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Abstract

The intrinsic geometry of 3—dimensional non anti-invariant slant submani-
folds of K contact manifolds is studied. It is proved that these submanifolds are
Riemannian manifolds of quasi constant sectional curvature. Moreover explicit
formulae are given for sectional curvatures; Ricci tensor, and scalar curvature
of a slant submanifold. A necessary condition is proved for the minimality of a
3—-dimensional slant submanifold of a Sasakian manifold of constant ¢-sectional
curvature. Finally it is proved that every 3—dimensional slant submanifold of a
K-contact manifold is locally homogeneous provided it has constant horizontal
curvature with respect to the induced metric.
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Introduction

Let M be an almost contact metric manifold with structure (¢, &,n,g) (our standard
reference for contact geometry is [2]). By a slant submanifold of M, we mean an
immersed submanifold N such that for any x € N and any X € T, N linearly inde-
pendent on &, the angle between X and T, N is a constant o € [0, 7], called the slant
angle of N in M and denoted by sla(N). General properties of slant submanifolds
according to this definition are studied by the author in [8].

The results given here apply to non anti invariant three dimensional slant sub-
manifolds in K contact manifolds, that is contact metric manifolds whose character-
istic vector field is Killing (see [2]). In particular in section 2 we study the intrinsic
geometry of a slant submanifold as a Riemannian manifold endowed with the induced
metric. This is made using some fundamental properties of the so—called Riemannian
manifolds of quasi constant sectional curvatures (QC manifolds),which have been
studied in [5]. The results used here are recalled in section 1. Indeed, we prove that
any 3—dimensional slant submanifold of a K—contact manifold is a QC—manifold with
respect to the induced metric. As a consequence, we get explicit formulae for the
sectional curvatures, Ricci tensor and scalar curvature of a slant submanifold.
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Moreover, we find a necessary condition for the minimality of a slant submanifold
of a Sasakian manifold of constant p—sectional curvature. This condition involves the
so-called horizontal curvatures of the submanifold.

Section 3 deals with three dimensional slant submanifolds having constant hori-
zontal curvature. We give a characterization of these slant submanifolds by means of
an algebraic property of the Ricci tensor. The main result shows that slant submani-
folds of constant horizontal curvature are locally homogeneous Riemannian manifolds
with respect to the induced metric.

We also remark that this study is motivated by the existence of examples. In fact,
it can be shown that the standard Sasakian space form R?"+! admits 3 dimensional
harmonic foliations whose leaves are all slant submanifolds with constant horizontal
curvature (see [10]).

1 Riemannian manifolds of quasi—constant
sectional curvatures

In this section we recall some fundamental facts about Riemannian manifolds of quasi
constant sectional curvatures (QC manifolds), which can be found in [5].

We denote by (M, g,&) a Riemannian manifold together with a globally defined
unit vector field. Let # C T, M be a plane with sectional curvature K(m). If §, is
orthogonal (resp. belongs) to m, K(7) is said to be horizontal (resp. vertical) and the
plane itself is called horizontal (resp. vertical).

(M, g,€) is called a Riemannian manifold of quasi constant sectional curvatures
(QC-manifold) if for all planes 7 C T, M, K(m) depends only on the point p and on
the angle v, between £, and «. In this case there exist differentiable functions a, b on
M such that for all p € M and m# C T, M:

(1.1) K () = a(p) + b(p) cos® .

Hence in a QC manifold, all horizontal (resp. vertical) sectional curvatures at the
same point p are equal to a(p) (resp. a(p) + b(p)).

Let T and Q be the tensor fields on M defined by
F(X.Y,Z,U) = g(X,Z2)g(Y,U) - g(Y,Z)g(X,U)
XY, ZU) = g, Un(X)n(Z) = g(X,U)n(Y)n(Z)
+ 9(X, Z)n(Y)n(U) — g(Y, Z)n(X)n(U).

