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Abstract

The Peano Baker formula is extended for the calculus of generalized fun-
damental matrix in the case of matrix valued functions of bounded variation.
Using the properties of the Perron-Stieltjes integral the convergence of the cor-
responding matrix series is proved.
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1 Introduction

The theory of generalized differential equations, which uses the concept of the Perron-
Stieltjes integral, was initiated by J. Kurzweil [3],[4] and developed by Schwabik,
Tvrdy, Vejvoda [9] et al. Boundary value problems for generalized differential equa-
tions appeared in Atkinson [1], Halanay and Moro [2]. This theory was employed by
Tvrdy [10],[11] and Prepelita et al. [5],[6],[7] in the study of generalized dynamical
and acausal systems. A basic device in this setting is the fundamental matrix, which
gives the possibility to obtain many useful formulae and results.

In this article, the problem of the effective calculus of the (generalized) fundamen-
tal matrix is considered. The Peano Baker formula is extended in this framework and

the uniform convergence of the matrix series is shown.

2 The Perron-Stieltjes Integral

The definition of the Perron-Stieltjes integral was given in [8],[4] and [9].
Let us consider functions &, 4 : [a,b] — R™ for a given interval [a, b] and sequences
of numbers
S = {ao, Ty, A1y ..y Tk, ak}

suchthata =g < a1 <...<ap=band ;1 <7; <, j=1Lk.
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For a given function 4, S is called a subdivision of [a, b] subordinate to ¢ if

[ 1, 5] C (15 — 0(75), 75 +6(15)),  j=1k.

The set of all subdivisions S subordinate to ¢ is denoted by S(4).
Given two functions f,g : [a,b] — R and a subdivision S, we associate the
integral sum

Byy(8) =Y f(1j) (9(a;) — glaj 1)) -

Jj=1

Definition 2.1. If there is a real number I such that, for any € > 0 there exists a
function 6 : [a,b] — R™ such that |By,(S) — I| < ¢, for any S € S(), then I is

denoted by fab fdg (or fab f(t)dg(t) ) and it is called the Perron-Stieltjes integral of
the function f with respect to g from a to b.

We shall emphasize some properties of this integral that we need in the next
paragraph.
Proposition 2.2. If f is nonnegative and g is nondecreasing in [a,b] and the
integmlff fdg exists, thenf; fdg > 0.
Proof. Since f(r9) > 0 and g(a;)—g(aj—1) > 0 we have By 4(S) > 0 for any S € S(9);
we obtain I > 0 from |By 4(S) — I| < ¢ for any € > 0.

By considering f = f1 — fo or ¢ = g1 — g2 we obtain two corollaries:

Corollary 2.3. If f1(t) > fa(t), t € [a,b], g is nondecreasing in [a,b] and f; fidg
and fab fodg exist, then
b b
/ frdg > / fadg.

Corrolary 2.4. Assume that f(t) > 0,t € [a,b] and g1 — g2 is a nondecreasing
function, where g1, g : [a,b] — R. If the integrals f; fdg1 and fab fdgo exist, then

/abfdgl > /abfd!h-

Let us denote by BV™ and BV"™*" the Banach spaces

BV™ ={f:[a,b] = R", f of bounded variation},

BV™*" = {f:[a,b] = R™*", f of bounded variation}
and by BV the space BV!.

Proposition 2.5. [9, Theorem 1.4.19]
If f,g € BV, then the integral f; fdg exists.

Proposition 2.6. [9, Corollary 1.4.27]
b b
If f,g € BV, then| [, fdg| < [, |f(t/d(var,g).

Proposition 2.7.[9, Theorem 1.4.29.] If the function h : [a,b] = R is nonnegative,
nondecreasing and continuous from the left in [a,b], then
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/ he0an(t) < ) — B (@),

a

for any £ =0,1,....

3 Generalized linear differential equations and the
fundamental matrix

Let us consider A € BV ™ and g € BV"™. The generalized linear differential equation
(GLDE) is the symbol:
(1) dx = d[A]z + dg.

Definition 3.1. A function z : [a,b] — R™ is said to be a solution of the GLDE (1)
on the interval [a,b] if for any ¢, ¢ty € [a,b] the equality

(2) £(t) = x(to) + / —told [A(s)] 2(5) + g(t) — glto)

holds.
One can prove [9, Theorem II1.1.3.] that if z is a solution of (2) then z € BV™.
If zp € R™ and ty € [a,b] are fixed and z : [a,b] — R" is a solution of (1) which
satisfies the initial condition

(3) z(to) = o,
then z is called the solution of the initial value problem (1)(3).

Remark 3.2. If the functions A : [a,b] — R™ "™ and ¢ : [a,b] — R" have the
representations

A(t) :/ A(s)ds, g(s):/ g(s)ds, te€]a,b,

where A : [a,b] = R™ " and § : [a,b] — R™ are continuous functions, then A and g
era absolutely continuous functions on [a,b] ( therefore they are of bounded variation)
and the initial value problem (1)(3) is equivalent to the initial value problem for the
linear ordinary differential equation

@(t) = A(t)z(t) + g(t)

hence indeed (1) is a generalized equation.
Now let us denote by A~ and A™ the operators defined by

ATf) =f(t) = f(t=), ATf(t) = f(t+) - f(t),  t€ab]

(where by definition f(a—) = f(a) and f(b+) = f(b)). For a function f of two
variables v(f) denotes the two-dimensional Vitali variation of f on [a,b] X [a, b].
One can associate a (generalized) fundamental matrix:

Theorem 3.3 [9, Theorem II1.2.10]
If the matriz A € BV"™ "™ has the property
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(4) det (I — A7 A(t)) det (I + A1 A(t)) £0, Vt € [a,b],

then there ezxists a unique matriz valued function U : [a,b] X [a,b] — R™*"™ such that

