
Spherially Symmetri Generalized Lagrange MetrisValentin G�̂rt�u and Monia G�̂rt�u
AbstratSpherially symmetri metris in the Finslerian setting are studied. Takinga di�erent aproah from that of G.S. Asanov [3℄, the main geometrial objetsassoiated to suh a metri are found. The Einstein equations in vauum arewritten.Mathematis Subjet Classi�ation: 53C60, 83C20Key words: spherially symmetri metris, Finslerian metris, Einstein equationsIntrodutionIn the last deade a revision and a generalization of the methods of general relativitieswere done by replaing the Riemannian metris with more general ones.As a �rst step a Finslerian theory of relativity was proposed and aordingly theFinslerian-Einstein equations were derived. Suh equations were proposed on threequite distint ways. The �rst one is a subtle ombination between physial intuitionand formal aspets and has its roots in the Yukawa biloal theory, see [9℄,[6℄,[5℄. Theseond one is provided by variational priniples and extends the Palatini method, see[2℄,[3℄. The third, of geometrial nature, was suggested by the involvement of tangentbundle in the Finsler geometry (see [8℄ and referenes therein).These ways have advantages and disadvantages but only if they are put togethera omplete piture of the whole theory is obtained.Our ontribution in this paper is on the third line mentioned in the above. First,we have to stress that though this line of development is more geometri, there existmany physial arguments whih support it, see [5℄. Besides, its generality produes arihness of physial interpretations and suh as its usefulness inreases.In a syntheti and rather vague way it an be desribed as follows. One onsidersa smooth manifold M of �nite dimension and the tangent manifold TM �bered overM by the usual projetion � : TM ! M: A symmetri and nondegenerate tensor�eld on TM , whose loal omponents (gij(x; y)) behave like the omponents of asimilar tensor �eld on M is alled a generalized Lagrange metri, briey a GL-metri.Assuming that the vertial distribution on TM , i.e. the kernel of the tangent map �T ,has a supplementary distribution (horizontal), usually alled a nonlinear onnetion,Balkan Journal of Geometry and Its Appliations, Vol.2, No.2, 1997, pp. 51-62Balkan Soiety of Geometers, Geometry Balkan Press



52 V.G�̂rt�u and M.G�̂rt�ua pseudo{Riemannian metri G on TM is derived from gij(x; y): Then it is shownthat a linear onnetion D whih is metrial with respet to G and preserve bothdistributions exists. The generalized Einstein equations are just the usual Einsteinequations written for the pair (G;D) and an arbitrary energy{momentum tensor�eld. A similar onstrution an be done for a vetor bundle. For the details, we referto [8℄.As it is well{known, in the general theory of relativity and in osmologies severalategories of pseudo{Riemannian metris are used. Among them of great interest arethe so{alled (stati) spherially symmetri metris. A generalization of these metristo the Finslerian setting was proposed and studied by G.S. Asanov [2℄,[3℄. In spiteof the various assumptions on homogeneity he made, the metri he proposed is notFinslerian but a GL-metri. This fat, reognized by Asanov himself, produes adiÆulty sine, in general, it is not possible to determine a nonlinear onnetionfrom a GL-metri as it happens for Finslerian metris. G.S. Asanov overomes thisdiÆulty by assuming the vanishing of the h-deetion tensor of D. Thus he suededto determine the loal oeÆients of D ingeniously solving a ompliated equationinvolving these oeÆients.In the following we shall adopt a di�erent point of view in order to developthe geometry of a GL-metri whih is a slight generalization of Asanov's metri. Asthis GL-metri is onstruted using a pseudo{Riemannian metri (rij(x)) on M , weuse (rij(x)) for determining a nonlinear onnetion and so the �nding of the loaloeÆients of D is merely a problem of alulation.The paper is organized as follows. In x1 we state the GL-metri to be studiedand we �nd the nonlinear onnetion to be used later. In x1 the linear onnetion D isdetermined by its loal oeÆients. Its torsions and deetion tensors are omputed.In x3 the urvatures of D are omputed and the generalized Einstein equations invauum are written. Some onluding remarks end the paper.1 A stati spherially symmetri GL-metriLet M be a smooth n-dimensional manifold and (xi); i; j; ::: = 1; :::; n its loal oordi-nates. We shall denote by (xi; yi) the loal oordinates on the tangent manifold TMsuh that � : (xi; yi)! xi:A hange of oordinates (xi; yi)! (~xi; ~yi) on TM has the form(1:1) ~xi = ~xi(x1; :::; xn); rank � �~xi�xj� = n;~yi = �~xi�xk (x)yk :The loal omponents (gij(x; y)) of a GL-metri satisfy(1:2) gij(x; y) = �~xk�xi �~xh�xj ~gkh(~x(x); ~y(x; y));gij(x; y) = gji(x; y); det(gij(x; y)) 6= 0:The smoothness of lass C4 will be assumed.



