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Abstra
tThe intrinsi
 geometry of 3{dimensional non anti{invariant slant submani-folds of K{
onta
t manifolds is studied. It is proved that these submanifolds areRiemannian manifolds of quasi 
onstant se
tional 
urvature. Moreover expli
itformulae are given for se
tional 
urvatures, Ri

i tensor, and s
alar 
urvatureof a slant submanifold. A ne
essary 
ondition is proved for the minimality of a3{dimensional slant submanifold of a Sasakian manifold of 
onstant '{se
tional
urvature. Finally it is proved that every 3{dimensional slant submanifold of aK-
onta
t manifold is lo
ally homogeneous provided it has 
onstant horizontal
urvature with respe
t to the indu
ed metri
.Mathemati
s Subje
t Classi�
ations: 53C25, 53C42, 53C30Key Words: slant submanifolds{
onta
t manifoldsIntrodu
tionLet M be an almost 
onta
t metri
 manifold with stru
ture ('; �; �; g) (our standardreferen
e for 
onta
t geometry is [2℄). By a slant submanifold of M , we mean animmersed submanifold N su
h that for any x 2 N and any X 2 TxN linearly inde-pendent on �, the angle between 'X and TxN is a 
onstant # 2 [0; �2 ℄, 
alled the slantangle of N in M and denoted by sla(N). General properties of slant submanifoldsa

ording to this de�nition are studied by the author in [8℄.The results given here apply to non anti{invariant three{dimensional slant sub-manifolds in K{
onta
t manifolds, that is 
onta
t metri
 manifolds whose 
hara
ter-isti
 ve
tor �eld is Killing (see [2℄). In parti
ular in se
tion 2 we study the intrinsi
geometry of a slant submanifold as a Riemannian manifold endowed with the indu
edmetri
. This is made using some fundamental properties of the so{
alled Riemannianmanifolds of quasi{
onstant se
tional 
urvatures (QC{manifolds),whi
h have beenstudied in [5℄. The results used here are re
alled in se
tion 1. Indeed, we prove thatany 3{dimensional slant submanifold of a K{
onta
t manifold is a QC{manifold withrespe
t to the indu
ed metri
. As a 
onsequen
e, we get expli
it formulae for these
tional 
urvatures, Ri

i tensor and s
alar 
urvature of a slant submanifold.Balkan Journal of Geometry and Its Appli
ations, Vol.3, No.1, 1998, pp. 37-51
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38 A.LottaMoreover, we �nd a ne
essary 
ondition for the minimality of a slant submanifoldof a Sasakian manifold of 
onstant '{se
tional 
urvature. This 
ondition involves theso-
alled horizontal 
urvatures of the submanifold.Se
tion 3 deals with three dimensional slant submanifolds having 
onstant hori-zontal 
urvature. We give a 
hara
terization of these slant submanifolds by means ofan algebrai
 property of the Ri