(5) Ut,s) =1 —l—/ d[A(r)] U(r, s)

The matrix U has the following properties, for any r, s, t € [a,b] :

U(t,s) = U(t r)U(r,s)

Utt) =

U(t+,s) = [I—}-A*A ) U(t, s)
U(t—,s) = [I-AA®)]|U(t,s)
Ult,s+) = Ult,s)[I+ATA®)]
Ult,s—) = Ul(t,s)[I - AAt]

[U(t,s)]”" = Ul(s,t), (hence U(t,s) is nonsingular for any #, s € [a,b] ).
There exists a constant M > 0 such that

\U(t,s)| +vartU(t,-) +var’U(-,s) + v(U) < M .
The unique solution of the homogeneous initial value problem
de =d[Alz , x(tg) = zq
is given by the relation
x(t) = U(t,to)xo ,Vt, to € [a,b] .

The fundamental matrix can be used in order to solve the corresponding GLDE:

Theorem 3.4. [9, Theorem I11.2.13.]
If (4) holds then the solution of the initial value problem (1)(3) is given by the vari-
ation of constants formula:

(t) = U(t, to)zo + g(t) — g(to) — /t ds [U(,5)] (9(s) — g(to))

This theorem emphasizes the importance of the calculus of the fundamental matrix
for GLDE.

4 Peano-Baker formula for GLDE

In this paragraph the Peano-Baker formula is extended for matrix functions of
bounded variation and sufficient conditions for the convergence of the Peano-Baker
series are given.

Theorem 4.1. If the matriz function A € BV™ " is continuous from the left in [a, b]
and for any t € [a,b] it verifies the assumption
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(6) det (7 +ATA(t)) £0,

then the fundamental matriz U (t, s) which corresponds to A is the sum of the following
uniformly convergent series, for any t, s € [a, b]:

(7) U(t,s) =1 +/ d[A(s1)] + / d[A(s1)] /s1 d[A(s2)] + ...

+/st d[A(s1)] /:1 d[A(s2)] . ../:kl d[A(s1)] + . ..

Proof. If A = [a;]; ;_1=; is continuous from the left it results that A™A(t) = A(t) —
A(t—) =0, YVt € [a,b], hence det (I — A~ A(t)) = 1 # 0, therefore the condition (6)
is equivalent to (4) and the existence of the fundamental matrix is a consequence of
Theorem 3.3.

Let s be a fixed point, s € [a,b]. Let us consider a function h : [a,b] — R having
the properties:

i) h is nonnegative, nondecreasing and continuous from the left on [a, b]

ii) h(s) =0

iii) Vr,t € [s,b], r<t, h(t)—h(r)>max{varla;;|1 <i,j<n}.

By iii) it results that the function h(t) — varfa;; is nondecreasing for all 1 < i,j <n
and t € [s,b] .

For instance, the function defined by h(¢) = 0 for ¢ € [a, s] and

h(t) =Y 3 varla;; for t € (s,b] has the properties i) iii).
i=1j=1
Using iii) and Proposition 2.6 with f(t) =1, ¢ € [s, b] we obtain

/St daij(s1)

Then, by Propositions 2.6 and 2.7 and Corollaries 2.3 and 2.4, it results

/st daii(s1) /:1 day;(s2) /:1 day;j(s2)

< / d (var'ay) h(sy) < / dh(s1)h(s1) < = (h*(t) — h*(s)) = %hQ(t) :

Let us denote by E;;(M) the element of a matrix M situated on the i-th row and

t
< / d (var®'a;;) = varla;; — varfa;; = varia;; < h(t) — h(s) = h(t) .
S

t
< / d (varita;)
s

1
2
j-th column (hence E;;(A) = a;;). We obtain:

/St day(s1) /:1 day;(s2)

Assume that the following inequality holds, for any i,j , 1 <i,j < n and t € [s,b]:

© ([ [" o [ da)| < ko

n

\Eu(lﬁwu&nﬁ”dmwaos§j

=1

P
Sah (t)




116 V.Prepelita, M.Doroftei and T.Vasilache

Then using again Propositions 2.6, 2,7, Corollaries 2.3, 2.4 and the inequality (8), we

obtain:
\Eﬁ (/ A [ [T o) [ ) <

3 /St dau(s1) B </ dA(s3). .. / dA(sy) / dA(5k+1)> <
Eyj </ dA(s2) . .. / dA(sy) / dA(sk+1)> <

=1
nkfl

n t
SZ/ d (varita;)
I=1"%
n t k— t
<Z/ d (var® a;) = 1hk(51)<n /d(h(sl))hk(sl)<
= s T =" =
1=1"% w8

nk
(k+1)!
We proved by induction that (8) holds for any & > 1.

o k+1 k+1
T (BT = hFT(s)) =

<
=kl k+1

REFL(2) .

Since h is nondecreasing, it results that each element of the matrix series (7)

verifies
Fa ([ o) [ @ [ aaeon)| < SLwo)

for any ¢ € [s, b].

nk—l

——h*(b) converges to

o0
But the series of positive numbers 1+ >
k=1

1-— % + %e”h("), hence by the Weierstrass criterion it results that the matrix series in
the right hand member of (7) converges uniformly on [s,b].

Obviously, the sum of the matrix series in the right hand member of (7) verifies
the equality (5); by unicity (see Theorem 3.3) it results that the sum of this matrix
series is the fundamental matrix U(#, s), hence the Peano-Baker formula (7) holds.

5 Conclusion

In the particular case described in Remark 3.2 formula (7) gives the ”classical” funda-
mental matrix corresponding to the continuous matrix function A, hence indeed (7)
is a generalization of the Peano-Baker formula in the framework of matrix functions
of bounded variation.
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