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Abstract

The aim of this paper is to write the equations of Gauss-Weingarten and
Gauss-Codazzi in the case of induced linear connections on two supplementary
vector subbundles. Their forms are different from those given by V. Crucianu,
since the exterior calculus formalism is used, but they are very closed to the
similar equations deduced by R. Miron and M. Anastasiei for induced tangential
and normal connections on vector subbundles, by d-connections.
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1 Linear connections which are induced on supple-
mentary vector subbundles

Consider as in [1] a vector bundle ¢ = (E,nw, M) and two supplementary vector
subbundles ¢ = (E',n', M) and ¢" = (E",n",M) . Denote as n = dim M, m =
my +ms, where m, m; and ms are the dimensions of the fibres of £, £ and £”. Denote
alsoby P': £ —» & and P" : £ — &" the canonical projections. Every connection V on
¢ induces by V! = P'oV and V? = P" oV two linear connections on &', respectively
&", which we call in that follows as induced connections .

Consider now B! : X(M)x S(¢') — S(£") and B% : X (M) x S(¢") — S(¢') defined
by
(1) B'(X,s') =Vxs' —Viks', B*(X,s")=Vxs" - Vks".

The following two interpretations can be given for B! and B2:

e as fundamental forms of second kind, of the supplementary vector subbundles
& and &'

e as covariant derivatives of the inclusions I' : ¢’ — £ and I" : £ — &, considering
the pairs of linear connections (V', V) respectively (V?, V).
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Generally, the above pairs of linear connections can define a covariant derivative of
mixt tensors, which extends the case of [2, pg. 149], [3, pg. 74]. The mizt tensors are
elements of the F(M)-tensor products of the F(M)-modules X (M), X*(M), S(&),
S(&*), S(&), S(&™), S(&") and S(£'"*), where £* denote the dual vector bundle of £.
A covariant derivative D of mixt tensors is an internal map of mixt tensors which is a
local map, an IR-linear map, commutes with contractions and is a derivation related
to the tensor product.

Proposition 1.1 Let V be a linear connection on M, and &, €', ", ¥V, P', P", V! be
V2 as above. Then there is only one covariant derivative D of mizt tensors, which has
the same action as V, V, V! and V2 on the sections of TM, &, £ and " respectively.

Proof. The covariant derivatives V, V, V' and V? define covariant derivatives on the
sections of the dual vector bundles X'* (M), S(&*), S(&*)and S(£'"*) respectively. For
example for & from the condition that V commutes with contractions, if w € S(£*)
then (V)X € X(M), s € S(£), we have

(Vxw) (s) = X (w(s)) —w(Vxs).

Let us impose the conditions on D to have the same action as V, V, V! and V? on
the sections of 7M, &, &' and & respectively. It follows that D has the same action
V., V, V! and V? on the sections of 7*M, £*, &* and £"*, since it commutes with
contractions. The action of D extends to every mixt tensor using the Leibniz condition
on the tensor product. g.e.d.

An example is given by the covariant derivatives of the inclusions I' : £’ — £ and
I'" : ¢" — £, which can be regarded (via canonical izomorphisms) as belonging to
S(E™) @xry S(E) and S(£") @x(ar) S(€) respectively. The vectorial form is given by
the formulas (1) above.

A very efficient and explicit approach of mixt tensors and mixt covariant derivative
is given in [2] or [3], where a local calculus is used.

Consider now alocal base {s1} 477 of the local sections on { such that {s,}
is a local base of the sections on &'. Then P’ has a local form

acl,mq

(2) P'(S%s, + S%s) = (S + P2S™) s, (= S P45,)

and thus P” has the local form

(3) P"(S%, + S%s;) = S (sa — P%s4) -
It is easy to see that if {sg}; 75> is a local base of the sections on £, then the local
functions Py vanish. We can get to this situation taking instead of {sa},.17;; the

sections {sg} where

a€l,my’
Sa =Sz — Pgsa .
Let us denote as {I'it:} 4 cetom 077 the components of the connection V taken in
TA o, —
ieTh of fields on M: T'j,sa4 = Vx;s¢.

Consider the dual base of forms {19"}1.6ﬁ and the local connection forms wf = I'4.6".

