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Abstract

In this paper we study the existence of fixed points and endpoints for certain
class of multifunctions. Applying the Brézis—Browder principle, we obtain some
generalizations of Clarke’s theorem concerning the directional contractions and
of Caristi’s fixed point theorem. Also we generalize the Edelstein fixed point
theorem to the d— and d—directional contractive functions and multifunctions.
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1 Introduction

The objective of this paper is to apply the Brézis—Browder principle to the fixed
point theory. We shall obtain new results concerning the existence of fixed points and
endpoints for multifunctions and, in the same time, we shall see that the utilization
of this principle leads us to an unitary presentation of these results.

The mentioned principle has been published in 1976 by H. Brézis and F. Browder
in [1] and it is remarkable by simplicity and diversity of its applications in the nonlinear
functional analysis. We state this principle in the following form:

Theorem 1.1. Let (X,<) be a partial ordered set and § : X — R U {400} be a
function. Suppose that

1° every increasing sequence in X is bounded, and

2° @ is an increasing function.
Then, for each xg € X there exists an element x* € X, xo < z*, such that x* <z =
O(x) = 0(z*).
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We point out the fact that this principle can be used to prove the Ekeland’s varia-
tional principle [4], [5]. Consequently, many results can be obtained in an elementary
way if, instead of Ekeland’s principle, one utilizes that of Brézis and Browder. Thus,
F.H. Clarke extends the contraction principle of Banach to directional contractions
with the aid of Ekeland’s variational principle [3]. Obviously, an elementary proof of
his result can be based on the Brézis—Browder principle.

2 Preliminary definitions and notations

Let X be a nonempty set and F': X ~» X be a multifunction. A point z € X is said
to be a fized point (endpoint) for this multifunction if z € Fz (Fz = {z}).

Now, let X be a topological space. The multifunction F' : X ~ X (with non-
empty values) is said to be ls.c. (lower semicontinuous) at xq if for any open set U
with Faxg NU # () there is a neighbourhood V' of z¢ such that for any = € V' we have
FxNU # 0. F is said to be u.s.c. (upper semicontinuous) at o if for any open set
U D Fxy there exists a neighbourhood V of zg such that U D Fz for any z € V. The
multifunction F'is l.s.c. (u.s.c.) if it is L.s.c. (uw.s.c.) in each point of the space X.

Also, we recall that a real-valued function f : X — IR is ls.c. at zp € X if
Tp — To = linrr_1>iolgf frn > fxo.

Let (X,d) be a metric space. We adopt the following notations:

d(A,B) = inf{d(a,b); a€ A,be B} and d(z,A)=d({z}, A);
d(A,B) = sup{d(a,b); a€ A,be B} and d(z,A)=3d{z},A);
e(A4,B) = sup{d(a,B); a € A};

D(A,B) = max{e(A4,B),e(B,A)}.

We observe that the application (A, B) — D(A, B) is a distance on the set of all
nonempty bounded closed subsets of X, so—called Pompeiu—Hausdorff distance. More-
over, if we consider D on the set of nonempty bounded subsets of X, then the impli-
cation D(A,B) = 0 = A = B is not satisfied, hence D is only a pseudo-metric on
this set.

3 Directional contractions

Let (X, d) be a metric space.

Definition 3.1. A directional contraction is a function f : X — X for which there
exists a number k € (0,1) with the following property: for each z € X, x # fz, there
isy € X, y # x, verifying the convexity condition

(3.1) d(z,y) +d(y, fr) = d(z, fz),

and the contraction condition
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(3.2) d(fz, fy) < kd(z,y).
Concerning this kind of contraction it is well-known the following

Theorem 3.2. (F.H. Clarke [3, p.269]). If (X,d) is a complete metric space and
f+ X — X is a continuous directional contraction on X, then this function admits a
fixed point.

In the case of multifunctions, the notion of directional contraction can be ge-
neralized in two different manners which correspond with two convexity conditions
extending (3.1).

Definition 3.3. A multifunction F' : X ~ X (with nonempty bounded values)
is called a d-directional contraction if there exists a number k € (0,1) having the
property: for each x € X, x ¢ Fx, there is y € X, y # x, verifying the conditions

(i) d(z,y) +d(y, Fx) = d(z, Fz), and
(i) D(Fr, Fy) < kd(z,y).

Definition 3.4. A multifunction F : X ~ X (with nonempty bounded values) is a
d—directional contraction if there exists k € (0,1) such that for each 2 € X for which
Fx # {z} there is y € X, y # x, verifying the conditions

(J) d(l’,y) + 6(y,F£L’) = 6(1’,F1‘), and
(i) D(Fz,Fy) < kd(z,y).