i tensor. The main result shows that slant submani-folds of 
onstant horizontal 
urvature are lo
ally homogeneous Riemannian manifoldswith respe
t to the indu
ed metri
.We also remark that this study is motivated by the existen
e of examples. In fa
t,it 
an be shown that the standard Sasakian spa
e form R2n+1 admits 3{dimensionalharmoni
 foliations whose leaves are all slant submanifolds with 
onstant horizontal
urvature (see [10℄).1 Riemannian manifolds of quasi{
onstantse
tional 
urvaturesIn this se
tion we re
all some fundamental fa
ts about Riemannian manifolds of quasi{
onstant se
tional 
urvatures (QC{manifolds), whi
h 
an be found in [5℄.We denote by (M; g; �) a Riemannian manifold together with a globally de�nedunit ve
tor �eld. Let � � TpM be a plane with se
tional 
urvature K(�). If �p isorthogonal (resp. belongs) to �, K(�) is said to be horizontal (resp. verti
al) and theplane itself is 
alled horizontal (resp. verti
al).(M; g; �) is 
alled a Riemannian manifold of quasi{
onstant se
tional 
urvatures(QC{manifold) if for all planes � � TpM , K(�) depends only on the point p and onthe angle  � between �p and �. In this 
ase there exist di�erentiable fun
tions a; b onM su
h that for all p 2M and � � TpM :(1:1) K(�) = a(p) + b(p) 
os2  �:Hen
e in a QC{manifold, all horizontal (resp. verti
al) se
tional 
urvatures at thesame point p are equal to a(p) (resp. a(p) + b(p)).Let � and 
 be the tensor �elds on M de�ned by�(X;Y; Z; U) = g(X;Z)g(Y; U)� g(Y; Z)g(X;U)
(X;Y; Z; U) = g(Y; U)�(X)�(Z)� g(X;U)�(Y )�(Z)+ g(X;Z)�(Y )�(U) � g(Y; Z)�(X)�(U):The following result gives a useful 
hara
terization of QC{manifolds by means of the
urvature tensor:Proposition 1.1 ([5℄) (M; g; �) is a Riemannian manifold of quasi{
onstant se
-tional 
urvatures if and only if there exist fun
tions a; b on M su
h that(1:2) R = a� + b
;where R is the 
urvature tensor of (M; g).



Three-Dimensional Slant Submanifolds of K{Conta
t Manifolds 39The fun
tions a; b are those in formula (1.1). In parti
ular, if (1.1) or (1.2) holds, itfollows that (M; g) has 
onstant se
tional 
urvature if and only if b = 0.We say (M; g; �) has 
onstant verti
al 
urvature k 2 R, if for all p 2 M and� � TpM verti
al plane se
tion, K(�) = k. Analogously we speak of manifolds(M; g; �) with 
onstant horizontal 
urvature.The following proposition easily follows from (1.1):Proposition 1.2 Suppose that (M; g; �) is a QC{manifold and k 2 R. The followingproperties are equivalent:i) (M; g) has 
onstant se
tional 
urvature k.ii) (M; g; �) has 
onstant horizontal 
urvature k and 
onstant verti
al 
urvature k.Finally we denote by � the 
anoni
al 1{form de�ned by:�(X) = g(X; �):We re
all that (see [5℄), if (M; g; �) is a QC{manifold with b 6= 0, su
h that dim(M) �4, then for all X;Y 2 D we have d�(X;Y ) = 0;where D is the distribution orthogonal to �, given byDp = fX 2 TpM j�(X) = 0g:2 Three-dimensional slant submanifolds ofK{
onta
t manifoldsWe start this se
tion re
alling some de�nitions. Let M be a manifold of dimension2m + 1, m � 1, and � a nonzero real number. By a �{homoteti
 
onta
t metri
stru
ture on M we mean any almost 
onta
t metri
 stru
ture ('; �; �; g) su
h thatd� = ��where � is the asso
iated fundamental 2{form de�ned by�(X;Y ) = g(X;'Y ):A �{homoteti
 Sasakian stru
ture on M is a �{homoteti
 
onta
t metri
 stru
turewhi
h is normal in the usual sense, that is:['; '℄ + 2d� 
 � = 0:Obviously if � = 1 these notions are exa
tly those of 
onta
t metri
 stru
ture andSasakian stru
ture. The following proposition holds (see the theorem at page 73 of[2℄):