The following result gives a useful characterization of QC—manifolds by means of the
curvature tensor:

Proposition 1.1 ([5]) (M,g,€) is a Riemannian manifold of quasi constant sec-
tional curvatures if and only if there exist functions a,b on M such that

(1.2) R =al + b9,

where R is the curvature tensor of (M,g).
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The functions a,b are those in formula (1.1). In particular, if (1.1) or (1.2) holds, it
follows that (M, g) has constant sectional curvature if and only if b = 0.

We say (M, g,€) has constant vertical curvature k € R, if for all p € M and
m C Tp,M vertical plane section, K(m) = k. Analogously we speak of manifolds
(M, g,&) with constant horizontal curvature.

The following proposition easily follows from (1.1):

Proposition 1.2 Suppose that (M, g,£) is a QC manifold and k € R. The following
properties are equivalent:

i) (M,g) has constant sectional curvature k.

i) (M, g,€) has constant horizontal curvature k and constant vertical curvature k.

Finally we denote by 7 the canonical 1 form defined by:

n(X) = g(X,§).

We recall that (see [5]), if (M, g,£) is a QC manifold with b # 0, such that dim (M) >
4, then for all X|Y € D we have

dn(X,Y) =0,
where D is the distribution orthogonal to &, given by

D, = {X € T,M[n(X) = 0}.

2 Three-dimensional slant submanifolds of
K-—contact manifolds

We start this section recalling some definitions. Let M be a manifold of dimension
2m + 1, m > 1, and A a nonzero real number. By a A-homotetic contact metric
structure on M we mean any almost contact metric structure (g, &,n, g) such that

dn =\
where @ is the associated fundamental 2—form defined by
B(X,Y) = g(X, V).

A ) homotetic Sasakian structure on M is a A homotetic contact metric structure
which is normal in the usual sense, that is:

[, @] +2dn ® & = 0.

Obviously if A = 1 these notions are exactly those of contact metric structure and
Sasakian structure. The following proposition holds (see the theorem at page 73 of

[2]):
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Proposition 1.1. A A-homotetic contact metric structure on M is A—homotetic
Sasakian if and only if

(Vxp)Y = Mg(X,Y)§ —n(Y)X}.

Now let N be a slant submanifold of odd dimension of an almost contact metric
manifold M with structure (¢, £, 7, g). Let ¥ be the slant angle of N in M. Supposing
that N is not anti-invariant, that is ¥ # 7, it is known (see [8]) that { is tangent to
N. Moreover N inherits an almost contact metric structure (@, &, 7, g) with

1

= cosy

where P is the tensor field of type (1,1) on N define by the decomposition
X = PX + FX

with PX (resp. FX) tangent (resp. normal) component of ¢X with respect to N,
for any vector field X tangent to IN. We remark that the tensor field Q = P? satisfies

(2.1) QX = cos®I(—X + n(X)E).

The following lemma is useful for the local study of 3—dimensional slant submanifolds:
Lemma 2.1. Let N be a 3 dimensional slant submanifold of an almost contact metric
manifold M. Suppose that N is not anti invariant. If p € N, then in a neighborhood
of p there ezist vector fields e1,es tangent to N, such that {£,e1,ex} is a local or-
thonormal frame satisfying

(2.2) Pe; = cosdes, Pes = — coste;.

Proof. Since N has dimension 3, ¢ is tangent to N. Hence by the Gram Schmidt
process one gets a local orthonormal frame

{g\U: €1, 62}
defined in a neighborhood U of p. Then the vector fields
1
€1 =€, €2 = cosﬂpel

have the required properties.

We denote by @ the fundamental 2-form of (p,€,n,g). If the structure of the
ambient manifold M is contact metric, then (cfr. [8], theorem 3.6)

dn = cos ¥,

hence N is a cos® homotetic contact metric manifold.

