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AbstratThe aim of this paper is to write the equations of Gauss-Weingarten andGauss-Codazzi in the ase of indued linear onnetions on two supplementaryvetor subbundles. Their forms are di�erent from those given by V. Cruianu,sine the exterior alulus formalism is used, but they are very losed to thesimilar equations dedued by R. Miron and M. Anastasiei for indued tangentialand normal onnetions on vetor subbundles, by d-onnetions.Mathematis Subjet Classi�ation: 53C07Key Words: vetor subbundles, Gauss-Weingarten equations, Gauss-Codazzi equa-tions.1 Linear onnetions whih are indued on supple-mentary vetor subbundlesConsider as in [1℄ a vetor bundle � = (E; �;M) and two supplementary vetorsubbundles �0 = (E0; �0;M) and �00 = (E00; �00;M) . Denote as n = dimM , m =m1+m2, where m, m1 and m2 are the dimensions of the �bres of �, �0 and �00. Denotealso by P 0 : � ! �0 and P 00 : � ! �00 the anonial projetions. Every onnetion r on� indues by r1 = P 0 Ær and r2 = P 00 Ær two linear onnetions on �0, respetively�00, whih we all in that follows as indued onnetions .Consider now B1 : X (M)�S(�0)! S(�00) and B2 : X (M)�S(�00)! S(�0) de�nedby B1(X; s0) = rXs0 �r1Xs0 ; B2(X; s00) = rXs00 �r2Xs00 :(1)The following two interpretations an be given for B1 and B2:� as fundamental forms of seond kind, of the supplementary vetor subbundles�0 and �00;� as ovariant derivatives of the inlusions I 0 : �0 ! � and I 00 : �00 ! �, onsideringthe pairs of linear onnetions (r1;r) respetively (r2;r).Balkan Journal of Geometry and Its Appliations, Vol.3, No.1, 1998, pp. 103-109Balkan Soiety of Geometers, Geometry Balkan Press



104 M.Popesu and P.PopesuGenerally, the above pairs of linear onnetions an de�ne a ovariant derivative ofmixt tensors, whih extends the ase of [2, pg. 149℄, [3, pg. 74℄. The mixt tensors areelements of the F(M)-tensor produts of the F(M)-modules X (M), X �(M), S(�),S(��), S(�0), S(�0�), S(�00) and S(�00�), where �� denote the dual vetor bundle of �.A ovariant derivative D of mixt tensors is an internal map of mixt tensors whih is aloal map, an IR-linear map, ommutes with ontrations and is a derivation relatedto the tensor produt.Proposition 1.1 Let �r be a linear onnetion on M , and �, �0, �00, r, P 0, P 00, r1 ber2 as above. Then there is only one ovariant derivative D of mixt tensors, whih hasthe same ation as �r, r, r1 and r2 on the setions of �M , �, �0 and �00 respetively.Proof. The ovariant derivatives �r, r, r1 and r2 de�ne ovariant derivatives on thesetions of the dual vetor bundles X �(M), S(��), S(�0�)and S(�00�) respetively. Forexample for �: from the ondition that r ommutes with ontrations, if ! 2 S(��)then (8)X 2 X (M), s 2 S(�), we have(rX!) (s) = X (!(s))� ! (rXs) :Let us impose the onditions on D to have the same ation as �r, r, r1 and r2 onthe setions of �M , �, �0 and �00 respetively. It follows that D has the same ation�r, r, r1 and r2 on the setions of ��M , ��, �0� and �00�, sine it ommutes withontrations. The ation of D extends to every mixt tensor using the Leibniz onditionon the tensor produt. q.e.d.An example is given by the ovariant derivatives of the inlusions I 0 : �0 ! � andI 00 : �00 ! �, whih an be regarded (via anonial izomorphisms) as belonging toS(�0�)