Spherially Symmetri Generalized Lagrange Metris 53Assume that a symmetri nondegenerate tensor rij(x) is given on M . It is statispherially symmetri (see (13.22) in [7℄) if the oordinates (x0; x�); �; �;  = 1; :::; n�1 an be introdued on M , suh that(1:3) r00 = r00(r); r�� = �W (r)Æ�� ; r�0 = 0;where Æ�� stand for the Kroneker symbols, r00 > 0;W 6= 0; r = (�� (x�)2) 12: Theseoordinates are alled isotropi. The tensor rij(x) may be thought of as a partiularGL-metri. From now on we take n = 4:One onsiders four positive salars Ai; i = 0; 1; 2; 3 on TM and one onstrutsa GL-metri (gij(x; y)) putting(1:4) gii(x; y) = �i(x; y); gij = 0 for i 6= j; with(1:5) �0(x; y) = A1(x; y)r00(r); ��(x; y) = �A�(x; y)W (r):Later we shall assume that the funtions Ai depend only on r and q where(1:6) q = �X�;� r��y�y�=[r00(y0)2℄�1:The GL-metri obtained in suh a way will be alled stati spherially symmetri.The metri onsidered by G.S. Asanov in [3℄ is obtained from (1.4) with A0 6= A1 =A2 = A3 depending on r and q only.We notie that "=Xi;j rijyiyj is the so{alled absolute energy of the GL{metri(rij (x)): It is lear that the funtion q was hoosen suh that to be homogeneous ofdegree zero. As in our onsiderations the homogeneity has no any role, it is morereasonable to assume that Ai depend only on r and ".It is obvious that (gij(x; y)) given by (1.4) and (1.5) is a GL-metri. In general,a GL-metri (gij) is said to be reduible to a Lagrange metri, shortly an L-metri ifthere exists a funtion L : TM ! R suh that gij(x; y) = 12 �2L(x; y)�yi�yj � If L is homoge-neous of degree 2 with respet to y, (gij(x; y)) beomes a Finslerian metri. It is ourGL-metri (1.4)-(1.5) reduible to an L-metri or to a Finslerian one? For answeringthis question one assoiates to (gij(x; y)) a d-tensor �eld of omponents Cijk(x; y) == 12 �gij�yk and by the Proposition 1.1, Ch.X in [8℄, the GL-metri gij(x; y) is reduibleto an L-metri if Cijk(x; y) 6= 0 is totally symmetri. We have(1:7) Cijk(x; y) = 0 for i 6= j; Cijk(x; y) = 12 ��i�yk �It results that Cijk 6= 0 when �i depend on y: If this tensor �eld would be totallysymmetri, then ��i�yk = ��k�yi a equality whih is not true for arbitrary Ai: Thus, theGL-metri (gij) given by (1.4)-(1.5) is not a Lagrange metri nor a Finslerian one.Let VuTM = ker �Tu ; u 2 TM , be the vertial subspae of TuTM: The vertialdistribution u ! VuTM; u 2 TM is integrable and is loally spanned by � �yi�� Anonlinear onnetion N is a distribution u!HuTM , alled horizontal distribution,whih is supplementary to the vertial distribution, i.e.,



