Geometrical Objects on Subbundles

Marcela Popescu and Paul Popescu

$\mathbf{Abstract}$

The reductions to a vector subbundle of a pull back vector bundle are studied. They are related to the Finsler splittings (defined earlier by one of the authors) and to geometrical objects, defined here.

Mathematics Subject Classification: 57R22, 53C99 Key words: vector bundles, geometrical objects

1 Reductions of vector bundles

Let $\xi = (E, \pi, M)$ be a vector bundle (denoted in the sequel v.b.), with the fibre $F \cong \mathbb{R}^n$, $G \subset GL_n(\mathbb{R})$ a Lie subgroup and $\xi' = (E', \pi', M)$ be a vector subbundle (denoted in the sequel v.sb.), with the fibre $F' \cong \mathbb{R}^k \subset \mathbb{R}^n$. Let us denote as $L(\xi) = (L(E), p, M)$ the principal bundles (p.b.s) of the frames of the v.b. ξ and the induced p.b. $L\xi'(\xi) = \pi'^*L(\xi) = (\pi'^*L(E) = LE'(E), p_1, E')$, which is also the p.b.s of the frames of the v.b. $\xi'(\xi) = \pi'^*\xi = (\pi'^*(E) = E'(E), \pi_1, E')$.

Definition 1.1 If the p.b. $L(\xi)_G$ is a reduction of the group $GL_n(\mathbb{R})$ of $L(\xi)$ to G, then there is a local trivial bundle ξ_G , associated with the p.b. $L(\xi)_G$, defined by the left action of G on F (it is used the left action of $GL_n(\mathbb{R})$ on F restricted to G). We say that the bundle ξ_G is the G-reduced bundle of ξ . If H is a subgroup of G and there is a reduction of the group G of $L(\xi)_G$ to H, in an analogous way we say that ξ_H is a H-reduced bundle of ξ_G .

Notice that a reduction of the group G of $L(\xi)_G$ to H is also a reduction of the group $GL_n(\mathbb{R})$ of $L(\xi)$ to H.

Example 1.1 Consider the subgroup of the automorphisms which invariate the vector subspace $F' \cong \mathbb{R}^k$ of \mathbb{R}^n :

(1)
$$G_0 = \left\{ \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}; A \in GL_k(\mathbb{R}), B \in GL_{n-k}(\mathbb{R}), C \in M_{k,n-k}(\mathbb{R}) \right\} \subset GL_n(\mathbb{R}).$$

The p.b. $L(\xi)_{G_0}$ always exists and it consists of all the frames of $L(\xi)$ which extend frames on ξ' ; we call in the sequel these frames as *frames on* ξ , *adapted to* ξ' . For the same G_0 as above, we can consider the p.b. $L\xi'(\xi)_{G_0}$, which also consists of frames on $L\xi'(\xi)$ which extend frames on $\xi'(\xi')$, called as frames on $\xi'(\xi)$, adapted to $\xi'(\xi')$.

Balkan Journal of Geometry and Its Applications, Vol.2, No.2, 1997, pp. 105-111 ©Balkan Society of Geometers, Geometry Balkan Press

Example 1.2 Let G_0 be as above, $F'' \cong \mathbb{R}^{n-k}$ a vector subspace of F, so that $F = F' \oplus F''$ and $H_0 \subset G_0$ the subgroup of the elements which invariate the vector subspaces F' and F'':

(2)
$$H_0 = \left\{ \left(\begin{array}{cc} A & 0 \\ 0 & B \end{array} \right); A \in GL_k(\mathbb{R}), B \in GL_{n-k}(\mathbb{R}) \right\}.$$