F(M) S(�) and S(�00�)
F(M) S(�) respetively. The vetorial form is given bythe formulas (1) above.A very eÆient and expliit approah of mixt tensors and mixt ovariant derivativeis given in [2℄ or [3℄, where a loal alulus is used.Consider now a loal base fsAgA21;m of the loal setions on � suh that fsaga21;m1is a loal base of the setions on �0. Then P 0 has a loal formP 0(Sasa + S�as�b) = �Sa + P a�a S�a� sa �= SAP aAsa�(2)and thus P 00 has the loal formP 00(Sasa + S�as�b) = S�a (s�a � P a�a sa) :(3)It is easy to see that if fs�ag�a21;m2 is a loal base of the setions on �00, then the loalfuntions P a�a vanish. We an get to this situation taking instead of fs�ag�a21;m2 thesetions fs�ag�a21;m2 , where s�a = s�a � P a�a sa :Let us denote as f�AiCgA;C21;m;a=1;n the omponents of the onnetion r taken inloal bases fsAgA21;m of setions on � and fXigi21;n of �elds onM : �AiCsA = rXisC .Consider the dual base of forms ��i	i21;n and the loal onnetion forms !AC = �AiC�i.We an also onsider the omponents ���aib	 and ����ai�b	 of the linear onnetionsr1 and r2, given by the onditions ��aibsa = r1Xisb and ���ai�bs�a = r1Xis�b. The loalonnetion forms are �!a = ��ai�i �si �!�a� = ���ai��i.



On the Struture Equations of the Indued Linear Connetions 105Proposition 1.2 There are the following relations between the onnetion forms:�!ab = !ab + P a�a !�ab �= P aA!Ab � ; �!�a�b = !�a�b � P a�b !�aa �= PA�b !�aA� :(4)Proof.We use the de�nition of r1 and r2, and the loal forms (2) and (3) of P 0 andP 00. From ��aibsa = r1Xisb = P 0 (rXisb) = P 0 ��AibsA�(5)we have ��aib = �aib + P a�a ��aib, whih proves the �rst formula. From���ai�bs�a = r1Xis�b = P 00(rXi(s�b � P �b s)) = P 00 ��Ai�bsA �Xi(P �b )s � P �brXis�(6)we have ���ai�b = ��ai�b � P a�b ��aia whih proves the seond formula. q.e.d.The loal forms of B1 and B2 areB1(Xi; Aasa) = P 00 (rXi(Aasa)) = Aa��aias�a �= AaB�aias�a� ;and B2(Xi; A�as�a) = P 0 �rXi(A�as�a)� =A�a ��ai�a + P a�b ��bi�a �Xi(P a�a )� P �a�ai � P �aP �b ��bi� sa �= A�aBai�asa� :Consider now the loal formsB�aa = B�aia�i ; Ba�a = Bai�a�i:The above relations giveProposition 1.3 The following relations hold true:B�aa = !�aa ; Ba�a = !a�a + P a�b !�b�a � d(P a�a )� P �a!a � P �aP a�b !�b :(7) Let us prove the �rst main formula.Proposition 1.4 (Gauss-Weingarten formulas) The ovariant derivatives of the in-lusions I 0 and I 00 are given by the formulas(DI 0) (sa) = B ���s�a ; (DI 00) (s�a) = Ba�asa:Proof. Using the de�nitions of B1 and B2 we have(DXiI 0) (sa) = rXiI 0(sa)� I 0 �r1Xisa� = B�aias�a(DXiI 00) (s�a) = rXiI 00(s�a)� I 00 �r2Xis�a� = Bai�asawhih proves the both relations. q.e.d.The Cartan struture equations of the linear onnetions r, r1 and r2 ared!AC + !AB ^ !BC = 
AC ; d!a + !ab ^ !b = 
a ; d!�a� + !�a�b ^ !�b� = 
�a� :(8)Theorem 1.1 (Gauss-Codazzi formulas) The following relations hold true:
b + P �b
�bb = �
b +B�b ^ B�bb ; 
��b � P b�b
�b = �
��b +B�b ^ Bb�b(9) 
� + P b�
b = dB� � P b�P �b
