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Abstract

We complete the classification of 5-dimensional locally symmetric contact
metric manifolds stated by D. Blair and J.M. Sierra. Furthermore, in general
dimension we prove the existence of a foliation with totally geodesic leaves locally
isometric to a Riemannian product E™T' x S™(4).
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Introduction

In [6], Z. Olszak proved that for dimensions 2n 4+ 1 > 5 there are not contact metric
manifolds of constant curvature unless the constant is 1 and in this case the structure
is Sasakian. On the other hand, in [7], S. Tanno proved that a locally symmetric K-
contact manifold is of constant curvature. Motivated by these results, D. Blair and
J.M. Sierra proposed the question of classifying locally symmetric contact manifolds,
and in [5] they studied the 5-dimensional case, proving the following theorem.
Theorem. Let M be a complete 5-dimensional locally symmetric contact metric man-
ifold. Then the simply-connected covering space is either S°(1) or E® x S%(4) or
H?(ky) x H?(ko) x R , where H?(k;) i = 1,2 is the hyperbolic plane with constant
negative curvature k;.

However, whereas S°(1) and E® x S?(4) admit such a structure ([2], [3]), the prob-
lem of the existence in the third case remained still open. We recall also that the
3-dimensional case has been studied in [4] by Blair and Sharma who proved that a
3-dimensional locally symmetric contact metric manifold is of constant curvature +1
or 0.

In this paper we prove that the third possibility in the theorem of Blair and Sierra
has to be removed . Moreover, in the general case, we prove that a locally symmetric
contact metric manifold M?"*! 2n 4+ 1 > 5, admits a foliation whose leaves are
totally geodesic and locally isometric to the Riemannian product E™+! x S™(4), for
a suitable m.
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1 Preliminaries

We recall some results on contact metric manifolds and for more details we refer to
(11,131, [5]

A contact metric manifold M?"*! is a C°-manifold with a global 1-form 7 such
that A (dn)™ # 0. It is well known that there exists a unique vector field & on M27+!
satisfying n(¢) = 1 and dn(¢, X) = 0. A manifold M?"*! is said to be a contact metric
manifold if it admits a contact metric structure (¢, &, 1, g), where ¢ is a tensor field
of type (1,1) and g is an associated metric such that

= —T+n®E  g(X,8)=nX), dn(X,Y)=g(X,pY)).
Denoting by L the Lie-derivation operator, the tensor field h = %Lg(p is a symmetric
operator which anticommutes with . Obviously, h(§) = 0 and if A is an eigenvalue
of h with eigenvector X, then —\ is an eigenvalue with eigenvector ¢(X) . Moreover,
we have h = 0 if and only if ¢ is a Killing vector field and in this case M?"+! is called
a K-manifold.

We have the following formulas, for any vector field X on M?"+!:

(1) Vx&=—p(X) — ph(X)
(2) é(Rgxf — @Rey(x)€) = B2 (X) + ¢*(X)
(3) (Veh)(X) = o(X) — h*¢(X) — R xe&,

where V is the Levi-Civita connection and R its curvature tensor field, [5].
Furthermore, in [2], the following theorem is proved.

Theorem B. Let M2 be a contact metric manifold and suppose that

R(X,Y)¢ = 0 for all vector fields X and Y. Then M?"+1 is locally the product of a
flat (n + 1)-dimensional manifold and an n-dimensional manifold of positive constant
curvature 4.

Finally, supposing that M?2"*! is a locally symmetric contact metric manifold we
have V¢h = 0, [3]. Consequently, (3) gives
(4) Rex& = —X +n(X)¢+ h*(X)

and the following formulas hold for all orthogonal to £ unit eigenvectors X,Y of h
with eigenvalues A, u respectively, ([5] lemma 3.3):

(W = p?)g(Vex X,Y) = (1= N[ - Ng(VxeX,Y)

5
(5) —229(Vy X, 0X) + (1+ p)g(Vx X, ¢Y)]

(Y)(N?) =2(Xp)(1 - p)g(eY, X) +2(1 - p?)g(VxeY, X)
(6) +2(1= A= p+A)g(VxY,pX)
+4A(1 — p)g(Vy X, 9 X)
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2 The five-dimensional case

Let M? be a locally symmetric contact metric manifold. If the tensor field h vanishes,
then M® is a K-manifold of constant curvature +1 and it is realized by S°(1) with
the standard Sasakian structure, [6], [7].