54 V.G�̂rt�u and M.G�̂rt�u(1:8) HuTM � VuTM = TuTN holds:The horizontal distribution is spanned by n loal vetor �eldsÆÆxi = ��xi �Nki (x; y) �yk ,where the funtions (Nki (x; y)) have to satisfy(1:9) ~Nhj �~xj�xi = �~xj�xkNki � �2~xj�xi�xk yk;when a hange of oordinates (1.1) on TM is performed. These funtions are alledthe loal oeÆients of the nonlinear onnetion N .Coming bak to (rij(x)), let �ijk(x) be the Christo�el symbols(1:10) �ijk = 12rih ��rjk�xk + �rkh�xj � �rjk�xh � �Proposition 1.1. The funtions(1:11) N ij (x; y) =Xk �ijk(x)ykare the loal oeÆients of a nonlinear onnetion N .Proof. By using the usual law of transformation for �ijk(x) one easily heks (1.9) forthe given funtions.Now we shall seek for an expliit form of (N ij (x; y)). The tensor �eld (rij (x)) isof the form(1:12) rii = ri; rij = 0 for i 6= j;(1:12)0 r0 = r00(r); r1 = r2 = r3 = �W (r):Its reiproal (rij ) has the form(1:13) rii = 1ri , rij = 0 for i 6= j:Inserting (1.12){(1.13) in (1.10), one gets
(1:14) �ijk(x) = 0 for i 6=j 6=k 6= i;�ijk(x) = 12ri �ri�xk for k 6= i;�ijj(x) = � 12ri �rj�xi for i 6=j;�iii(x) = 12ri �ri�xi �Then (1.11) leads to the following



Spherially Symmetri Generalized Lagrange Metris 55(1:15) N ij (x; y) = 12ri � �ri�xj yi � �rj�xi yj� for i 6= j;N ii (x; y) = 12ri Xk �ri�xk yk:The d-tensor �eld � ijk = �N ik�yj � �N ij�yk is alled the torsion of the nonlinear onnetionN(N ij ): In our ase, �N ij�yk = �ijkx and so we haveProposition 1.2. The nonlinear onnetion of loal oeÆients (1.11) has no torsion.The urvature of the nonlinear onnetion N(N ij) is given by the d tensor �eld ofomponents(1:16) Rijk = ÆN ijÆxk � ÆN ikÆxj �Owing to (1.11), it follows diretly that(1:17) Rijk(x; y) =Xk �hijk(x)yh;where �hijk is the urvature of the metri (rij(x)): Thus, in order to ompute Rijk(x; y)we need to ompute the urvature �hijk(x): We notie that Rijk = 0 if and only if themetri (rij(x)) has no urvature.As it is well-known, the urvature tensor of (rij(x)) is(1:18) �j ikh(x) = ��ijk�xh � ��ijh�xk +Xs �sjk�ish �Xs �ijh�isk:Inserting �ijk(x) from (1.14) in (1.18), after a long alulation, one gets
(1:19)

�j ikh=0 for i 6=j 6=k 6=h 6= i; �iihk=0 for k 6= i; h 6= i; �iiih=0 for i 6=h;�j iih = 14ri �2 �2ri�xj�xh � 1ri �ri�xj �ri�xh � 1rj �rj�xh �ri�xj � 1rh �rh�xj �ri�xh �for i 6=h 6= i;�j ikj = 14ri �2 �2rj�xi�xk � 2ri �ri�xk �rj�xi � 1rj �rj�xh �rj�xi � for i 6=j 6=k 6= i;�j iij = 12ri �2ri(�xj)2 � 12r2i � �ri�xj�2 � 12r2i �ri�xi �rj�xi + 12ri �2rj(�xi)2�� 14rirj ��rj�xi�2 + 14r2i � �ri�xj�2 � 14rirj �ri�xj �rj�xj++ 14r2i �rj�xi �ri�xi +Xs6=j 1rirs �rj�xs �ri�xs for i 6=j:



