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Abstract

The relation between spinor of SL(2, C) group and tensors in the framework
of lagrange spaces is studied. A geometrical extension to generalized metric
tangent bundles is developed by means of spinor. Also, the spinorial equation
of causality for the unique solution of the null-cone in the Finsler or Lagrange
space is given explicitely.
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1 Introduction

The theory of spinors on pseudo Riemannian spaces has been recognized by many
authors, e.g. [1], [2], [3] for the important role it has played from the mathematical
and physical point of view.

The spinors that we are dealing with here, are associated with the group SL(2, C).
In particular SL(2,C) acts on C?. Each element of C? represents a two—component
spinor. This group is the covering group of the Lorentz group in which the tensors are
described [2]. The correspondence between spinors and tensors is achieved by means
of mixed quantities initially introduced by Infeld and Van der Waerden.

The correspondence of tensors and spinors establishes a homomoerhism between
the Lorentz group and the covering group SL(2, C).

In the following, we give some important relations between spinors and tensors on
a general manifold of metric g, .

Let 0 : S® S — V* be a homomorphism between spinor spaces S, S and four—
vectors belonging to the V* space, then the components of ¢, which are called the
Pauli spinor matrices, are given by

. 1 /1 0 . 1 /0 1
T, = s O, 50 = —=
aw =g lo1 ) Tar =51 0
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1) =g ( o) dw=gm(o B)

The hermitian spinorial equivalent notation of UZB, is given by o

;) =0

n n
AB BA" T
E‘];,A. Greek letters u,v, ... represent the usual space time indices taking the values
0,1,2,3 and the Roman capital indices A, B, A", B' are the spinor indices taking the
values 0, 1. The tensor indices are raised and lowered by means of the metric tensor,

whereas the raising and lowering of spinor indices is given by the spinor metric tensors

:
EAC,Epg’ ¢ Which are of skew symmetric form. Thus, for two spinors &4 n? we have
the relations,

¢A = cABgy A A'B
(2) ,

Ea=EBepa, ny =nPep
moreover we have,
g = MnBepy = —leapn® = —€pn®.
For a real vector V, its spinor equivalent is
(3a) Vap = Vyohip,

where oy 5, are given by the relation (1). Also, the following formulas are satisfied,

7
O_ZBIO_I/AB — g;u/7
(30) ,

JoMB = e

v

m
TAB
The spinor equivalent of a tensor T),, is given by

! 1
_ _AB'_CD
(4) Ty =0,7 0,7 Typop

and the tensor corresponding to the spinor Ty 5 is,
— gt gV
(5) TAB’CD’ —O'ABIO'CD/TNV.

The relationship between the matrices o and the geometric tensor g,,, as well
as its spinor equivalent are

I _
G0y g UéD, =€AcEp p'

- v —
(6) 9aB'cn' =045 0cp 9uv = EACER D’
7 7 ’ 7 7 7
gAB CD = O_Z?B oCP gnv = gACeB D

The complex conjugation of the spinor S, is

(7) Sap =Sap

Furthermore, for a real vector V,, the spinor hermitian equivalence yields Vg , =
Vg - If a vector y¥ is a null-vector,
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(8) viur = gty =0,

then its spinor equivalent will take the form

_BI
(9) yb =ok 040
_BI
where, 84,6 represents the two component spinors of SL(2, C) group.

In the Riemannian space, the covariant derivative of z— dependent spinors will
take the form

ot 4 B
DI—LSA = BW_F Byf 3
_A
A o0& Sy
D = L 1
(10) Nf 6:17” + B u£ )
0 B
Duéa = 5;;'_LAH£B7
_ 8¢, —B -
D&,y = 8931 — Ly, &y

- . —A' .
where 4,64, ¢ , &4+ represents two component spinors and Lgu,LBfu the spinor
affine connections. In the case that we have spinors with two indices, the covariant
derivative will be in the form

AB' afABI A o8 | 7B a0
(11) DH£ = Ot +LCu€ +LC’M€ .
Applying this formula to the spinor metric tensors eac, g we get
aEAB C C
(12) D,uEAB = af_“ - LAMECB - LBHEAC-
If
D,eap =0,

we shall say that the spinor connection coefficients Lgu are metrical together with
the relations

(13) Dyo%, =0, D,e*P =0, Dyeyp =0,Due* B =0.