Now, suppose that h # 0. As discussed in section 4 of [5] , for any p € M® there
exists a unit vector X € T},(M?) such that g(X,£) = 0 and Rx¢€ = 0. Using (4), we
have

(7) hA(X) = X =0

and since h(§) = 0, the spectrum of the operator h is given by {0, A, =\, u, —pu}. We
suppose A > 0, p > 0 and we denote by {, e, e2, €3, e4} the set of the corresponding
eigenvectors. Writing X = 2?21 X'e;, and applying (7) we obtain that at least one
of A or p must be 1, say u. Moreover, ¢(e1) = es , p(e3) = e4 and the eigenvalues are
constant along their eigenvectors.

Blair and Sierra distingueshed three cases:

HA=1;
i) A=0;
i) A # 0, 1.

In their proof the first case implies that M?® is locally isometric to the Riemannian
product E3 x S§%(4) via theorem B, the second one leeds to an empty class and the
third one implies the local isometry of M® with H2(k;) x H?(ky) x R.

Now, we shall prove that the third possibility has to be excluded, obtaining the
following classification theorem.

Theorem 1 Let M be a complete 5-dimensional locally symmetric contact metric
manifold. Then the simply-connected covering space is either S°(1) or E3 x S%(4).

Proof. Let us suppose A # 0,1. In this hypothesis, Blair and Sierra proved the
following results:

a) The distribution [+1] @[—1] B[£] is integrable with flat totally geodesic leaves.
Here, [+1] and [—1] denote respectively the eigenspaces related to the eigenvalues +1
and —1 and [£] is the distribution spanned by &.

b) The Levi-Civita connection satisfies the following relations:
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Ve=0 Ve, =0
Ve, e1 = —pies Ve ea = —yies —yieq + (1 + A)E
Veez = Brer +7iea Ve, e =mien

Ve, 6 =(-1-XNea  Ve,e = —fhes — faesg — (1 - A)E

Ve,02 = —73e3 Ve, €3 = fBher + ypea
Ve e4 = fBae1 Ve, =(1—MNey
Ve,€1 = azes Ve,e2 = —azeq
Ve,e3 =0 Ve,e4 =2
vegf = —2ey,
1- ) ,

where 3, = T Aaz ==y, &(az) =0.

) Ree,§=—((1+ M)+ (1-A)B1)es.
d) The eigenvalue A must be a non costant function, and () = 0, e4(A) = 0.

First at all, we deduce some other formulas. Taking Y = e; and X = ¢;,i = 1,2
in (6) we get
_63(A2) = 4(1 - A)g(vm €4, 62) + 8)‘g(v64617 62)

Then, using b), we obtain —e3(\?) = 4(1 — \)y; and

Q es() = 21

Now, condition d) implies 71 # 0 and applying the first Bianchi identity to e, es, &
and using Re,¢ = 0 we obtain:

(9) 271 +es(\) + (1+ ) (B —12) =0

Again, using R.,¢ = 0 and c) we find:

1-A
1 A 1
(10) V2 1+)\61
and substituing (8) , (10) in (9) , we get
1
|
B = /\’71-
Finally, by direct computation, we have
. 1-2)?2 . .
(1) I(Reseser, ) = =00 = Ty 1