In the following we shall prove that if dim(N) = 3 and the ambient manifold is
K—contact, then (g, &,n,g) is a cos9-homotetic Sasakian structure.
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First of all we recall that supposing M is K—contact, then for any vector field X
tangent to N ([8], lemma 4.1):

(2.3) PX = ~ V¢,

where V is the Levi-Civita connection on N. Moreover the following theorem holds
Theorem 2.1. ([8]) Let N be an immersed submanifold of a K-contact manifold M

with structure (¢,€,n,9), and suppose that £ is tangent to N. Then if 9 € [0, g], the
following properties are equivalent:

a) N is slant in M with slant angle ¢

b) (N,g,&) has constant vertical curvature cos>d.

Now we prove
Theorem 2.2. Let N be a 8 dimensional slant submanifold of a K-contact manifold

M with structure (¢,€,n,9). Suppose that ¥ = sla(N) # g Then for any X,Y
vvector fields tangent to N

(2.4) (VxP)Y = cos®9{g(X,Y)¢ —n(Y)X}.

It follows that the cosv—homotetic contact metric structure induced on N is cosv—
homotetic Sasakian.

Proof. Let X,Y be vector fields tangent to N. Let p € N and {e;, e2} the orthonormal
frame on N defined in a neighborhood U of p, given by lemma 3.2. We shall prove
that the vector fields on the two sides of formula (2.4) coincide on U. Put &y = e,,

and let w{ be the structural 1 forms defined by
2 .
Vxe; = sz]'(X)ej'
j=0

Obviously

, w; =

Notice that by virtue of (2.3)
(VXP)ED = VXPGO — P(VXED) = QX
Moreover, using (2.2) we get

(VxP)ey = Vx(cosdes) — P(w?(X)e, +wi(X)ep +wi(X)es)
cosI(wd (X)e, + wy(X)er) + cosdwi (X)e; =
cosYw3 (X )ey

and analogously
(VxPey = — cosPw? (X )e.

Moreover, writing
YV =n(Y)e, + g(Y,er)er + (Y, e2)es

and using the formulas above it follows
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(2.5) (VxP)Y =n(Y)QX + {cos 9wy (X)g(Y,e1) — cos 9wl (X)g(Y, e2) }e,.
Finally, notice that by virtue of (2.3), we have

w)(X) = g(Vxes, &) = —g(e2, Vx&) = g(e2, PX)

and
w!(X) = gler, PX).

By substituting in (2.5), since P is skew symmetric we get

(VxP)Y = nY)QX + cosd{g(PX,ez)g(Y,e1) — g(PX,e1)g(Y,e2)}
= n(Y)QX + cos®¥{g(X,e1)g(Y, e1) + g(X, e2)g(Y, €2) }¢
= n(V)QX + cos®H{g(X,Y) —n(X)n(Y)}¢
= cos”H{—n(Y)X +n(Y)n(X)E+ g(X,Y)E = n(YV)n(X)¢

and (2.4) is proved.
Finally, for the induced structure (,&,1,9) on N, it follows that

(Vx@p)Y = cosd{g(X,Y)§ —n(Y)X}.

Hence by virtue of proposition 1.1 this structure is cos?¥ homotetic Sasakian.
Corollary 2.1. Every K contact structure on a three-dimensional manifold is Sasakian.
Proof. Let M be a K—contact manifold of dimension 3 with structure (¢, &,n, g).
It is obvious that the immersed submanifold (M,7), where i is the identity, is an
invariant submanifold of this K contact manifold. On the other hand, it is clear that
the induced structure (@,&,n,9) on M coincides with (p,&,n,g). By the theorem
above this structure must be 1 homotetic Sasakian, which means that it is Sasakian.

Theorem 2.2 will be used in order to study the intrinsic geometry of three-
dimensional slant submanifolds of K—contact manifolds. First we prove
Proposition 2.1. Let M be a A homotetic Sasakian manifold with structure (p,&,1,9).
Then (M, g,&) is a QC manifold if and only if either dim(M) = 3 or (M, g) has con-
stant sectional curvature.
Proof. Suppose that dim(M) = 3. For any point p of M, let D, be the orthogonal
complement of £, with respect to g.
We can define a function a : M — R as follows

Ype M alp) = K(D,).