From the relation (12) we immediately obtain
Lgay = Lagy,

where we used the relation
c
LABu = LB[_LECA'

Also from the relation 13 a) we have

’

—D
(14) Do’y = 0u0% p + LY ,0" 0 — LG, 0l — L

up? B CB' »=0.

14
1% AD
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2 Generalization of the Equivalent of Two
Component—Spinors with Tensors

The above mentioned well-known procedure for SL(2, C) group between spinors and
tensors in a pseudo Riemannian space time can be applied to more generalized metric
spaces or bundles. For example G. Asanov [6] applied this method for Finsler spaces
(FS), where the two component spinors n(x,y) depend on the position and direction
variables or n(z?, 2%), with 2@ a scalar for a gauge approach. Concerning this approach
some results were given relatively to the gauge covariant derivative of spinors and
the Finslerian tetrad. In our present study we give the relation between spinors of
SL(2,C) group and tensors in the framework of Lagrange spaces (LS).

The expansion for the covariant derivatives, connections non linear connections,
torsions and curvatures are the main purpose of our approach.

In the following, we shall study the case that the vectors of LS are null-vectors
and consequently fulfill the relation (9). In Finsler type space—time the metric tensor
9ij(z,y) depends on the position and directional variables, where the vector y may
be identified with the frame velocity ([6] ch. t). So, a vector v will be called null if

gij(z,v)v'v! = 0.

In this case there is no unique solution for the light cone [7], [8]. The problem of
causality is solved considering the velocity as a parameter and the motion of a particle
in Finsler space is described by a pair (z,y). The metric form in such a case will be
given by

(15a) ds® = gij(z,v)dz'dz? .
When a particle is moving in the tangent bundle of a Finsler (Lagrange) space time
its line element will be given by

o -
(16)  do® = Guyda"da® = g3 (x,y)de’da? + g3 (x,y)dy"dy”, <ya = %) ’

where the indices i, j and «, 8 taking the values 1,2, 3,4 and
oy = dy® + ./\/'Jfldxj.

Thus we have

Theorem 2.1. The null-geodesic condition (15) is satisfied for a particle which is
moving in the tangent bundle of Finsler space—time of metric do? (rel. 16) with the
assumption, the velocity v is taken as a parameter of the absolute parallelism

(17) Sy® = 0.

The previous treatment of null-vectors in Finsler spaces can also be considered for
Lagrange spaces involving Lagrangians which are not homogeneous [9], [8]. The intro-
duction of spinors 4,6 of the covering group SL(2,C) in the metric tensor g(z,6,6)
under the correspondence between spinors and tensors in LS,

(2.9) = (2. Vag) = (2.64.8")
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preserves the anisotropy of space with torsions. In this case all objects depend on the
position and spinors, e.g. the Pauli matrices GZA, (z,6,0). Such an approach can be
developed for a second-order spinor bundle applying the method analogous to [4]. In
virtue of relation (8), a null vector in spinor form can be characterized by

AzA BB~ ~j AgA ,B7B
(18) Janpp 070 070 =007, 95070 0767 =0.
Proposition 2.2. In a tangent bundle of metric (Finsler, Lagrange)
G = gij(w,y)dw'dz’ + hay(z, y)dy"dy",

if the vector y is a null, then the corresponding spinor metric of the bundle will be
given in the form

(19) G =gunppd0dd” d0Bd” + 1 0678 )5(67F")
or equivalently
G = d6* " 9" " AN gy BB
= 944'BB' +haxgp0y”" 0y,
where yAA, - pAg" , when y is null vector (cf. [2]).
Proof. The relation (19) is obvious by virtue of (6) and (9).