The p.b. $L(\xi)_{H_0}$ always exists and it is a reduction of the group G_0 of $L(\xi)_{G_0}$ to H_0 . It consists of frames of $L(\xi)_{G_0}$ which are adapted also to other subbundle $\xi'' = (E'', \pi'', M)$ of ξ . It follows that at every point $x \in M$ we have the direct sum of vector spaces $E_x = E'_x \oplus E''_x$. Such a reduction is also called a Whitney sum of the v.b.s ξ' and ξ'' and it is denoted as $\xi' \oplus \xi''$. This is equivalent with a left splitting Sof the inclusion morphism $i : \xi' \to \xi$, when $\xi'' = \ker S$. In the case of the p.b. $L\xi'(\xi)$, a reduction of the group G_0 of $L\xi'(\xi)_{G_0}$ to H_0 is equivalent to a left splitting S of the inclusion $i' = \pi'^*i : \pi'^*\xi' = \xi'(\xi') \to \pi'^*\xi = \xi'(\xi)$, as we have called Finsler splitting (see. [4]). In this case $\xi'(\xi)$ has an H_0 -reduction as Whitney sum $\xi'(\xi') \oplus \ker S$.

It is well known that the reduction of the structural group G of a p.b. P to a subgroup $H \subset G$ is equivalent to the existence of a global section in a fibre bundle associated with P, which have the fibre G/H, defined by the natural action of G on G/H [1, pg.57, Propriation 5.6]. A direct computation leads to the following:

Proposition 1.1 There is a canonical identification

(3)
$$G_0/H_0 \cong \mathcal{M}_k = \left\{ \begin{pmatrix} 0 & P \\ 0 & I_{n-k} \end{pmatrix}; P \in \mathcal{M}_{k,n-k}(\mathbb{R}) \right\},$$

the classes being at left, such that the left action \odot of the group G_0 on M_k is the adjunction, and

(4)
$$\begin{pmatrix} E & G \\ 0 & F \end{pmatrix} \odot \begin{pmatrix} 0 & P \\ 0 & I_{n-k} \end{pmatrix} = \begin{pmatrix} 0 & (E \cdot P + G) \cdot F^{-1} \\ 0 & I_{n-k} \end{pmatrix}.$$

Given the v.sb. ξ' , the G_0 -reductions of the group $GL_n(\mathbb{R})$ of the v.b.s $L(\xi)$ and the p.b. $L\xi'(\xi)$ are uniquely defined. It follows that considering the bundles with the fibres $GL_n(\mathbb{R})/G_0$, associated with the p.b.s of frames $L(\xi)$ and $L\xi'(\xi)$, the sections in these bundles, which correspond to the reductions of $GL_n(\mathbb{R})$ to G_0 , are uniquely determinated by ξ' . In the case of the Example 1.2, the H_0 -reductions of the group G_0 of the p.b.s $L(\xi)_{G_0}$ and $L\xi'(\xi)_{G_0}$ are equivalent with sections in the bundles F_1 and F_2 which are associated with these p.b.s and have as fibres G_0/H_0 .

2 Reductions of the group $G_{m,n}^r$

We use in this section some ideas from [2, Cap. IV, Sectiunea 7], but in a more general setting.

Let $\xi = (E, p, M)$ be a v.b., having the fibre $F \cong \mathbb{R}^n$, dim M = m and $G \subset GL_n(\mathbb{R})$ a Lie subgroup. We suppose that the structural group $GL_n(\mathbb{R})$ of $L(\xi)$ is reducible to G. Denote as $G_{m,n}^1$ the subgroup of $GL(m+n,\mathbb{R})$ which consists of the

matrices of the form $\begin{pmatrix} A_j^i & 0 \\ 0 & B_b^a \end{pmatrix}$, $\begin{pmatrix} A_j^i \end{pmatrix} \in GL_m(\mathbb{R})$, $(B_b^a) \in G$. Given $r \in \mathbb{N}^*$, the *r*-prolongation of the group $G_{n,m}^1$, denoted as $G_{n,m}^r$, is the set of the elements which have the form