�bb � �!b ^ Bb� �B�b ^ �!�b�(10)



106 M.Popesu and P.PopesuProof. The hek of the formulas is made by strightforward and long omputations.In order to prove the �rst formula (9) we di�erentiate (4), whih gives !b , andusing the formulas (7), whih gives Ba�b , and the seond struture equation (8) of theindued onnetion. We getd!b = d�!b � dP �a ^ !�ab � P �ad!�abor 
b � !a ^ !ab � !�a ^ !�ab = �
b � �!a + P �d! �da� ^ �!ab + P a�e !�eb����B�d ^ ! �db + !�d ^ ! �db + P �d! �d�q ^ !�qb � P d�b �!d ^ !�bb + P �d! �dd ^ !�bb����P �b �
�b � !�bd ^ !db � !�b�d ^ ! �db� :Reduing we obtain the �rst formula (9).The seond formula (9) an be obtained in a similar way. We di�erentiate theformula (4), whih gives �!��b , we use the formula (7), whih give Ba�b , and the thirdequation (8) of the indued onnetion.In order to prove formula (10) we di�erentiate the funtions (7),dB� = d!� + P �b ^ !�b� + P �b d!�b� � P b� ^ �!b + P �b !�bb��P b� �d!b + dP �b ^ !�bb + P �b d!�bb� :If we use again the formula (7), whih gives us the di�erential dP k�j , and the strutureequations of the indued onnetions, by simpli�ations, we obtain the formula (10).q.e.d.Remark 1.1 The Gauss-Codazzi equation are obtained in a global form in [1℄. Theabove form is very losed to [3℄, where the tangent and normal onnetions are induedon vetor subbundles by metri d-onnetions.2 Metri indued onnetionsLet G be a metri and r be a linear onnetion on �. The onnetion r is metri ifrG = 0, or rXG (s1; s2) = G (rXs1; s2) +G (s1;rXs2) ;(8)X 2 X (M), s1; s2 2 S(�).Then G indues the non-degenerate metris g and �g on the suplementary vetorsubbundles �0 and �00, whih are orthogonal related to G. The onnetion r induesthe linear onnetions r1 = P 0 Ær and r2 = P 00 Æ r on �0 and �00 respetively, as inthe previous setion.Proposition 2.1 If the linear onnetion r is metri related to G, then the linearonnetions r1 and r2 are also metri related to g and g0, respetively.Proof. Let fsAgA21;m be a loal orthonormal base (related to G) of the loal setionson � suh that fsaga21;m1 and fs�ag�a2m1+1;m are loal orthonormal bases (related tog and �g respetively) of the loal setions on �0 and �00 respetively. Consider a loal



On the Struture Equations of the Indued Linear Connetions 107base fXigi21;n of vetor �elds on M and denote as f�AiCgA;C21;m;a=1;n the loalomponents of r. Thus we have �AiC = G(sA;rXisC) and the ondition on r to bemetri is is equivalent to the onditions �AiC = ��CiA. The linear onnetions r1 andr2 has the omponents f�aig and f��ai�g respetively. Sine �ai = ��ia and ��ai� = ���i�ait follows that the linear onnetions r1 and r2 are metri with respet to g and �grespetively: q.e.d.In the following we suppose that r is metri with respet to G ande we use theloal bases, not neessarly orthonormal ones, onsidered before the Proposition 2.1.Denote the omponents of the metris G, g and �g:GAB = G(sA; sB) ; gab = g(sa; sb) = G(sa; sb); �g�a�b = �g(s�a; s�b) = G(s�a; s�b):The projetion P 0 onto the �bres of the vetor subbundle �0 is given by the matrixwith elements P aA = gabGbA, thus P a�a = gabGb�a.Let us de�ne now the urvature ovariant tensor, whih is a mixt tensor ~R :S(�)� S(�)�X (M)�X (M)! F(M),~R(S; T;X; Y ) = G (R(Y;X)S; T ) ;where R is the urvature tensor of r. The omponents R ABij and RABij of the tensorsR and ~R, are R (Xi; Xj) sB = RABijsA ; ~R (sA; sB ; Xi; Xj) = RABij :Proposition 2.2 1. The urvature ovariant tensor ~R is antisymmetri related tothe pairs (S; T ) and (X;Y ).2. The following relations hold true: RABij = RCBijGCA = �RBAij .Proof. 