56 V.G�̂rt�u and M.G�̂rt�uNow, owing to (1.17), from (1.19), it results
(1:20) Rikh=�kikhyk+�hikhyh= yh4ri�2 �2rh�xi�xk � 2ri �ri�xk �rh�xi � 1rh �rh�xk �rh�xi��� yk4ri�2 �2rk�xi�xh � 2ri �ri�xh �rh�xi � 1rk �rk�xh �rk�xi� for i 6=k 6=h 6= iRiih=Xj 6=i 14ri�2 �2ri�xj�xh � 1ri �ri�xj �ri�xh � 1rj �rj�xh �ri�xj � 1rh �rh�xj �ri�xh�yj :Conluding, we have found a natural nonlinear onnetion (1.11) without torsionand with the urvature (1.20).2 Metrial linear onnetion of a stati spheriallysymmetri GL-metriIn [8, h.X℄, one assoiates to a GL-metri (gij) a metrial linear onnetion C�(N)of loal oeÆients (N ij(x; y); Lijk(x; y); Cijk(x; y)), where(2:1) Lijk= 12gih�ÆghkÆxj + ÆgjhÆxk � ÆgjkÆxh�, Cijk= 12gih��ghk�xj + �gjh�xk � �gjk�xh��The onnetion C�(N) preserves the deomposition (1.8) and is metrial, i.e.(2:2) gijjk = 0; gij��k = 0;where short (resp. long) vertial bar stands for ovariant derivative with respet to Lijk(resp. Cijk). Two torsions of C�(N) vanish, and this fat orresponds to the symmetryof Lijk and Cijk in j and k.We seek for an expliit form of C�(N) for our GL-metri (1.4)-(1.5). First, wenotie that Lijk and Cijk have the same form as �ijk but only the operators �xk arereplaed by Æxk and �yk , respetively. Aordingly, Lijk and Cijk will be obtained from(1.14) by replaing ri by �i and the operators �xk by Æxk and �yk , respetively. Thus,we get(2:3) Lijk = 0 for i 6=j 6=k 6= i; Liik = 12�i Æ�iÆxk for i 6=k;Lijj = � 12�i Æ�jÆxi for i 6=j; Liii = 12�i Æ�iÆxi �Similarly, one obtains:(2:4) Cijk = 0 for i 6=j 6=k 6= i; Ciik = 12�i ��i�yk for i 6=kCijj = � 12�i ��j�yi for i 6=j; Ciii = 12�i ��i�yi �



Spherially Symmetri Generalized Lagrange Metris 57The other torsions of C�(N) are Cijk(x; y), Rijk and P ijk , where(2:5) P ijk = �N ij�yk � Lijk:In our ase, P ijk = �ijk �Lijk; hene it is symmetri in j and k. An expliit formof it an be infered from (2.3) and (1.14). From suh a form one easily onludes that(P ijk) vanishes if �i do not depend on y.The h-deetion tensor of C�(N) is the d-tensor �eld(2:6) Dij = yijj = Likj(x; y)yk �N ij(x; y)and the v-deetion tensor is(2:7) dij = yi��j = Æij + Cikj(x; y)yk:Remark 2.1. For the GL-metri (1.4)-(1.5) we have Dij = �ykP ikj :The deetion tensor �eld are involved in the theory of eletromagnetism pro-posed in [8, h.X℄.A �rst form of these tensor �elds is as follows(2:8) Dij = yj2�i Xs Nsi ��j�ys � yi2�i Xs Nsj ��i�ys for i 6=j;Dii = yi2�i Xs Nsi ��i�ys � 12�i Xk 6=i Xs Nsk ��i�ys! yk:
(2:9) dij = 12�i �yi ��i�yj � yj ��i�yi� for i 6=j;dii = 1 + 12�i Xs ys ��i�ys ,where (N ij ) is given by (1.15).In the theory of eletromagnetism mentioned in the above, the h-eletromagneti�eld is de�ned as the skewsymmetri part of Dij =Xk gikDkj while the v-eletromag-neti �eld is de�ned as the skewsymmetri part of dij =Xk gikdkj :In our ase, (2.8) leads to(2:10) Fij = 14 "yj  Xs Nsi ��i�ys!� yi Xs Nsj ��i�ys!# ;(2:11) fij = 14 �yi ��i�ys � yj ��j�yi� ;where again the funtions N ij are given by (1.15).