(5)
$$a = (A_{j_1}^i, A_{j_1 j_2}^i, \dots, A_{j_1 j_2 \cdots j_r}^i; B_b^a, B_{b j_1}^a, \dots, B_{b j_1 \cdots j_{r-1}}^a),$$

where the components are symmetric in the indices $j_k \in \overline{1, m}$, and $(A_j^i) \in GL_m(\mathbb{R})$, $(B_b^a) \in G$ and if we fix $j_1, j_2, \ldots j_p$, then $B_{bj_1 \cdots j_p}^a \in g$, where g is the Lie algebra of the Lie group G. The composition law of two elements of the form (5) can be done looking at the cmponents as multi-linear maps. Thus, let a : (A, B) = $((A_1(\cdot), A_2(\cdot, \cdot), \ldots, A_r(\cdot, \ldots, \cdot), B_0(\cdot), B_1(\cdot, \cdot), \ldots, B_r(\cdot, \cdot, \ldots, \cdot)))$, and b : (C, D) be two elements in $G_{n,m}^r$. We denote ba : (A', B'), where the expression of this composition law, using coordinates, can be found in [2, pag. 70]. Notice that if $H \subset G$ is a subgroup, then $H_{m,n}^r \subset G_{m,n}^r$ is a subgroup.

Consider the p.b. $\mathcal{O}G\xi^r$ on the base E, with the group $G_{n,m}^r$, defined by the structural functions

(6)
$$\varphi_{UU'}(u) = \left(\frac{\partial x^{i'}}{\partial x^i}(x), \dots, \frac{\partial^r x^{i'}}{\partial x^{i_1} \cdots \partial x^{i_r}}(x), g_a^{a'}(x), \dots, \frac{\partial^{r-1} g_a^{a'}}{\partial x^{j_1} \cdots \partial x^{j_{r-1}}}(x)\right),$$

where $\pi(u) = x$, and $\{g_a^{a'}(x)\}$ are structural functions of the vertical bundle $V\xi$, constant on the fibres, defined on an open cover of E of the form $\{U = \pi^{-1}(V), V \subset M, V \text{ open}\}$. These structural functions proceed from some structural function on M, so the definition is coherent and is equivalent to that used in [2]. We shall use the condition in this form in order to construct some reductions. In the case $G = GL_n(\mathbb{R})$ we get the definitions used in [2].

Let ξ' be a v.sb. of the v.b. ξ . We denote $\mathcal{O}G\xi'(\xi)^r = i^*\mathcal{O}G\xi^r$, where $i: E' \to E$ is the inclusion. From now to the end of the section we study the reductions of the group $G_{0m,n}^r$ of the p.b. $\mathcal{O}G_0\xi'(\xi)^r$ to the subgroup $H_{0m,n}^r$, where G_0 and H_0 are given by the formulas (1) and (2). We consider first the case r = 1.

Proposition 2.1 Let ξ' be a v.sb. of the v.b. ξ . Then a Finsler splitting S of the inclusion $i : \xi' \to \xi$ induces a H_0 -reduction of the v.b. $\xi'(\xi)$ to a bundle $\xi'(\xi') \oplus \eta$, where $\eta = \ker S$ is isomorphic with $\xi'(\xi''), \xi'' = \xi/\xi'$, such that the bundle $\xi'(\xi') \oplus \eta$ is isomorphic to the bundle $\xi'(\xi' \oplus \xi'')$. Conversely, every H_0 -reduction of $\xi'(\xi)$ as $\xi'(\xi') \oplus \eta$ defines a Finsler splitting S of the inclusion i, such that $\eta = \ker S$.

Proof. The second statement follows from Example 1.2. In order to prove the first statement, it suffices to prove that η is isomorphic with $\xi'(\xi'')$. Considering local coordinates, adapted to the v.b.s structures: on M, E', E'' and E, it can be shown that η is isomorphic with $\xi'(\xi'')$. The same reason shows that $\xi'(\xi') \oplus \eta$ is isomorphic with $\xi'(\xi') \oplus \xi'(\xi'') \cong \xi'(\xi' \oplus \xi'')$. Q.e.d.

Theorem 2.1 Let ξ' be a v.sb. of the v.b. ξ and $r \ge 1$

1) Every Finsler splitting of the inclusion $i: \xi' \to \xi$ defines a canonical reduction of the group $G^r_{0m,n}$ of $\mathcal{O}G_0\xi'(\xi)^r$ to $H^r_{0m,n}$, the reduced p.b. being $\mathcal{O}H_0\xi'(\xi)^r$.