40 A.LottaProposition 1.1. A �{homoteti
 
onta
t metri
 stru
ture on M is �{homoteti
Sasakian if and only if (rX')Y = �fg(X;Y )� � �(Y )Xg:Now let N be a slant submanifold of odd dimension of an almost 
onta
t metri
manifoldM with stru
ture ('; �; �; g). Let # be the slant angle of N in M . Supposingthat N is not anti{invariant, that is # 6= �2 , it is known (see [8℄) that � is tangent toN . Moreover N inherits an almost 
onta
t metri
 stru
ture ( �'; �; �; g) with�' = 1
os#P;where P is the tensor �eld of type (1,1) on N de�ne by the de
omposition'X = PX + FXwith PX (resp. FX) tangent (resp. normal) 
omponent of 'X with respe
t to N ,for any ve
tor �eld X tangent to N . We remark that the tensor �eld Q = P 2 satis�es(2:1) QX = 
os2#(�X + �(X)�):The following lemma is useful for the lo
al study of 3{dimensional slant submanifolds:Lemma 2.1. Let N be a 3{dimensional slant submanifold of an almost 
onta
t metri
manifold M . Suppose that N is not anti{invariant. If p 2 N , then in a neighborhoodof p there exist ve
tor �elds e1; e2 tangent to N , su
h that f�; e1; e2g is a lo
al or-thonormal frame satisfying(2:2) Pe1 = 
os#e2; P e2 = � 
os#e1:Proof. Sin
e N has dimension 3, � is tangent to N . Hen
e by the Gram{S
hmidtpro
ess one gets a lo
al orthonormal framef�jU ; �1; �2gde�ned in a neighborhood U of p. Then the ve
tor �eldse1 = �1; e2 = 1
os#Pe1have the required properties.We denote by �� the fundamental 2{form of ( �'; �; �; g). If the stru
ture of theambient manifold M is 
onta
t metri
, then (
fr. [8℄, theorem 3.6)d� = 
os#��;hen
e N is a 
os#{homoteti
 
onta
t metri
 manifold.In the following we shall prove that if dim(N) = 3 and the ambient manifold isK{
onta
t, then ( �'; �; �; g) is a 
os#{homoteti
 Sasakian stru
ture.



Three-Dimensional Slant Submanifolds of K{Conta
t Manifolds 41First of all we re
all that supposing M is K{
onta
t, then for any ve
tor �eld Xtangent to N ([8℄, lemma 4.1):(2:3) PX = �rX�;where r is the Levi{Civita 
onne
tion on N . Moreover the following theorem holdsTheorem 2.1. ([8℄) Let N be an immersed submanifold of a K-
onta
t manifold Mwith stru
ture ('; �; �; g), and suppose that � is tangent to N . Then if # 2 [0; �2 ℄, thefollowing properties are equivalent:a) N is slant in M with slant angle #b) (N; g; �) has 
onstant verti
al 
urvature 
os2#.Now we proveTheorem 2.2. Let N be a 3{dimensional slant submanifold of a K-
onta
t manifoldM with stru
ture ('; �; �; g). Suppose that # = sla(N) 6= �2 . Then for any X;Yvve
tor �elds tangent to N(2:4) (rXP )Y = 
os2#fg(X;Y )� � �(Y )Xg:It follows that the 
os#{homoteti
 
onta
t metri
 stru
ture indu
ed on N is 
os#{homoteti
 Sasakian.Proof. LetX;Y be ve
tor �elds tangent toN . Let p 2 N and fe1; e2g the orthonormalframe on N de�ned in a neighborhood U of p, given by lemma 3.2. We shall provethat the ve
tor �elds on the two sides of formula (2.4) 
oin
ide on U . Put �jU = eo,and let wji be the stru
tural 1{forms de�ned byrXei = 2Xj=0 wji (X)ej :Obviously wij = �wji ; wii = 0:Noti
e that by virtue of (2.3)(rXP )eo = rXPeo � P (rXeo) = QX:Moreover, using (2.2) we get(rXP )e1 = rX(
os#e2)� P (w01(X)eo + w11(X)e1 + w21(X)e2)= 
os#(w02(X)eo + w12(X)e1) + 
os#w21(X)e1 == 
os#w02(X)e0and analogously (rXP )e2 = � 
os#w01(X)e0:Moreover, writing Y = �(Y )eo + g(Y; e1)e1 + g(Y; e2)e2and using the formulas above it follows