58 V.G�̂rt�u and M.G�̂rt�u3 Curvatures of C�(N). The Einstein equations invauumThe onnetion C�(N) has three urvaturesRj ikh(x; y) = ÆLijkÆxh � ÆLijhÆxk +Xs LsjkLish �Xs LsjhLisk +Xs CijsRskh;Pj ikh(x; y) = �Lijk�yh � Cijhjk +Xs CijsP skh;Sj ikh(x; y) = �Cijk�yh � �Cijh�yk +Xs CsjkCish �Xs CsjhCisk :The following notation will be used(3:1) Rjk =Xi Rj iki; 1Pjk=Xi Pj iki; 2Pjk=Xi Pj iik;Sjk =Xi Sj iki; R = gjkRjk ; S = gjkSjk :The Einstein equations assoiated to C�(N) are as follows (see x3,[8, h.V℄)(3:2) Rij � 12Rgij = � HT ij ; 1Pjk= � 1T jkSij � 12Sgij = � VT ij ; 2Pjk= � 2T jk :In the right hand of (3.2) the omponents of the energy{momentum tensor �eld ap-pear.In vauum (k = 0) the equations (3.2) redue to(3:3) Rij = 0; Sij = 0; 1Pij= 0; 2Pij= 0:Now we shall seek for the expliit forms of the equations (3.3). We deal with the�rst two only as most important. The seond is easier. We shall begin with it. Notiingthat Sj ikh has the same form as �j ikh but �xk is replaed with �yk , the following formof it is diretly infered from (1.19):



Spherially Symmetri Generalized Lagrange Metris 59
(3:4)

Sj ikh=0 for i 6=j 6=k 6=h 6= i; Siikh=0 for k 6= i; h 6= i; Siiih=0 for i 6=h;Sj iih= 14�i �2 �2�i�yj�yh � 1�i ��i�yj ��i�yh � 1�j ��j�yh ��i�yj � 1�h ��h�yj ��i�yh�for i 6=j 6=h 6= i;Sj ikj= 14�i �2 �2�j�yi�yk � 2�i ��i�yk ��j�yi � 1�j ��j�yk ��j�yi�� for i 6=j 6=k 6= i;Sj iij= 12�i �2�i(�yj)2 � 12�2i ���i�yj�2� 12�2i ��i�yi ��j�yi + 12�i �2�j(�yi)2�� 14�i�j���j�yi�2+ 14�2i ���i�yj�2� 14�i�j ��i�yj ��j�yj++ 14�2i ��j�yi ��i�yi +Xs6=j 14�i�s ��j�ys ��i�ys for i 6=j:Then we have(3:5) Sjk = � Xi6=j; i6=kSj iik for j 6=k; Sjj = �Xi6=j Sj iij :(3:6) S = �Xj Xi6=j �jSj iij :Now, if we set(3:7) ~Rj ikh = Rj ikj �Xs CijsRskh;it an be seen that ~Rj ikh is similar with Sj ikh but �yk is replaed by Æxk � Thus itsform is easily found from (3.4),
(3:8)

~Rj ikh=0 for i 6=j 6=k 6=h 6= i; ~Riikh=0 for k 6= i; h 6= i; ~Riiih=0 for i 6=h;~Rj iih= 14�i �2 Æ2�jÆxjÆxh � 1�i Æ�iÆxj Æ�iÆxh � 1�j Æ�jÆxh Æ�iÆxj � 1�h Æ�hÆxj Æ�iÆxh � ;~Rj ikj= 14�i �2 Æ2�jÆxiÆxk � 2�i Æ�iÆxk Æ�jÆxi � 1�j Æ�jÆxk Æ�jÆxi � for i 6=j 6=k 6= i;~Rj iij= 12�i Æ2�i(Æxk)2 � 12�2i � Æ�iÆxj �2 � 12�2i Æ�iÆxi Æ�jÆxi + 12�i Æ2�j(Æxi)2�� 14�i�j �Æ�jÆxi�2 + 14�2i � Æ�iÆxj �2 � 14�i�j Æ�iÆxj Æ�jÆxj++ 14�2i Æ�jÆxi Æ�iÆxi +Xj 6=s 14�i�s Æ�jÆxs Æ�iÆxs for i 6=j:



60 V.G�̂rt�u and M.G�̂rt�uNext, in order to �nd Rj ikh it suÆes to �nd an expliit form forXs CijsRskh denotedfor brevity by Aj ikh: We have a �rst form of it as follows
(3:9)

Aj ikh=CijiRikh+CijjRjkh for i 6=j 6=k 6=h 6= i;Aiikh= Xs6=k; s6=hs6=i CiisRskh+CiikRkkh�CiihRhhk+CiiiRikh for i 6=k 6=h 6= i;Aiiih= Xs6=i; s6=hCiisRsih+CiiiRiih�CiihRhhi;Aj iih=CijjRjih+CiijRiih;Aj ikj=�CiijRijk�CijjRjjk ;Aj iij=CiijRiij+CijjRjij :Sine we have(3:10) Rjk = �Rjiik � Xi6=j; i6=kRj iik for j 6=k;Rjj = �Xi6=j Rj iij ;by (3.7){(3.9) we obtain a �rst form of Rjk
(3:11) Rjk =Xs6=js6=k CjjsRsjk + CjjjRjjk � CjjkRkki��Xi6=ji6=k 14�i �2 Æ2�iÆxjÆxk � 1�i Æ�iÆxk � 1�j Æ�jÆxk Æ�iÆxj � 1�k xj Æ�iÆxk ���Xi6=ji6=k (CijjRjik + CiijRiik); for j 6= kRjj =Xi6=j (CiijRiij + CijjRjij)�Xi6=j ~Rj iij :4 Conluding remarksOur onnetion C�(N) does not oinide to that whih G.S. Asanov determined in [4℄.As we have seen, the former has deetion, i.e., Dij 6= 0, while by the stipulation (21.3)in [4℄, the later is free of deetion. For a disussion at what extent the deetion tensorinuenes the existene of anonial metrial d-onnetion of a given GL-metri, werefer to [1℄.The using of isotropi oordinates in writting of the stati spherially symmetrimetri (rij) allowed an easy extension of it to the Finslerian setting and simpli�ed a



Spherially Symmetri Generalized Lagrange Metris 61little the alulation. We just an say that this fat made possible the omputationof urvatures.Our GL-metri (1.4){(1.5) ould be also onsidered as an extension of theRobertson{Walker metri to the Finslerian setting. It ould provide various Finsle-rian Universes. However, the notion of Finslerian Universe has not yet a lear physialmeaning and the omputations seem hopeless. An algebrai manipulation programmewould be helpful. Our paper ould be a �rst step towards suh a programme.Aknowledgements. A version of this paper was presented at the First Confer-ene of Balkan Soiety of Geometers, Politehnia University of Buharest, September23-27, 1996.Referenes[1℄ Anastasiei M., On Deetion Tensor Field in Lagrange Geometries in P.L. An-tonelli and R. Miron (eds.), Lagrange and Finsler Geometry, 1-14, Kluwer Aa-demi Publishers, FTPh, 1996.[2℄ Asanov G.S., Finslerian solution for stati spherially symmetri gravitational�eld, Seminarul de Meani�a, nr. 25, University of Timi�soara, Romania, 1990, 50p.[3℄ Asanov G.S., Finslerian solution for stati spherially symmetri gravitational�eld. Fortshr. Phys. 39(1991), 185-210.[4℄ Asanov G.S., Generalized{Finslerian onnetion oeÆients for the stati spheri-ally symmetri spae, Aequationes Mathematiae 48(1994), 86-99.[5℄ Ikeda S., Advaned Studies in Applied Geometry, Seizansha, Japan, Sagamihara,1995.[6℄ Ishikawa H., Note on Finslerian Relativity, J. Math. Phys., 22(1981), 995-1004.[7℄ Kramer D., Stephani H., Maallum M. and Herlt E., Exat solution of Einstein's�eld equations, Cambridge University Press, 1980.[8℄ Miron R., Anastasiei M., The Geometry of Lagrange Spaes: Theory and Applia-tions, Kluwer Aademi Publishers, FTPh 59, 1994.[9℄ Takano Y., Gravitational Fields in Finsler Spaes, Nuovo Cimento 10(1974), 747-750.