2) Every reduction of the group $G_{0m,n}^r$ of $\mathcal{O}G_0\xi'(\xi)^r$ to $H_{0m,n}^r$ is $\mathcal{O}H_0\xi'(\xi)^r$ and it is induced by a Finsler splitting, as above.

Proof. 1) Taking on E'(E) a vectorial atlas, which has the structural functions from H_0 , we obtain structural functions on the p.b. $\mathcal{O}G_0\xi'(\xi)^r$, which thake values in the subgroup $H^r_{0m,n}$. 2)Considering a reduction as in hytothesis and some structural functions on $\mathcal{O}H_0\xi'(\xi)^r$, as in the definition, it follows some structural functions on the p.b.s $\mathcal{O}H_0\xi'(\xi)^{r'}$, with $1 \leq t' \leq r$. Taking r' = 1 and using the second part and the proof of Propsition 2.1, we obtain a Finsler splitting S. Q.e.d.

3 Geometrical objects

Let ξ be a v.b., $G \subset GL_n(\mathbb{R})$ a Lie subgroup and ξ' a v.sb. of ξ .

Definition 3.1 A space of geometrical G-objects of order r is a manifold Θ so that there is a left action of the group $G_{n,m}^r$ on Θ . Consider now the fibre bundle with the fibre Θ , associated with the p.b. $\mathcal{O}G\xi^r$, which correspond to this action. A section in this bundle is a field of geometrical G-objects on the v.b. ξ .

In an analogous way, we can consider the fibre bundle with the fibre Θ , associated with the principal bundle $\mathcal{O}G\xi^r$. A section in this bundle is a field of geometrical G-objects on the v.b. ξ , restricted to the v.sb. ξ' .

In the case $G = GL_n(\mathbb{R})$ we obtain the definitions used in [2] of a space of geometrical objects of order r and of a field of geometrical objects on a v.b..

Example 3.1 Take $\Theta = I\!\!R^k$, G_0 given by the formula (1) and the left action of G_0 on Θ given by $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} v = Av$. It is obvious that this action induces a left action of the group $G_{0m,n}^1$ on Θ . It follows a field of geometrical G_0 -objects of order 1 on the v.b. ξ , which is in fact a section in the v.b. $\xi(\xi')$ and a field of geometrical G_0 -objects of order 1 on the v.b. ξ , restricted to the v.sb. ξ' , which is in fact a section in the v.b. $\xi'(\xi')$.

The second part of the example above, can be extended as follows:

Proposition 3.1 Every field of geometrical objects of order $r \ge 1$ on the v.b. ξ' defines canonically a field of geometrical G_0 -objects of order r on the v.b. ξ , restricted to the v.sb. ξ' .

Example 3.2 A d-connection on the v.b. ξ' induces a field of geometrical G_0 -objects of order 2 on the v.b. ξ , restricted to the v.sb. ξ' .

Notice that a field of geometrical G_0 -objects on the v.b. ξ , restricted to the v.sb. ξ' is also such H_0 -objects. So, the fields of geometrical G_0 -objects from Proposition 3.1 and from Example 3.2 are also H_0 -objects. A remarcable example of a field of geometrical G_0 -objects of order k on the v.b. ξ , restricted to the v.sb. ξ' , is given by the following direct consequence of the result [1, pg.57, Propzition 5.6], already stated and used in the first section:

Proposition 3.2 Let G_0 and H_0 be given by (1) and (2), and ξ' be a v.sb. of the v.b. ξ . Then every reduction of the group $H^r_{0m,n}$ of the p.b. $\mathcal{O}G_0\xi'(\xi)^r$ to $H^r_{0m,n}$ is uniquely defined by a field of geometrical G_0 -objects on the v.b. ξ , restricted to the v.sb. ξ' , of order r.

Example 3.3 Every Finsler splitting S of the inclusion $i : \xi' \to \xi$ is defined by a field of geometrical G_0 -objects on the v.b. ξ , restricted to the v.sb. ξ' , of order 1. According he above Proposition 3.2, this G_0 -object is a section S_0 in the bundle \mathcal{F}_0 , which is associated with the p.b. $OG_0\xi'(\xi)^1$ and defined by the left action of $G_{0m,n}^1$ on G_0/H_0 (in the form (3), determinated by the left action of G_0 on G_0/H_0 given by formula 4. This formula can be related to the change rule of the local components of a Finsler splitting, which give also the change rule of the local form of the section S_0 .