We shall prove that for any plane @ C T, M the corresponding sectional curvature is
given by

(2.6) K(m) = a(p) + (A = a(p)) cos® ¢,

where 1), is the angle between &, and n. This implies that (M, g, &) is a QC—manifold.
Put

1 ‘
(2.7) W=, £ =16 gt = Ayg.
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Since the Levi—Civita connections of g and g* coincide, by using proposition 1.1 it is
easy to verify that (¢, &*,n*, g*) is a Sasakian structure on M.
Let m C T, M be a plane; then we have

(2.8) K(m) = N>K*(n),

where we denote by K*(m) the sectional curvature of = with respect to the metric g*.
Now fix a basis {X*,Y*} of 7 orthonormal with respect to g*. Notice that if the
vectors X*,Y* £* are linearly dependent then we have K*(7) = 1 hence K (7) = \?
and (2.6) is satisfied since obviously 1, = 0. Thus we can suppose that X*, Y* ¢ are
linearly independent so that we can write

X' =n"(X")¢ +aZ, Y =g"(Y")E + W

with a,8 € R and W, Z unit vectors orthogonal to &* with respect to g*. Observe
that being dim(M) = 3, Span{Z, W} coincides with the orthogonal complement of
& in T, M with respect to g*. On the other hand (2.7) obviously implies that this
orthogonal complement is D,,.

Moreover, the following formula holds (see [2] page 96)

(2.9) K (m) = 0" (X*)? + (V) + {1 = " (X*)? =" (V)" } K (Z, ).

Finally the vectors
X = \X7, Y = \Y*

make up an orthonormal basis of m with respect to g.
Hence by using (2.7), (2.8) formula (2.9) can be rewritten as

(210) KR = n(X)? 0¥ + {1 n(X)? 0 55K (Dy).
Since
cos® ¢r = n(X)* +1(Y)?

substituting in (2.10) we get

K(m) = 32 cos? s + (1 — cos® y)a(p)

3

which is exactly (2.6).

To prove the converse, suppose that (M, g, ) is a QC—manifold and that (M, g) has not
constant sectional curvature. We prove by contradiction that it must be dim(M) = 3.
Assume that dim(M) > 4. Then by virtue of the remarks at the end of section §1,
for all X,Y vector fields orthogonal to & we would have

dn(X,Y) =0

which is impossible, since A # 0.

Theorem 2.3. Let N be a non anti invariant slant submanifold of a K-contact man-
ifold M with structure (p,&,1,g). Let O be the slant angle of N in M.

Then (N, g,§) is a Riemannian manifold of quasi—constant sectional curvatures if and
only if either dim(N) = 3 or (N, g) has constant sectional curvature cos>s. Moreover
if dim(N) = 3, the following properties hold:
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I. For any p € N denote by fpl the orthogonal complement of &, in T,N and let
a: N — R the function given by

(2.11) a(p) = K(&™).

Then for any plane m C T,N:

(2.12) K () = a(p) + (cos®? — a(p)) cos® iy,
where Y, is the angle between &, and 7.

I1. The Ricci tensor of N has the following expression

(2.13) S(X,Y) = (a+ cos??)g(X,Y) + (cos®d — a)n(X)n(Y)

II1. The scalar curvature of N is given by
(2.14) r = 2a + 4cos1).

Proof. Supposed that NV has dimension 3, by virtue of theorem 2.2 the induced
structure (¢, £,n,9) on N is cos¥-homotetic Sasakian and this implies by virtue of
proposition 2.1 that (N, g,¢) is QC.

To prove the converse, suppose that (N, g,¢) is a QC—manifold. First notice that if
(N, g) has constant sectional curvature, then the constant sectional curvature must
be cos?¥ by virtue of theorem 2.1. If (IV, g) has not constant sectional curvature, we
prove by contradiction that dim (N) = 3. Assume that dim(N) > 4. As in the proof
of proposition 2.1, it would follow that

dn(X,Y) =0

for all vector fields tangent to N and orthogonal to £&. Hence, since the induced
structure (@, £,n,g) is cos? homotetic

cos¥P(X,Y) =0

which is absurd because N is not anti invariant. We conclude that dim(N) = 3.