1) The antisymmetry onerning (X;Y ) is obvious. In order to prove antisym-metry onerning (S; T ) the property rG = 0 is used in the formula whih de�nes~R. 2) The �rst equality follows from the de�nition of ~R. The seond equality followsfrom the �rst one and the the antisymmetry of tensor ~R in arguments (S; T ), provedin 1). q.e.d.We onsider now the mixt ovariant tensors ~B1 �si ~B2, whih orrespond to B1and B2, ~B1(X; s; t) = �g �B1 (X; s) ; t� ; ~B2(X; t; s) = g �B2 (X; t) ; s� ;(8) s 2 S(�0) and t 2 S(�00).We onsider now the loal base of setions on � given by fsag[fs�ag, where fsag isa base of the setions on �0, and fs�a = s�a�P a�a sag a base of the setions on �00. Denoteas (gab = G(sa; sb)) the matrix of the metri g in the base fsag and asfg�a�bg the matrixof the metri �g in the base fs�a = s�a � P a�a sag. We denote also (gab) = (gab)�1 and(g�a�b) = (g�a�b)�1.The loal oeÆients of the mixt tensors B1, B2, ~B1 and ~B2 areB�aibs�a = B1 (Xi; sb) ; Bai�bsa = B2 (Xi; s�b)Bib�a = ~B1(Xi; sb; s�a) ; Bi�ba = ~B2(Xi; s�b; sa)



108 M.Popesu and P.PopesuProposition 2.3 The folowing relations hold true~B1(X; s; t) = � ~B2(X; t; s);B�aib = h�a�bBib�b ; Bai�b = gabBi�bb ; Bia�b = �Bi�ba ; B�aib = �gbaBai�bh�b�a:(11)Proof. 1) For every s 2 S(�0) and t 2 S(�00) we have~B1(X; s; t) = �g �B1 (X; s) ; t� = G ��rXs�r1Xs� ; t� = G (rXs; t) =�G (s;rXt) = G �s;rXt�r2Xt� = g �s;B2 (X; t)� = � ~B2(X; t; s):2) The �rst two equalities follow from the de�nitions of the tensors ~B1 and ~B2.The last two equalities follows from 1). q.e.d.We notie that if fs�ag is a base of the setions on �00, then P a�a = 0 and the formulas(4) beome �!ab = !ab ; �!�a�b = !�a�b :(12)In this ase, using Proposition 2.2, the formulas (7) beomeB�aa = !�aa = �Ba�a = �!a�a :Theorem 1.1 an pe restated as follows (ompare with [3, Theorem 5.1, pg. 73℄):Theorem 2.1 (Gauss-Codazzi formulas) The following relations hold true:
b + P �b g�b�
b� = �
b +B�b ^ B�bb ; 
�b� � P b�b
b� = �
�b� + Bb� ^ Bb�b(13) 
� + P b�
b = gd �dBd� � P b�P d�b g�b �d
b �d � �!db ^ Bb� �Bd�b ^ �!�b�� :(14)Aknowledgements. A version of this paper was presented at the First Confer-ene of Balkan Soiety of Geometers, Politehnia University of Buharest, September23-27, 1996.Referenes[1℄ V. Crueanu Sur la th�eorie des sous-�br�es vetoriels, C.R.Aad.Si.Paris, t.302,s�erie I, no.20, 1986, 705-708.[2℄ R. Miron, M. Anastasiei Vetor bundles. Lagrange spaes. Appliations to the the-ory of relativity, Ed. Aademiei, Buuresti, 1987.[3℄ R. Miron, M. Anastasiei The Geometry of Lagrange Spaes: Theory and Applia-tions, Kluwer Aademi Publishers, 1994.University of Craiova, Department of Mathematis11, Al.I.Cuza St., Craiova, 1100, Romaniae-mail:paul�udjmatj2.sfos.ro