The action (4) can be extended in the general case, but this will be done elsewhere. An example of a field of geometrical H_0 -objects on the v.b. ξ , restricted to the v.sb. ξ' , of order 2, is given by the following action of $H_{0m,n}^2$ on $F_0 = I\!\!R^d$, where $d = m^3 + mk^2 + m(n-k)^2 + m^2n + k^2n + (n-k)^2n$. Writting F_0 as $(L_{jl}^i, L_{\beta i}^\alpha, L_{vi}^u, C_{j\alpha}^i, C_{\beta \gamma}^i, C_{\beta u}^\alpha, C_{va}^u, C_{vw}^u)$, we define the action of $H_{0m,n}^2$ on F_0 , by an element $\left(A_j^i, A_{jk}^i, \begin{pmatrix} B_{\alpha}^{\alpha'} & 0\\ 0 & B_u^{u'} \end{pmatrix}, \begin{pmatrix} B_{\alpha i}^{\alpha'} & 0\\ 0 & B_u^{u'} \end{pmatrix} \right)$, as

$$\begin{split} L_{j'l'}^{i'} &= \left(A_i^{i'}L_{jl}^i - A_{jl}^{i'}\right)A_{j'}^jA_{l'}^l, \\ L_{\beta'i'}^{\alpha'} &= \left(A_{\alpha}^{\alpha'}L_{\beta i}^{\alpha} - A_{\beta i}^{\alpha'}\right)B_{\beta'}^{\beta}A_{i'}^i, \\ L_{v'i'}^{u'} &= \left(B_u^{u'}L_{vi}^u - B_{vi}^{u'}\right)B_{v'}^vA_{i'}^i, \\ C_{j'\alpha'}^{i'} &= A_i^{i'}A_{j'}^jB_{u'}^uC_{ju}^i, \\ C_{j'u'}^{i'} &= A_i^{i'}A_{j'}^jB_{u'}^uC_{ju}^i, \\ C_{\beta'\eta'}^{\alpha'} &= B_{\alpha}^{\alpha'}B_{\beta'}^{\beta}B_{\eta'}^vC_{\beta\eta}^{\alpha}, \\ C_{\beta'u'}^{\alpha'} &= B_u^{\alpha'}B_{\beta'}^vB_{u'}^uC_{\beta u}^a, \\ C_{\gamma'\alpha'}^{\alpha'} &= B_u^{u'}B_{v'}^vB_{\alpha'}^cC_{v\alpha}^u, \\ C_{v'w'}^{u'} &= B_u^{u'}B_{v'}^vB_{\alpha'}^wC_{vw}^u. \end{split}$$

It follows that there is a local trivial bundle \mathcal{F}_1 with the fibre F_1 , associated with the p.b. $OH_0\xi'(\xi)^2$.

Let S be the Finsler splitting which correspond to the reduction of the group G_0 of $OG_0\xi'(\xi)^1$ to H_0 , according to Theorem 2.1.

Definition 3.2 A restricted d-connection on ξ (related to the v.sb. ξ' and the Finsler splitting S) is a section in the above bundle \mathcal{F}_1 .

If follows that a restricted d-connection is uniquely determinated by the local functions on E'(E)