Now assume dim(N) = 3. Formula (2.12) follows from (2.6) putting A = cos?. On
the other hand since N is a QC—manifold, (2.12) can also be obtained directly by the
general formula (1.1). In fact, notice that in the present case we have b = cos®9 — a
by virtue of theorem 3.3. Moreover using this expression for b, formula (2.1) gives for
the curvature tensor R of V:

R(X,Y,Z,U) = a{g(X,2)g9(Y,U) - g(Y,Z)g9(X,U)} +
+(cos®d — a){g(Y, U)n(X)n(Z) — g(X,U)n(Y)n(Z)
+9(X, Z)n(Y)n(U) — g(Y, Z)n(X)n(U)}.

In order to prove (2.13), let p € N and fix an orthonormal basis {&p, e1,e2} of T, N.
Let e, = &,. Then for all X, 7 € T,N we get
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2

ZR(X761'7 Z: ei)

i=0

Sp(X,Z)

= a) {9(X,Z)glei e;) — glei, Z)g(X. e)} +

=0

+(cos™) — a) Z{g(ei, e)n(Xn(Z) — g(X,ei)n(e)n(Z)
+9(X, Z)n(ei)* = g(es, Z)n(X)n(ei)}
= a{39(X,2) - g(X,2)} +
+(cos? — a){3n(X)n(Z) — n(X)n(Z) + (X, Z) — n(Z)n(X)}
= (a4 cos®?)g(X, Z) + (cos®d — a)n(X)n(Z)

and (2.13) is proved. (2.14) soon follows by the definition of scalar curvature:

2
r() = Y Spleier)
=0
2 2
= (cos®? + a) Z g(ei,e:) + (cos®? — a) Z n(ei)? = 2a + 4cosd.

i=0 i=0

Corollary 2.2. Let (N, g) a Riemannian manifold of dimension 3 and let 9 € [0, g]

Suppose that N admits two 9-slant isometric immersions into two K-contact mani-
folds My, My, whose characteristic vector fields &, & satisfy

9(61;62) =0.

Then N has constant sectional curvature cos>.

Proof. By the theorem just proved, (N, g,&;) and (N, g, &) are both QC manifolds.
In particular theorem 2.1 implies that they have both constant vertical curvature
cos?y. Now, if p € N, by the hypothesis, the plane orthogonal to §1, in T,N is a
vertical plane of (N,g,&), hence its sectional curvature is cos?d. This shows that
(N, g,&) has also constant horizontal curvature cos?d and the assertion follows from
proposition 1.2.

Remark. In all that follows if NV is a slant submanifold of dimension 3 of a K
contact manifold M, we denote by ff; the orthogonal complement of &, in T}, N, while
a denotes the function a : N — R defined by (2.11).

Moreover the expressions ‘slant submanifold’ and ‘slant immersion’ will always mean
‘non anti-invariant slant submanifold ’and * slant immersion with slant angle different
from —~ respectively.

Lemma 2.2. Let N be a slant submanifold of dimension 3 of a Sasakian manifold M
with constant p—sectional curvature k. For any p € N, the sectional curvature in M
of the plane fpl equals
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%{(k + 3) + 3cos?d(k — 1)}.

Proof. It is known that in a Sasakian manifold the following formula holds (cfr [2]
page 95):

K(X)Y) = 5{3(1 +cos()?H(X 4+ @Y) +3(1 —cos()?H(X — ¢Y)
~HX+Y)-H(X -Y)—-H(X) - H()+6sin’ ¢}

where {X,Y} are orthonormal tangent vectors in a point p € M, which are both
orthogonal to &y, ¢ € [0, 7] is the angle between X e @Y, and H(X) = K(X, ¢X).