42 A.Lotta(2:5) (rXP )Y = �(Y )QX + f
os#w02(X)g(Y; e1)� 
os#w01(X)g(Y; e2)geo:Finally, noti
e that by virtue of (2.3), we havew02(X) = g(rXe2; �) = �g(e2;rX�) = g(e2; PX)and w01(X) = g(e1; PX):By substituting in (2.5), sin
e P is skew{symmetri
 we get(rXP )Y = �(Y )QX + 
os#fg(PX; e2)g(Y; e1)� g(PX; e1)g(Y; e2)g�= �(Y )QX + 
os2#fg(X; e1)g(Y; e1) + g(X; e2)g(Y; e2)g�= �(Y )QX + 
os2#fg(X;Y )� �(X)�(Y )g�= 
os2#f��(Y )X + �(Y )�(X)� + g(X;Y )� � �(Y )�(X)�and (2.4) is proved.Finally, for the indu
ed stru
ture ( �'; �; �; g) on N , it follows that(rX �')Y = 
os#fg(X;Y )� � �(Y )Xg:Hen
e by virtue of proposition 1.1 this stru
ture is 
os#{homoteti
 Sasakian.Corollary 2.1. Every K{
onta
t stru
ture on a three-dimensional manifold is Sasakian.Proof. Let M be a K{
onta
t manifold of dimension 3 with stru
ture ('; �; �; g).It is obvious that the immersed submanifold (M; i), where i is the identity, is aninvariant submanifold of this K{
onta
t manifold. On the other hand, it is 
lear thatthe indu
ed stru
ture ( �'; �; �; g) on M 
oin
ides with ('; �; �; g). By the theoremabove this stru
ture must be 1{homoteti
 Sasakian, whi
h means that it is Sasakian.Theorem 2.2 will be used in order to study the intrinsi
 geometry of three-dimensional slant submanifolds of K{
onta
t manifolds. First we proveProposition 2.1. LetM be a �{homoteti
 Sasakian manifold with stru
ture ('; �; �; g).Then (M; g; �) is a QC{manifold if and only if either dim(M) = 3 or (M; g) has 
on-stant se
tional 
urvature.Proof. Suppose that dim(M) = 3. For any point p of M , let Dp be the orthogonal
omplement of �p with respe
t to g.We 
an de�ne a fun
tion a :M �! R as follows8p 2M a(p) = K(Dp):We shall prove that for any plane � � TpM the 
orresponding se
tional 
urvature isgiven by(2:6) K(�) = a(p) + (�2 � a(p)) 
os2  �;where  � is the angle between �p and �. This implies that (M; g; �) is a QC{manifold.Put(2:7) �? = ��; �? = 1��; g? = �2g:



Three-Dimensional Slant Submanifolds of K{Conta
t Manifolds 43Sin
e the Levi{Civita 
onne
tions of g and g? 
oin
ide, by using proposition 1.1 it iseasy to verify that ('; �?; �?; g?) is a Sasakian stru
ture on M .Let � � TpM be a plane; then we have(2:8) K(�) = �2K?(�);where we denote by K?(�) the se
tional 
urvature of � with respe
t to the metri
 g?.Now �x a basis fX?; Y ?g of � orthonormal with respe
t to g?. Noti
e that if theve
tors X?; Y ?; �? are linearly dependent then we have K?(�) = 1 hen
e K(�) = �2and (2.6) is satis�ed sin
e obviously  � = 0. Thus we 
an suppose that X?; Y ?; � arelinearly independent so that we 
an writeX? = �?(X?)�? + �Z; Y ? = �?(Y ?)�? + �Wwith �; � 2 R and W;Z unit ve
tors orthogonal to �? with respe
t to g?. Observethat being dim(M) = 3, SpanfZ;Wg 
oin
ides with the orthogonal 
omplement of�? in TpM with respe
t to g?. On the other hand (2.7) obviously implies that thisorthogonal 
omplement is Dp.Moreover, the following formula holds (see [2℄ page 96)(2:9) K?(�) = �?(X?)2 + �?(Y ?)2 + f1� �?(X?)2 � �?(Y ?)2gK?(Z;W ):Finally the ve
tors X = �X?; Y = �Y ?make up an orthonormal basis of � with respe
t to g.Hen
e by using (2.7), (2.8) formula (2.9) 
an be rewritten as(2:10) 1�2K(�) = �(X)2 + �(Y )2 + f1� �(X)2 � �(Y )2g 1�2K(Dp):Sin
e 
os2  � = �(X)2 + �(Y )2substituting in (2.10) we getK(�) = �2 
os2  � + (1� 
os2  �)a(p);whi
h is exa
tly (2.6).To prove the 
onverse, suppose that (M; g; �) is a QC{manifold and that (M; g) has not
onstant se
tional 
urvature. We prove by 
ontradi
tion that it must be dim(M) = 3.Assume that dim(M) � 4. Then by virtue of the remarks at the end of se
tion x1,for all X;Y ve
tor �elds orthogonal to � we would haved�(X;Y ) = 0whi
h is impossible, sin
e � 6= 0:Theorem 2.3. Let N be a non anti{invariant slant submanifold of a K-
onta
t man-ifold M with stru
ture ('; �; �; g). Let # be the slant angle of N in M .Then (N; g; �) is a Riemannian manifold of quasi{
onstant se
tional 
urvatures if andonly if either dim(N) = 3 or (N; g) has 
onstant se
tional 
urvature 
os2#. Moreoverif dim(N) = 3, the following properties hold:



44 A.LottaI. For any p 2 N denote by �p? the orthogonal 
omplement of �p in TpN and leta : N �! R the fun
tion given by(2:11) a(p) = K(�p?):Then for any plane � � TpN :(2:12) K(�) = a(p) + (
os2#� a(p)) 
os2  �;where  � is the angle between �p and �.II. The Ri

i tensor of N has the following expression(2:13) S(X;Y ) = (a+ 
os2#)g(X;Y ) + (
os2#� a)�(X)�(Y )III. The s
alar 
urvature of N is given by(2:14) r = 2a+ 4
os2#:Proof. Supposed that N has dimension 3, by virtue of theorem 2.2 the indu
edstru
ture ( �'; �; �; g) on N is 
os#{homoteti
 Sasakian and this implies by virtue ofproposition 2.1 that (N; g; �) is QC.To prove the 
onverse, suppose that (N; g; �) is a QC{manifold. First noti
e that if(N; g) has 
onstant se
tional 
urvature, then the 
onstant se
tional 
urvature mustbe 
os2# by virtue of theorem 2.1. If (N; g) has not 
onstant se
tional 
urvature, weprove by 
ontradi
tion that dim (N) = 3: Assume that dim(N) � 4. As in the proofof proposition 2.1, it would follow thatd�(X;Y ) = 0for all ve
tor �elds tangent to N and orthogonal to �. Hen
e, sin
e the indu
edstru
ture ( �'; �; �; g) is 
os#{homoteti