(7)
$$(L^i_{jl}, L^{\alpha}_{\beta i}, L^u_{vi}, C^i_{j\alpha}, C^i_{ju}, C^{\alpha}_{\beta \gamma}, C^{\alpha}_{\beta u}, C^u_{v\alpha}, C^u_{vw})$$

which have as variables (x^i, y^{α}) . They are given on domains of local maps on E', which belong to a vectorial atlas on E', which proceed from one on E'. The coordinates on the fibres change following the rules $y^{\alpha'} = g^{\alpha'}_{\alpha}(x^i)y^{\alpha} + g^{\alpha'}_{u}(x^i)y^{u}$, $y^{u'} = g^{u'}_{u}(x^i)y^{u}$. The local functions (7) change according the rules

$$\begin{split} L_{j'l'}^{i'} &= \frac{\partial x^{i'}}{\partial x^{i}} \left(\frac{\partial x^{j}}{\partial x^{j'}} \frac{\partial x^{l}}{\partial x^{l'}} L_{jl}^{i} + \frac{\partial^{2} x^{i}}{\partial x^{j'} \partial x^{l'}} \right), \ L_{\beta'i'}^{\alpha'} &= g_{\alpha}^{\alpha'} \left(g_{\beta'}^{\beta} \frac{\partial x^{i}}{\partial x^{i'}} L_{\beta i}^{\alpha} + \frac{\partial g_{\beta'}^{\alpha}}{\partial x^{i'}} \right), \\ L_{v'i'}^{u'} &= g_{u}^{u'} \left(g_{v'}^{v} \frac{\partial x^{i}}{\partial x^{i'}} L_{vi}^{u} + \frac{\partial g_{v'}^{u}}{\partial x^{i'}} \right), \ C_{j'\alpha'}^{i'} &= \frac{\partial x^{j}}{\partial x^{j'}} \frac{\partial x^{i'}}{\partial x^{i}} g_{\alpha'}^{\alpha} C_{j\alpha}^{i} \\ C_{j'u'}^{i'} &= \frac{\partial x^{j}}{\partial x^{j'}} \frac{\partial x^{i'}}{\partial x^{i}} g_{u'}^{u} C_{ju}^{i}, \\ C_{\beta'\gamma'}^{\alpha'} &= g_{\alpha}^{\alpha'} g_{\beta}^{\beta'} g_{\gamma'}^{\gamma} C_{\beta\gamma}^{\alpha}, \quad C_{v'w'}^{u'} &= g_{u}^{u'} g_{v'}^{v} g_{w'}^{w} C_{vw}^{u}. \end{split}$$

If we compare the above formulas with those of a d-connection on the v.b. $i^{*}\xi$ [2, ec. (7.5), pag. 72], we obtain:

Theorem 3.1 Let ξ' be a v.sb. of the v.b. ξ , N a non-linear connection on ξ and S a Finsler splitting of the inclusion $i : \xi' \to \xi$.

1) Every linear d-connection on ξ defines canonically a restricted d-conection on ξ related to ξ' .

2) Every restricted d-connection on ξ related to ξ' defines canonically a d-conection on ξ' and a linear Finsler ξ' -connection on $\xi'' = \xi/\xi'$.

3) A d-connection on ξ' and a linear Finsler ξ' -connection on $\xi'' = \xi/\xi'$, defines canonicaly, using the Finsler splitting S, a restricted d-conection on ξ related to ξ' .

The proof of the theorem will be given elsewhere. For the definition of a linear Finsler ξ' -connection on a v.b. ξ'' , over the same base, see [4].

Acknowledgements. A version of this paper was presented at the First Conference of Balkan Society of Geometers, Politehnica University of Bucharest, September 23-27, 1996.

References

- S. Kobayashi, K. Nomizu Foundation of differential geometry, I, Wiley Interscience, NY, 1963.
- [2] R. Miron, M. Anastasiei Vector bundles, Lagrange spaces. Application to Relativity, (in Romanian), Editura Academiei, Bucureşti, 1987; in English, Balkan Society of Geometers, Monographs and Textbooks, 1, Geometry Balkan Press, Bucharest, Romania, 1997.
- [3] Marcela Popescu, P. Popescu The structure equations of induced non-linear connections, The National Seminar on Finsler spaces, Brasov, 1996 (to appear in Analele Univ. Timisoara).
- [4] Marcela Popescu On Finsler bundles and Finsler connections, The 25th National Conference of Geometry and Topology, Iassy, 1995 (to appear in Analele Univ. Iassy).

Department of Mathematics, University of Craiova 11, Al.I.Cuza St., Craiova, 1100, Romania e-mail paul@udjmath2.sfos.ro