Now let p a point of the slant submanifold IV and let X be a unit vector in f:-. Since
g(PX,PX) = —g(X,QX) = cos®d

it follows that, putting ¥ =

PX, we get an orthonormal basis {X,Y} of &,
cos ¢ P

Moreover notice that
1
X, oY)=¢g(X,PY)=¢g(X, —QX) = — 9.
9(X, 9Y) = g(X, PY) = g(X, —5QX) cos

By the above remark it follows that the sectional curvature of the plane fpl in the
ambient manifold M equals

1
5{3(1 —cos )k + 3(1 + cos¥)?k — 4k + 6(1 — cos?¥)}

that is .
Z{3k(1 + cos?d) — 2k + 3 — 3cos’V) }.

Theorem 2.4. Let M be a Sasakian manifold with constant p—sectional curvature k.
A necessary condition for a slant 3 dimensional submanifold N of M to be minimal
18

a< i{(k +3) 4 3cos?d(k — 1)}.

Proof. Suppose N is minimal and let p € N. Fix an orthonormal basis {,, €1, e2} of
T,N. By the above lemma and Gauss’ equation we have

(2.15) a(p) = %{(k +3) + 3cos?d(k — 1)} + g(aler, e1), ales, ex)) — ||a(er, e2)]|*.
On the other hand the minimality of N implies
a(ép, &) +aler,er) + ales,ex) = 0.
But since ¢ is Killing, «(,,&,) =0, hence we get
aler,e1) = —afea, e2).

Now formula (2.15) can be rewritten as



Three-Dimensional Slant Submanifolds of K Contact Manifolds 47

1
a(p) = 7{(k+3) + 3cos”I(k — 1)} — llafer, e)|” — [|aler, e2))?
and the assertion follows.

Remark. If M has constant ¢ sectional curvature k£ = —3, the necessary condition
for the minimality of a 3—dimensional slant submanifold becomes:

a < —3cos?d.

There exist examples of three-dimensional minimal slant submanifold of the Sasakian
space form R?"*! for which a = —3cos?d identically (see [10]).

On the other hand, when k£ = 1 the above condition becomes
a<1.

The standard 3-sphere S is an example of totally geodesic invariant submanifold of
the Sasakian space form S?"*1 satisfying a = 1.

3 Local homogeneity of slant submanifolds with
constant horizontal curvature

Let N be a non anti-invariant, 3—dimensional slant submanifold of a K—contact man-
ifold M with structure (p,&,n,9). According to the definition given in section 2, to
say that (NN, g,&) has constant horizontal curvature ¢ € R is equivalent to saying that
the function ¢ : N — R in theorem 2.3 is constant and equals c.

We shall prove that in this case N is a locally homogeneous Riemannian manifold
with respect to the induced metric.

We first prove some results about the Ricci tensor of V.

Proposition 3.1 Let N be a 8 dimensional slant submanifold of a K contact mani-
fold M with structure (p,&,1,9). The covariant derivative of the Ricci tensor S of N
is given by:

(VxS)(Y,2) = X(a)(9(Y,Z) —n(Y)n(Z)) +
+ cos¥(cos®V — a){®(X,Y)n(Z) + ®(X, Z)n(Y)},

where ® denotes the fundamental 2-form of the induced structure (p,€,m,9) on N.
In particular, if N has constant horizontal curvature ¢, we have

(VxS)(Y,Z) = cos¥(cos® — c){@(X,Y)n(Z) + ®(X, Z)n(Y)}.

Proof. By using (2.13) we get
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(VxS)(Y,Z)

VxS(Y,Z) = 8(VxY,Z) = S(V,VxZ)

= Vx((a+cos’9)g(Y, Z)) + Vx((cos®? — a)n(Y)n(Z))

— (a+cos’¥)g(VxY, Z) — (cos®d — a)y(VxY)n(Z)

— (a+cos*9)g(Y,VxZ) — (cos®d — a)n(Vx Z)n(Y)

= X(a)(g(Y,2) —n(Y)n(Z)) + (cos®? — a){Vx (n(Y)n(Z))
= 0(VxY)n(Z) —n(Vx Z)n(Y)

On the other hand

Vxm(Y)n(Z)) = (9(VxY, &)+ g(Y,VxE))n(Z) + (9(Vx Z,&) + g(Z, Vx&))n(Y)
hence
(VxS)(Y,2) = X(a)(g(Y,Z) —n(Y)n(Z))+
+(cos*? — a){g(Y,VxEn(Z) + g(Z, VxEn(Y)}.