Remark. A generalized spinor can be considered as the square root of a Finsler
(Lagrange) null vector.

3 Adapted Frames and Linear Connections

In the general case of a LS, the spinor equivalent to the metric tensor

0*L 1
i = e~ e L = —F2
Jig Oyidyl ’ 2
is given by
(20) 9ij = 51'AA 5;‘%1 9aA'BB' -

The corresponding Lagrangian will be L: M x C? x C? - R, with the property
L(z,0,0) = L(z,y), where L represents the Lagrangian in a Lagrange space. We can
adopt the spinor equivalent form of the adapted frames and their duals in a LS,

6 0 ) 0 0 ) A
- N - - o [ u A
<5mﬂ’6yi> (69&#’8614’85,4’)’ (dz*, 0y*) — (da*, 087,66 )

as well as the spinor counterpart of the non-linear connection Nﬁ of a LS,

1

i A A
N, = (N, N, ).
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The geometrical objects 667, 5§A are given by
(21) 564 = doA + NAda#, 68" =db”" + N, dat.

In virtue of (3), the bases 0,0, 4 are related as follows

(22) Ou = 5;?14, Oans
0 g 0
where au:@ and 8AA' :aoﬁy

Theorem 3.1. In a Lagrange space the spinor equivalent of the adapted basis
(6/0x*,0/0y*) and its dual (dz*,dy®) are given by

(23)

J ~AA' A A
a) W: u aAaAlfNNaAfNH aA’

b) 0popd =0,,, P={ia}

¢) dat=3"  doAdg"

d) oy = (@" doA +64d6”" )52 + (B NA+ AN )52 5 d6PdHT
Proof. The relations (23) are derived from (21) and (22).

Proposition 3.2. If y*, N2 represent a null vector and a non-linear connection in
a Lagrange space, then its corresponding spinor representations are given by

0 ~a A —A' 0 ~a A —A
(24) dy® =55 (07 d8* +04d6" ) Np =59, (6 NP+64N; ).

Proof. The relation (24) is obvious because of (23 d).
Proposition 3.3. The null geodesic equation of spinor equivalence in a LS or FS
s given by

_AI A N _AI N —AI —u —A, N B
(25) 6 do"(c', \N,do +1)+67d8 (¢, ,, N, d§”" +1) =0.
Proof. In virtue of relations (18) and (23c,d) we obtain the relation (25).

Affine connections and affine spinor connections are defined in the frames of LS
by the following formulas

5 L0 ) s 0
Dy /50m (697/) = L”“W’ Ds/sen <aoﬁ> = LANW:
P B @ 5 L6
(26) Dy /5an (_—A> = LA’ME7 Dj,994 <W> = OMAM—,N

06

9 o0 9\ ¢ 0
DB/BHA (?) _CBIAW’ D8/8§AI <mﬁ> = CBA,W’
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9\ o 0 9 o 0
Da/BEA, (——B’> Cp o' Pk Dyjoga (W) = Chagge

of
) —v 1)
Dy o <5_) = Cun 5o

We can give the covariant derivatives of the higher order generalized spinors Cg/’f: (z,6,0),

(27)
AB' gf’,' A CB Ac’ c ,AB +C L AB
Vilgay = 5.76;/ +Lowlpa Tt L(“ uSpa |~ LBuCoa T~ LuaCper
aCA (V, !
AB .. _ =C' . AB
VeCGghy W = TH0F + CCEC T+ Cc ECBA CBEC —CraCher
AB' ... )
AB'... _ g Ac'...  #C AB' ...
Vzlga = e + COZ’ BA’ Tt CO’Z’ Ba = Czalper

Proposition 3.4. If the connections defined by the relations (26) are of the Cartan
type, then the spinor equivalent relations are given by

’ A ’
EA%+Lék00§A +0A59 +L0k0 I 0,
28
(28) G441 @" VA 104V, "
(G2 1@ V04 + 64V, 8" ) - 1

Proof. Applying the relations (27) to a null vector y with the Cartan type properties
Yy = 0 and y*ls = 63 [5] [6], and taking into account the (3a), (9) we obtain
the relations (30). (As we have mentioned previously the y covariant derivative has
corresponded to the spinor covariant derivatives).