3

local bases {s4} 417, of sections on § and {X;}

We can also consider the components {f?b} and {f%} of the linear connections
V! and V2, given by the conditions I'%s, = Vi s and f?i)sﬁ = V¥.s3. The local

connection forms are @ = T'L.6" si 02 = I'E6".
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Proposition 1.2 There are the following relations between the connection forms:
(4) @f = wi + Plw (= Piwy'), of = w! — Pfw? (= PPwh) -

Proof. We use the definition of V! and V?, and the local forms (2) and (3) of P’ and
P". From B
(5) T[98, = V. sy =P (Vx,s8) = P' (T'454)

we have ['Y, =T'% + P2T% . which proves the first formula. From

(6) Thsa=Vs;=P"'(Vx,(s5— Pfsc)) = P" (Tjsa — X;(Pf)sc — PfVx,s.)

we have f% = I'% — P¢T'{, which proves the second formula. g.e.d.
The local forms of B! and B? are
B'(X;,A%,) = P" (Vx,(A%,)) = A'T},s, (= A°Bf,54)

and
B*(X;,A%;) = P' (Vx, (A%g)) =

A" (T + BTl — Xa(Pf) — PiTY, — PEPTL) s0 (= A" Blysa)
Consider now the local forms
B! =B.o", BY=BLO"
The above relations give
Proposition 1.3 The following relations hold true:

(7) B =wl, BS =w? + Pwh — d(P?) — Pfw! — PSPt .

Let us prove the first main formula.

Proposition 1.4 (Gauss-Weingarten formulas) The covariant derivatives of the in-
clusions I' and I" are given by the formulas

(DI') (sq4) = B2sa, (DI") (sa) = Bls,.
Proof. Using the definitions of B! and B? we have
(Dx,I') (sa) = Vx,I'(sa) = I' (Vkisa) = Bj,sa

(Dx,I") (sa) = Vx,I"(sa) — I" (V%,sa) = Bs5a

which proves the both relations. q.e.d.
The Cartan structure equations of the linear connections V, V! and V? are

ol

(8) dwé—l—wg/\wgzﬂé,dw?+w,‘}/\wlg:9g7dwg+wg/\w§:9.
Theorem 1.1 (Gauss-Codazzi formulas) The following relations hold true:
9) £+ PEQb = Qf + BEA B, O — PPQS = O + Bi A B

(10) Of 4+ PYQs = dBS — PYPEQY — f A B — BE AP
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Proof. The check of the formulas is made by strightforward and long computations.

In order to prove the first formula (9) we differentiate (4), which gives wy, and
using the formulas (7), which gives By, and the second structure equation (8) of the
induced connection. We get

dwf = dwf — dPf A wi — Pfdwf

or
O —we AWl — Wl Awf = Qf — (wfl+Pd9wZ) A (W + Plwf) —

- (B;—/\wg+w2—/\w§+Pd9wg/\waPBd (w;/\wE+Pd9w§/\w§)) -
—FPy (Qic’ fw;l;/\wgfwz—/\wg).

Reducing we obtain the first formula (9).

The second formula (9) can be obtained in a similar way. We differentiate the
formula (4), which gives wf, we use the formula (7), which give By, and the third
equation (8) of the induced connection.

In order to prove formula (10) we differentiate the functions (7),
dBE = dwt + Pf Awh + Pedwl — PP A (w,f + Pgw,’}) —pY (dw,f +dPE AW+ Pgdwg’) .

If we use again the formula (7), which gives us the differential de, and the structure
equations of the induced connections, by simplifications, we obtain the formula (10).
q.e.d.

Remark 1.1 The Gauss-Codazzi equation are obtained in a global form in [1]. The
above form is very closed to [3], where the tangent and normal connections are induced
on vector subbundles by metric d-connections.

2 Metric induced connections

Let G be a metric and V be a linear connection on &. The connection V is metric if
VG =0, or
VXG(Sl,SQ) = G(VxSl,SQ) +G(81,VX82)7

(V)X € X(M)7 S1,82 € S(f)

Then G induces the non-degenerate metrics g and g on the suplementary vector
subbundles & and £, which are orthogonal related to G. The connection V induces
the linear connections V! = P' oV and V2 = P" o V on ¢’ and ¢ respectively, as in
the previous section.

Proposition 2.1 If the linear connection V is metric related to G, then the linear
connections V' and V? are also metric related to g and g', respectively.