os#��(X;Y ) = 0whi
h is absurd be
ause N is not anti{invariant. We 
on
lude that dim(N) = 3.Now assume dim(N) = 3. Formula (2.12) follows from (2.6) putting � = 
os#. Onthe other hand sin
e N is a QC{manifold, (2.12) 
an also be obtained dire
tly by thegeneral formula (1.1). In fa
t, noti
e that in the present 
ase we have b = 
os2# � aby virtue of theorem 3.3. Moreover using this expression for b, formula (2.1) gives forthe 
urvature tensor R of N :R(X;Y; Z; U) = afg(X;Z)g(Y; U)� g(Y; Z)g(X;U)g++(
os2#� a)fg(Y; U)�(X)�(Z)� g(X;U)�(Y )�(Z)+g(X;Z)�(Y )�(U)� g(Y; Z)�(X)�(U)g:In order to prove (2.13), let p 2 N and �x an orthonormal basis f�p; e1; e2g of TpN .Let eo = �p. Then for all X;Z 2 TpN we get
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t Manifolds 45Sp(X;Z) = 2Xi=0 R(X; ei; Z; ei)= a 2Xi=0fg(X;Z)g(ei; ei)� g(ei; Z)g(X; ei)g++(
os2#� a) 2Xi=0fg(ei; ei)�(X)�(Z) � g(X; ei)�(ei)�(Z)+g(X;Z)�(ei)2 � g(ei; Z)�(X)�(ei)g= af3g(X;Z)� g(X;Z)g++(
os2#� a)f3�(X)�(Z)� �(X)�(Z) + g(X;Z)� �(Z)�(X)g= (a+ 
os2#)g(X;Z) + (
os2#� a)�(X)�(Z)and (2.13) is proved. (2.14) soon follows by the de�nition of s
alar 
urvature:r(p) = 2Xi=0 Sp(ei; ei)= (
os2#+ a) 2Xi=0 g(ei; ei) + (
os2#� a) 2Xi=0 �(ei)2 = 2a+ 4
os2#:Corollary 2.2. Let (N; g) a Riemannian manifold of dimension 3 and let # 2 [0; �2 ℄.Suppose that N admits two #{slant isometri
 immersions into two K-
onta
t mani-folds M1, M2, whose 
hara
teristi
 ve
tor �elds �1, �2 satisfyg(�1; �2) = 0:Then N has 
onstant se
tional 
urvature 
os2#.Proof. By the theorem just proved, (N; g; �1) and (N; g; �2) are both QC{manifolds.In parti
ular theorem 2.1 implies that they have both 
onstant verti
al 
urvature
os2#. Now, if p 2 N , by the hypothesis, the plane orthogonal to �1p in TpN is averti
al plane of (N; g; �2), hen
e its se
tional 
urvature is 
os2#. This shows that(N; g; �1) has also 
onstant horizontal 
urvature 
os2# and the assertion follows fromproposition 1.2.Remark. In all that follows if N is a slant submanifold of dimension 3 of a K{
onta
t manifoldM , we denote by �?p the orthogonal 
omplement of �p in TpN , whilea denotes the fun
tion a : N �! R de�ned by (2.11).Moreover the expressions `slant submanifold' and `slant immersion' will always mean`non anti{invariant slant submanifold 'and ` slant immersion with slant angle di�erentfrom �2 ' respe
tively.Lemma 2.2. Let N be a slant submanifold of dimension 3 of a Sasakian manifold Mwith 
onstant '{se
tional 
urvature k. For any p 2 N , the se
tional 
urvature in Mof the plane �p? equals



46 A.Lotta14f(k + 3) + 3
os2#(k � 1)g:Proof. It is known that in a Sasakian manifold the following formula holds (
fr [2℄page 95):K(X;Y ) = 18f3(1 + 
os �)2H(X + 'Y ) + 3(1� 
os �)2H(X � 'Y )�H(X + Y )�H(X � Y )�H(X)�H(Y ) + 6 sin2 �gwhere fX;Y g are orthonormal tangent ve
tors in a point p 2 M , whi
h are bothorthogonal to �p, � 2 [0; �℄ is the angle between X e 'Y , and H(X) = K(X;'X).Now let p a point of the slant submanifold N and let X be a unit ve
tor in �?p . Sin
eg(PX;PX) = �g(X;QX) = 
os2#it follows that, putting Y = 1
os#PX , we get an orthonormal basis fX;Y g of �?p .Moreover noti
e thatg(X;'Y ) = g(X;PY ) = g(X; 1
os#QX) = � 
os#:By the above remark it follows that the se
tional 
urvature of the plane �p? in theambient manifold M equals18f3(1� 
os#)2k + 3(1 + 
os#)2k � 4k + 6(1� 
os2#)gthat is 14f3k(1 + 
os2#)� 2k + 3� 3
os2#)g:Theorem 2.4. Let M be a Sasakian manifold with 
onstant '{se
tional 
urvature k.A ne
essary 
ondition for a slant 3{dimensional submanifold N of M to be minimalis a � 14f(k + 3) + 3
os2#(k � 1)g:Proof. Suppose N is minimal and let p 2 N . Fix an orthonormal basis f�p; e1; e2g ofTpN . By the above lemma and Gauss' equation we have(2:15) a(p) = 14f(k + 3) + 3
os2#(k � 1)g+ g(�(e1; e1); �(e2; e2))� k�(e1; e2)k2:On the other hand the minimality of N implies�(�p; �p) + �(e1; e1) + �(e2; e2) = 0:But sin
e � is Killing, �(�p; �p) = 0, hen
e we get�(e1; e1) = ��(e2; e2):Now formula (2.15) 
an be rewritten as