AQ
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Now, we suppose that M® = H2(k;) x H?(ky) x R and recall that a) holds.
Obviously, ¢ has non zero component tangent to H2(k;) x H?(ks) , otherwise we have
Rxy&=0forall X,Y and A = 1. Moreover, since the foliation spanned by {es, e4, £}
induces foliations by geodesics on each H?(k;), we can consider (f, fo) orthonormal
vectors tangent to H2(k;) , and (f3, f4) orthonormal vectors tangent to H?(ks) such
that {fa, fa, f5} span the distribution [+1] @[—1] PIE]. It follows that e; and e be-
long to the span{fi, f3} and, since the sectional curvature K({fi, f3}) = 0, we have
K({e1,e2}) =0 and (11) implies

(1-N?
(12) L= =)+ —5—n)* >0
On the other hand, writing & = afs + bfs + cfs and using (4) we obtain Ry, ¢ =
(1 — A*)fi whereas using the sectional curvature, we get Ry ¢& = a’ki so that

1 7A2 = a2k1.

We conclude that 1 — A* < 0, contradicting (12).

3 Some results in the higher dimensional case

Let M?"*! be a locally symmetric contact metric manifold and suppose that h # 0.
Arguing as at the beginning of section 2, we consider the set

{0,+1,—1,A1,_A17-- -7AT7_A’I’}

of the distinct eigenvalues of h such that dim[0] = p + 1,dim[+1] = m,dim[\] =
mi,...,dim[A] =m, and 2n+1=p+ 14+ 2m+2m;y + ...+ 2m,.

Here [A] denotes the eigenspace corresponding to the eigenvalue A.

Theorem 2 Let M2"+t! 2n + 1 > 5, be a locally symmetric contact metric manifold
and suppose that the spectrum of h is given by the set {0,+1,—1} with +1 and —1
as eigenvalues of multiplicity n and 0 as simple eigenvalue. Then M>*"+1 is locally
isometric to the Riemannian product E"T' x S"(4).

Proof. By means of (4), we get Rx¢& = 0 for any eigenvector X € [£1]. Consequently,
the sectional curvatures of the tangent 2-planes containing £ vanish.

If M2"+1 s irreducible, it is Einstein with Ric(¢,€) = 2n — tr(h?) = 0 and conse-
quently it is Ricci-flat and then flat, contradicting the result of Olszak in [6]. Hence,
M?"*1 is reducible and the vanishing of the ¢-curvatures implies that & has to be
tangent to a flat factor. It follows that Rxy & = 0 for all tangent vectors X,Y and
theorem B applies.

Now,we suppose m < n, we put [0] = [{]®V, (orthogonal sum), and H = [¢][£1].
To prove that the distribution H is integrable we need some lemma.

Lemma 1. For any X € H we have [§,X] € H.
Proof. Clearly, for X € H we have:

Xe[+1]= (Vx€= 20X € [-1],VeX € [+1])
Xe[-1]= (Vx¢{=0,VeX € [-1])
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Finally, V¢ = 0 and [X, €] € [£1] C H follows.
Lemma 2. For any X,Y belonging to [+1] we have V,y X € [£1] C H.

Proof. We use the following formula stated as formula (5) in [3]

Ryx&+ RexY — Rpyx€ — RexhY =g(X,Y)E - 2n(Y)X +n(X)Y
(13) —g(X,hY)E +2n(Y)h2 X
—n(X)hY + (Vq,th)(X).

obtaining (V,yh?)(X) =0, i.e.,

(14) Vv X = h*(Vey X) =0

and this implies V,y X € [£1]. Namely, we decompose V,y X with respect to the
direct sum of the eigenspaces:

(15) Vovy X =Ao+ A +A 1 +A\ +A 5+ + A\ +A,

Then, we have

Using (14) and (15), we get Ag = 0,4y, =0,4A_, =0,..., 4, =0,
Ay, = A1,..., A being different from +1,—1. Finally, from (15) we obtain
vaX = A+1 +A_, € [:I:l] C H.