Now recall that Vx¢& = 6)(5 —a(X,€) and pX = —6)(5, SO we write

9(Y,Vx€) = g(X,9Y) = g(X, PY) = cos 9g(X, oY) = cos ¥B(X,Y).

Substituting this formula in (*) we finally obtain
(VxS)(V,2) = X(a)(g(V,2) —n(V)n(2)) +
+ cos¥(cos’ — a){®(X,Y)n(Z) + ®(X, Z)n(Y)}
and this proves the assertion.

The following theorem characterizes slant submanifolds with constant horizontal
curvature by means of a remarkable property of S:

Theorem 3.1. Let N be a 3—dimensional slant submanifold of a K—contact manifold
M with structure (p,&,n,g9). The following properties are equivalent:

a) (N,g,&) has constant horizontal curvature
b) For all vector fields X tangent to N (VxS)(X,X) = 0, where S is the Ricci
tensor of N.

Proof. If N has constant horizontal curvature then b) follows immediately by propo-
sition 3.1. Vice-versa, suppose b) holds. A general result (see [1],page 432) insures that
any Riemannian manifold whose Ricci tensor satisfies b) must have constant scalar
curvature. In the present case, by virtue of (2.14) it follows that a is constant.
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Theorem 3.2. Any connected, 3—dimensional, non anti—invariant slant submanifold
N of a K-contact manifold M, with constant horizontal curvature, is a locally homo-
geneous Riemannian manifold with respect to the induced metric.

Proof. The proof is based on the theory of homogeneous structures on Riemannian
manifold developed by Tricerri and Vanhecke in [11]. In particular we shall prove that
N admits a homogeneous structure of type 73. This suffices to prove our assertion
by virtue of theorem 1.10 in [11]. On the other hand, since (V, g) is 3—dimensional,
connected and orientable, the problem of finding such a structure is equivalent to
finding a tensor field 7' in N of type (1,2) satisfying (see theorem 6.3 and the proof
of theorem 6.4 in [11]):

(3.2) (VxS)(Y,Z) = —S(TxY, Z) — S(Y,Tx Z)

(3.3) T =XV,\A € R.
In formula (3.2) T is thought as a tensor of type (0,3) in the usual way:
T(X,Y,Z) = g(TxY, Z)

while dV is the volume form with respect to a suitable orientation of V.

Now one easily sees that the orientation of NV can be chosen in such a way that
(3.1) vV (X,Y,&) = - (X,Y).
Hence we define a tensor 7' putting

T = cos¥dV.

By the above remarks, to prove the theorem we just need to show that this tensor
satisfies (3.2).

In fact, by virtue of (2.13) we have
S(TxY,Z) = (c+cos®g(TxY,Z)+ (cos’d — c)n(TxY)n(Z) =
= cos¥{(c+ cos’9)dV (X,Y, Z) + (cos®? — ¢)dV (X,Y, E)n(Z)}

S(Y,TxZ) = cos¥{(c+ cos®9)dV (X, Z,Y) + (cos’d — ¢)dV (X, Z,&)n(Y)}

hence
S(TxY,Z)+ S(Y,Tx Z) = cos¥(cos’d — c){dV (X,Y,E)n(Z) +dV (X, Z,&)n(Y)}
that is
S(TxY,Z)+ S(Y,TxZ) = — cos¥(cos’? — ¢){®(X,Y)n(Z) + (X, Z)n(Y)}

and the assertion follows by virtue of proposition 3.1.
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