4 Torsions and Curvatures

The spinor torsions corresponding to the torsions of LS are given by an analogous
method to that one we derived in [4] for a deformed bundle. The torsion tensor field
T of a D—connection is given by T(X,Y) = DxY — Dy X — [X,Y].

Relatively to an adapted frame we have the relations
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a) T (% %) =T, 5; +Tﬂa%4 +Tf,; 808’4’

b T (6%, %) = T:A(;SV +TangB + 77, ;B,

) T (a;A' : %) -7, 66'/ + T8, 623 +Tf;: a; :
(29) d) T(%:%) :TﬂA%JrTBCA% +Tg,4%

e) T (6%" 8;,) = Tg’A(S;su +Tg’Aa§C +T§IA 60,

T (a;”@%) =Th 56u +TE 820 +T§A:i,

a9 5 9 o 0
? T(_— ——> =T st Ty gae + Toa—a
o5 98" BA Gzn A 06C a6

The torsion (29 a)) can be written in the form

(30)

) ) I ) N 4 0 4 O
Doos 5 = Dotose G = {W 5} = Pougex ~ Pugx ~ ugga — Viw
where the brackets have the form

. 0 © 0
(31) [6/02%,6/02"] = Ry, 5oz + Vi pry
and d/dz", R;‘w Vuﬁl are given by
b d 40 A D A ONZ SNA
- - = _ N _ 7 — mo v
dxk  Oxk i 064 k agA' > B Sav Sk
Vf‘,‘,l = ﬂ _ ﬂ_
K dxv dxh

! !
The terms R;‘W Vlf,‘, represents the spinor—curvatures of non-linear connections N,f‘, N;:‘ .

In virtue of the relations (29.a), (30), (31) we obtain

'

PN A A _ A A Al
(32) Tw/ = L;w — LVH , Tyu = fRW , TVH = fVW .

Similarly from the relations (31b—31g), comparing with the torsion in the following
form,
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5 6 5 5 5 5
83) T <5YP’ 6YQ> = Dojsvr g = Dojove yp = [5}’1’ - 6YQ}

we can obtain the relations

ONA
A A A 14 A
TAu _CAu’ TBu_ o9B 7LBu
Th, =-Y3, Tig=T),
Thy=Chy — Chy Thy= RA, TV, = T4
(34) AB AB BA> AB AB> wA A'p
BNA 7 ! 7
A _ u A _ A A
T =——7 Ty =Ch, — Pis
0
/ / 50A'
B _ B A _ A A
T8, =-C8, Ti, =C4, — —aéB’ ,

where we have put

5 8 9 5 5 9 , ,
0 32 gt 9 _J° 91 AN_BBH A _ oA B
5YP {aeA'agA’}’ {Mu‘agA}‘ B and C4 = Chab

So, we obtain the following:

Proposition 4.1. In the adapted basis of a generalized metric tangent bundle the
spinor equivalent of coefficients of the torsion T of a D-connection, are given by the
relations (32)—(34).

Proposition 4.2. D connection has no torsion if and only if all terms of the relation
(34) are equal to zero.