R*(Voy X) = Asr + A 1+ AJAN A A\ 4+ + 24N +A2A .
) a
0,

Corollary 1. For any X € [-1] and Y € [+1] we have VxY € [£1].
Proof. Apply Lemma 2 to ¢ X and Y.
Lemma 3. For any Y € [+1] and X € [—1], we have V,y X € [£1].

Proof. From (13), since g(X,Y) = 0, we obtain (V,yh?)(X) = 0 and we continue as
in the proof of Lemma 2.

Corollary 2. We have: a) (X € [-1],Y € [-1]) = VxY € [£1]
b) X,Y € [-1] = [X,Y] € [+]]
Lemma 4. For any X € [—1] and Y € [—1], we have V,vX € H.

Proof. Using (13) we have:
2Rxy &+ 2RexY = 29(X, V)¢ + (Vv h?)(X).

Lemma 1 and Corollary 2 easily imply that Ry x& € [+1] and RexY € [£1].
It follows

(16) B =29(X,Y){ + Vyy X — h3(Vyy X) € [£1]
On the other hand, decomposing V,y X as in (15) and computing h?(V,y X), we get
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B =2g9(X,)Y)é+ Ao+ (1 - M)A\, +(1 - XA 5, +...

(a7 (- X2 As + (1 A2)Ay,

Comparing (16) and (17) we conclude

Ag = 72g(X7Y)£7A/\1 = 07A7/\1 = 07'-'714/\ = O,A,)‘ =0

so that

vaX = —QQ(X Y)f + A+1 +A_, €H.

Corollary 3. (X € [+1],Y € [-1]) = (VxY € H,[X,Y] € H).
Lemma 5. For any Y € [—1] and X € [+1] we have V,y X € [+1].
Proof. Using (13), since g(X,Y) = 0, we get

2Ry x& + 2RexV = (Vv h?)(X)

Now, Lemma 1 and the previous corollaries easily imply that Ryx¢& € [£1] and
RexY € H, so that

(18) Voy X =h*(VyyX) € H.

Again, decomposing V,y X with respect to the direct sum of eigenspaces, (18) implies
Ao =a& Ay, =0...,A_, =0 ,50 that we have

vaX =al + A+1 +A_,

Now, since pY € [+1], we get g(VyoyX,€) = —g(X,Vyyé) = —2¢(x,9°Y) =
29(X,Y)=0and V,y X € [£1].

Corollary 4. (X € [+1],Y € [+1]) = (VxY € [£1].[X,Y] € [£1].

Proposition 4.1. The distribution H = [£] & [£1] is integrable with totally geodesic
leaves.

Proof. The previous lemma and corollaries imply that [X,Y] € H for any X € H
and Y € H. Thus the distribution H is involutive and integrable.

Let NV be a maximal integral submanifold. Since V xY is tangent to N for any vector
fields X,Y tangent to N , the second fundamental form vanishes and N is totally
geodesic.

Proposition 4.2. The integral manifolds of the distribution H are locally isometric
to the Riemannian product E™T! x S™(4).

Proof. Let N be an integral manifold of H, A local frame for TN is given by £ and
the eigenvectors {e;, pe;}, i € {1,...,m} corresponding to the eigenvalues +1, —1,
and N has a canonically induced contact metric structure (£, ', g) where ¢’ is the
restriction of ¢ to N. Moreover, N turns out to be locally symmetric since it is totally
geodesic in the locally symmetric manifold M2+, Tt is easy to verify that b’ = %Lg(p’
is the restriction of h to N. Now, h' has eigenvalues +1, —1 with multiplicity m and 0
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as a simple eigenvalue. Theorem 2 insures that N is locally isometric to E™! x S™(4).
Hence, we can conclude with the following theorem:

Theorem 3 Let M?"*! be a locally symmetric contact metric manifold. Then M?"+!
admits a foliation whose leaves are totally geodesic and locally isometric to the Rie-
mannian product E™T x S™(4). The integer m is the multiplicity of the eigenvalue
+1 of the operator %Lg(p.
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