ommutes with ~ni, and so, using the dot produt notation,



Connetions on Embedded Manifolds 33DX~ni = (bX + eX) � ~ni:These equations are suÆient to determine eX .There is a ertain arbitrariness in the trivialisation of the normal bundle, whihis expressed by the extra term eX in the expression of the onnetion, unless we aredealing with a hypersurfae. In this ase eX must of neessity be zero, beause thenormal setion is one-dimensional, and the expression for the onnetion beomes6rX = �X � 12bX :Akowledgements. Post-dotoral Fellow of the NFWO, Belgium.Referenes[1℄ H. Blaine Lawson, M-L. Mihelsohn, Spin geometry, Prineton MathematialSeries 38, Prineton University Press, 1989.[2℄ C. Clarke, On the global isometri embedding of pseudo-Riemannian manifolds,Pro. Roy. So. London, ser. A 314, (1970), 417-428.[3℄ J. Cnops, Dira operators on Eulidean and Minkowski spheres, in preparation.[4℄ R. Delanghe, F. Sommen, V. Sou�ek, Cli�ord analysis and spinor valued fun-tions, Kluwer Aad. Publ., Dordreht, 1992.[5℄ J. Gilbert and M. Murray, Cli�ord algebras and Dira operators in harmonianalysis, Cambridge University Press, 1991.[6℄ D. Hestenes and G. Sobzyk, Cli�ord algebra to geometri alulus, Fundamentaltheories in physis vol. 5, D. Reidel, Dordreht, 1984.[7℄ J. Nash, The embedding problem for Riemannian manifolds, Annals 63, (1956),20-63.[8℄ A. Trautman, Spinors and the Dira operator on hypersurfaes. I. General theory,J. Math. Phys., 33/12, (1992), 4011-4019.RUG, Galglaan 2, B-9000 Gent, Belgium