Proof. Let {sa} 4.7, be alocal orthonormal base (related to ) of the local sections

on ¢ such that {s,},c15 and {sa} ;=7 are local orthonormal bases (related to

g and g respectively) of the local sections on ¢’ and £" respectively. Consider a local
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base {Xi}z‘eL_n
components of V. Thus we have ['4, = G(sa, Vx,sc) and the condition on V to be
metric is is equivalent to the conditions F;“ = ffgl. The linear connections V! and
V? has the components {I'?.} and {T'%.} respectively. Since I'?, = —TI'¢, and ' = —T'S,
it follows that the linear connections V! and V2 are metric with respect to g and g
respectively. q.e.d.

In the following we suppose that V is metric with respect to G ande we use the
local bases, not necessarly orthonormal ones, considered before the Proposition 2.1.
Denote the components of the metrics G, g and g:

of vector fields on M and denote as {Tjt.} 4 cetom ot the local

GAB = G(SAa'SB) I g(lb = g(S[L7 Sb) = G(S(lasb)7 g(’zi) = g(sflasi)) = G(STHSB)'

The projection P’ onto the fibres of the vector subbundle &' is given by the matrix
with elements P§ = 9" G4, thus P = 9" Gya.
Let us define now the curvature covariant tensor, which is a mixt tensor R :

S(&) x S(§) x X(M) x X(M) — F (M),
R(S,T,X,Y) =G (R(Y,X)S,T),

where R is the curvature tensor of V. The components R gij and R4pi; of the tensors
R and R, are

R(X;,Xj)sp = R'py;sa, R(sa,s8,Xi,X;) = Rapij.

Proposition 2.2 1. The curvature covariant tensor R is antisymmetric related to

the pairs (S,T) and (X,Y).
2. The following relations hold true: R"}Bij = Repi G4 = —lew.

Proof. 1) The antisymmetry concerning (X, Y") is obvious. In order to prove antisym-
metry concerning (S,7") the property VG = 0 is used in the formula which defines
R.

2) The first equality follows from the definition of fi The second equality follows
from the first one and the the antisymmetry of tensor R in arguments (S, T'), proved
in 1). q.e.d. . .

We consider now the mixt covariant tensors B' si B2, which correspond to B!
and B2,

BY(X,s,t) =g (B (X,s),t) , B*(X,t,s) = g (B> (X,1),s)

(V) se S(¢') and t € S(£").

We consider now the local base of sections on & given by {s,}U{sz}, where {s,} is
a base of the sections on ¢, and {s; = sz — P¢s,} a base of the sections on £". Denote
as (gap = G(Sa, $p)) the matrix of the metric g in the base {s,} and as{g;;} the matrix
of the metric g in the base {s; = sz — P%s,}. We denote also (g%°) = (g.s) ' and
(9) = (9a8) " ~ ~

The local coefficients of the mixt tensors B!, B2, B! and B? are

Bfsa = B' (X, s) , Bjs, = B2 (Xi,sp)

Bibﬁ, = Bl(XiaslHSﬁ) 3 BZB[L = 32(Xi7sg7sa)
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Proposition 2.3 The folowing relations hold true
BY(X,s,t) = —B%*(X,t,s),
(11) Bj, = haEBz’bE: B = 9By s Biay = —Biga» By = —gbanj,hEﬁ-
Proof. 1) For every s € S(¢') and t € S(§'") we have
BY(X,s,t) =g (B*(X,s),t) =G ((Vxs — Vis).,t) =G (Vxs,t) =

—~G (5,Vxt) =G (5,Vxt — Vit) = g (s, B* (X,t)) = —B*(X,t,s).

2) The first two equalities follow from the definitions of the tensors B' and B2.
The last two equalities follows from 1). g.e.d.

We notice that if {sz} is a base of the sections on £, then P¢ = 0 and the formulas
(4) become

(12) wf =wp , Of =wy.
In this case, using Proposition 2.2, the formulas (7) become

a__ ,.a __ a __ a
B =w, = —B; = —w; .

Theorem 1.1 can pe restated as follows (compare with [3, Theorem 5.1, pg. 73)]):

Theorem 2.1 (Gauss-Codazzi formulas) The following relations hold true:
(13) Qpe + Pfggéﬂbg = ch + B;. A Bg s Qgé — PEI)Q{,E = Qgé + By A Bg
(14) Qe+ PP = goa (ABY — PLPg"0,, — of A BL— Bf nY).
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