Three-Dimensional Slant Submanifolds of K{Conta
t Manifolds 47a(p) = 14f(k + 3) + 3
os2#(k � 1)g � k�(e1; e1)k2 � k�(e1; e2)k2and the assertion follows.Remark. If M has 
onstant '{se
tional 
urvature k = �3, the ne
essary 
onditionfor the minimality of a 3{dimensional slant submanifold be
omes:a � �3
os2#:There exist examples of three-dimensional minimal slant submanifold of the Sasakianspa
e form R2n+1, for whi
h a = �3
os2# identi
ally (see [10℄).On the other hand, when k = 1 the above 
ondition be
omesa � 1:The standard 3{sphere S3 is an example of totally geodesi
 invariant submanifold ofthe Sasakian spa
e form S2n+1, satisfying a = 1.3 Lo
al homogeneity of slant submanifolds with
onstant horizontal 
urvatureLet N be a non anti{invariant, 3{dimensional slant submanifold of a K{
onta
t man-ifold M with stru
ture ('; �; �; g). A

ording to the de�nition given in se
tion 2, tosay that (N; g; �) has 
onstant horizontal 
urvature 
 2 R is equivalent to saying thatthe fun
tion a : N �! R in theorem 2.3 is 
onstant and equals 
.We shall prove that in this 
ase N is a lo
ally homogeneous Riemannian manifoldwith respe
t to the indu
ed metri
.We �rst prove some results about the Ri

i tensor of N .Proposition 3.1 Let N be a 3{dimensional slant submanifold of a K{
onta
t mani-fold M with stru
ture ('; �; �; g). The 
ovariant derivative of the Ri

i tensor S of Nis given by:(rXS)(Y; Z) = X(a)(g(Y; Z)� �(Y )�(Z)) ++
os#(
os2#� a)f��(X;Y )�(Z) + ��(X;Z)�(Y )g;where �� denotes the fundamental 2{form of the indu
ed stru
ture ( �'; �; �; g) on N .In parti
ular, if N has 
onstant horizontal 
urvature 
, we have(rXS)(Y; Z) = 
os#(
os2#� 
)f��(X;Y )�(Z) + ��(X;Z)�(Y )g:Proof. By using (2.13) we get