The curvature tensor field R of a D—connection has the form R(X,Y)Z =
[Dx,Dy|Z — Dixy)Z VX,Y,Z € X(TM). The coefficients of the curvature ten-
sor and the corresponding spinor—curvature tensors in spinor bundle are given by
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(35)
SLk SL% "
E _ %t © p Tk p Tk A ik A
R/\Vu - Sk B SV + L)\I/Lpu B L)\uLpV o R,uVCA)\ o V,uu CA')\
LB SLB '_B
B _ vA A p 1B p 1B B A
RAV}L - Sk - Sxuv + LAVLpu - LANLpV - RZVLAp - Vuu OA'A
—BI —Bl
1 5L A 6L A/ —BI ' ! /_B’
B _ w B A ~B D
Alvp T g Sgv tLyaLy =Ly, Ly~ RNVCA’A - Vuu Cpa
SLk 5C* NFE )
k. _ “Tvu Av X ok A Tk Bk Ak
vuA — 5HA - Oz + LVHOA)\ - OAVL/\N + 964 CEI/ + YNAA’V
oLy, sCt ON" :
PﬁBN = aeBu - 5,EANB + LgucéB - OzIZBLiH + 60: Oan + nyk Og'B
’ 8LBII (5CB, ’ ’ 6NE ’ ’ !
B _ Ap A'A B B B B © B E ~B
PAIAN_—aeA - 63’;“ +LAIHCBA70A,ALBN+—89A CA’E+YNACEIAI
BC’“A 80’“3 /
SﬁAB = 60% - 8064 + O;)L\AO;\GB - C;)[BCfA - RQBC,,Z’N
ocm oom n m n m " —m
SﬂB = aalBA o 89€4€ + CZACTLB o CZB nA RﬁBCA’l
! aCB/, aCB,, 1 1 1 I ’ _B’
B _ A'A A'B D B D B D
SA’AB T To9B oA + 00 4Cpp = CypCpp = RapCp o
—k
5C oLk —k ONA A
Ik, =—Av W or ke Ty, — —5Ck, — T, ,Ck
vA'p Sk agA + Ay pu v~ Ap 6§A Av A p™~ Av
5CB oLEB ON? _p —
B _TTAA Ap P B p B i ~B D =B
IAA'N T Tar A + O alon = LayCry = —Chp = Lar Oy a
: o0 o0
—B, —B,
' 0Cyce OLy, B —-D B —E ONf_B'" —p —B
B _ A'C Ap I
IAICIIJ = 61[1 — agC” +OAIDILC'I[J_LEIMCAIBI _—_A' LC’p_LAINCDICI
ack,  ack oLy
k _ A'v By P k ok B ok
1 —_— - + C 7 C - C C ! - C !
vA' B B _A' A'v  Bp Br™~A —_A' D'v
09 50" * "
ac’, . ac* oLy
P _ A'B AB k p kE A
Tann = 904 A + Oy aCip — CapCl — —Chp
o [%
_Bl BI ! !
/ OC 41 v oC'”, ! ! aLD —B
B _ A'C A'A B D B E A
JA’C’A T~ T 90A T T A + CA’DCC’A - CA’ECC’A - _—A'CC’D’
o0 o0
v _ B _ BI _
KHA’B’ - KAA’B’ - KA’O’D’ =0.
So we have

Theorem 4.1. The coefficients of the curvatures of a D-connection are given by the

relation (35).
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Theorem 4.2. In a tangent bundle a D—connection has no curvature if and only if
all the coefficients (rel. 35) of the curvatures are equal to zero.

5 Discussion

The advantage of the framework that uses a spinor geometrical representation for the
generalized spaces is that it enables the description of particles with spins 1/2,3/2, ...,
in addition to those with spins 0,1,2, ..., etc., while the usual tensors can describe
only the latter kind of particles. From the mathematical and physical point of view
spinors are considered to be more fundamental than tensors. These are associated to
the group SL(2, C) which is the covering group of the Lorentz group with which the
tensors are associated.

Moreover, with the spinorial equivalence of the null vectors we can describe par-
ticles such as photons, neutrinos etc, in a generalized metric space time.

Also, the spinorial equation of causality for the unique solution of the null cone
in the Lagrange or Finsler space was given explicitly by the proposition (3.3).

Additionally, the gravitational field can be described by virtue of the corresponding
spinorial form of the metric tensor equivalent to the spinor bundle. This will be the
object of our future study.
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