48 A.Lotta(rXS)(Y; Z) = rXS(Y; Z)� S(rXY; Z)� S(Y;rXZ)= rX((a+ 
os2#)g(Y; Z)) +rX ((
os2#� a)�(Y )�(Z))� (a+ 
os2#)g(rXY; Z)� (
os2#� a)�(rXY )�(Z)� (a+ 
os2#)g(Y;rXZ)� (
os2#� a)�(rXZ)�(Y )= X(a)(g(Y; Z)� �(Y )�(Z)) + (
os2#� a)frX(�(Y )�(Z))� �(rXY )�(Z)� �(rXZ)�(Y )On the other handrX(�(Y )�(Z)) = (g(rXY; �) + g(Y;rX�))�(Z) + (g(rXZ; �) + g(Z;rX�))�(Y )hen
e(�) (rXS)(Y; Z) = X(a)(g(Y; Z)� �(Y )�(Z))++(
os2#� a)fg(Y;rX�)�(Z) + g(Z;rX�)�(Y )g:Now re
all that rX� = erX� � �(X; �) and 'X = �erX�, so we writeg(Y;rX�) = g(X;'Y ) = g(X;PY ) = 
os#g(X; �'Y ) = 
os#��(X;Y ):Substituting this formula in (*) we �nally obtain(rXS)(Y; Z) = X(a)(g(Y; Z)� �(Y )�(Z)) ++
os#(
os2#� a)f��(X;Y )�(Z) + ��(X;Z)�(Y )gand this proves the assertion.The following theorem 
hara
terizes slant submanifolds with 
onstant horizontal
urvature by means of a remarkable property of S:Theorem 3.1. Let N be a 3{dimensional slant submanifold of a K{
onta
t manifoldM with stru
ture ('; �; �; g). The following properties are equivalent:a) (N; g; �) has 
onstant horizontal 
urvatureb) For all ve
tor �elds X tangent to N (rXS)(X;X) = 0, where S is the Ri

itensor of N .Proof. If N has 
onstant horizontal 
urvature then b) follows immediately by propo-sition 3.1. Vi
e-versa, suppose b) holds. A general result (see [1℄,page 432) insures thatany Riemannian manifold whose Ri

i tensor satis�es b) must have 
onstant s
alar
urvature. In the present 
ase, by virtue of (2.14) it follows that a is 
onstant.
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t Manifolds 49Theorem 3.2. Any 
onne
ted, 3{dimensional, non anti{invariant slant submanifoldN of a K{
onta
t manifold M , with 
onstant horizontal 
urvature, is a lo
ally homo-geneous Riemannian manifold with respe
t to the indu
ed metri
.Proof. The proof is based on the theory of homogeneous stru
tures on Riemannianmanifold developed by Tri
erri and Vanhe
ke in [11℄. In parti
ular we shall prove thatN admits a homogeneous stru
ture of type T3. This suÆ
es to prove our assertionby virtue of theorem 1.10 in [11℄. On the other hand, sin
e (N; g) is 3{dimensional,
onne
ted and orientable, the problem of �nding su
h a stru
ture is equivalent to�nding a tensor �eld T in N of type (1,2) satisfying (see theorem 6.3 and the proofof theorem 6.4 in [11℄):(3:2) (rXS)(Y; Z) = �S(TXY; Z)� S(Y; TXZ)(3:3) T = �dV; � 2 R:In formula (3.2) T is thought as a tensor of type (0,3) in the usual way:T (X;Y; Z) = g(TXY; Z)while dV is the volume form with respe
t to a suitable orientation of N .Now one easily sees that the orientation of N 
an be 
hosen in su
h a way that(3:1) dV (X;Y; �) = �� (X;Y ):Hen
e we de�ne a tensor T putting T = 
os#dV:By the above remarks, to prove the theorem we just need to show that this tensorsatis�es (3.2).In fa
t, by virtue of (2.13) we haveS(TXY; Z) = (
+ 
os2#)g(TXY; Z) + (
os2#� 
)�(TXY )�(Z) == 
os#f(
+ 
os2#)dV (X;Y; Z) + (
os2#� 
)dV (X;Y; �)�(Z)gS(Y; TXZ) = 
os#f(
+ 
os2#)dV (X;Z; Y ) + (
os2#� 
)dV (X;Z; �)�(Y )ghen
eS(TXY; Z) + S(Y; TXZ) = 
os#(
os2#� 
)fdV (X;Y; �)�(Z) + dV (X;Z; �)�(Y )gthat isS(TXY; Z) + S(Y; TXZ) = � 
os#(
os2#� 
)f��(X;Y )�(Z) + ��(X;Z)�(Y )gand the assertion follows by virtue of proposition 3.1.
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