We need two lemmas which point out some known properties of the distances d
and 4.

Lemma 3.5. For any A, B C X (nonempty and bounded) we have:
a) d(z,A) <d(z,B) + D(A,B),
b) é(z,A) < d(zx,B) + D(A, B).
Lemma 3.6. Let F' : X ~ X a multifunction with nonempty values. Then:

a) If F' has compact values and it is w.s.c. at xo, then the function
x — d(z,Fx) is l.s.c. at xg.

b) If F has bounded values and it is l.s.c. at xq, then the function
x — 6(x, Fx) is Ls.c. at xg.

We are now ready to state and prove the next theorems:

Theorem 3.7. Let (X,d) be a complete metric space. Suppose that F : X ~» X
satisfies the following conditions:

1° the values of F' are nonempty and compact;
2° Fis u.s.c.;

3° F is a d—directional contraction.
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Then F admits a fixed point.

Theorem 3.8. Let (X,d) be a complete metric space. Suppose that F : X ~ X
verifies the conditions:

1° the values of F are nonempty and bounded;
2° F is l.s.c.;

3° F is a 6—directional contraction.

Then F has an endpoint.

The proofs of these results follow the same path, which consists in the application
of Brézis—Browder principle. For this reason, we shall prove only the second theorem.
Proof of Theorem 3.8. On X we introduce the next relation:

(3.3) x <y if 6(y,Fy)+ (1 —k)d(z,y) < 0(z, Fx).

It is easy to verify that < is a partial order on X.
Consider the real-valued function € defined by 6(z) = —d(z, Fz), z € X. In
view of (3.3), we have

(34) z<y=0(y,Fy) <o(z, Fz),

hence 6 is increasing with respect to <.
Now, let (z,) be an increasing sequence in X. Taking into account (3.4), we
deduce that the sequence (§(xy, F'zy,)) is convergent. Since for n < m we have

(3.5) (T, Fry) + (1 — k)d(xy, ) < 0(zy, Fzy,),
it follows that
(1 =k)d(zn,zm) < 6(xpn, Fx,) — 6(zm, Frm), n<m

and, consequently, (z,) is a Cauchy sequence. Hence (x,) is convergent, i.e. there
exists x € X such that z,, — x. We shall prove that z, < z, n € N, i.e. (z,) is
bounded in X. In order to do this, we take m — oo in (3.5) and obtain

lim 6(zy,, Fzy) + (1 — k)d(zy, x) < 6(xp, Fx,), n € IN.
Using Lemma 3.6b, we can write
d(z, Fz) + (1 — k)d(zp,x) < 0(zp, Fzy), n € N,

that is z,, <z, n € IN.
Since the hypotheses of Brézis—Browder principle are satisfied, for any zo € X
there is * € X such that zo < z* and

(3.6) ¥ <z = 0(z,Fz) = 6(z*, Fz").

We shall prove that z* is an endpoint for F. Indeed, if, by contrary, Fz* # {z*}
then there exists y # z* such that
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(3.7) d(z*,y) + 6(y, Fz") = 6(z", Fz”) and
(3.8) D(Fz*,Fy) < kd(z*,y).
By means of Lemma 3.5b, (3.7) and (3.8), it follows:

oy, Fy) <6y, Fa*)+ D(Fa*, Fy) < 0(y, Fa*) + kd(z*, y)

= [6(1’*,Fl’*) - d(l’*,y)] + kd(l’*,y)

S 6(m*’F'T*) - (1 - k)d(x*ay)a
and, thus,
(3.9) o(y, Fy) + (1 — k)d(z”,y) < 6(z", Fz¥),
ie. z* <y. By (3.6), we conclude
(3.10) iy, Fy) = 6(z*, Fz*).
Combining (3.9) and (3.10), we deduce d(z*,y) = 0, i.e. y = x*, which is absurd.

Consequently, Fa* = {z*}, q.e.d.

The relation between the convexity conditions (i) and (j) as well as between
Theorem 3.7 an Theorem 3.8 are clarified by the next

Example 3.9. Let X = [0,1] and d be the Euclidean distance on X. We define
F:X~ XbyFe= [%(1 —x),1], x € X. It is easy to see that: 1° F' has nonempty
and compact values, 2° F' is continuous (i.e. u.s.c. and Ls.c.), 3° F' is a d—directional
contraction, 4° F'is not a d—directional contraction, 5° any point = € [%, 1] is a fixed
point of F', and 6° F' has not endpoints.

Remark 3.10. The previous example shows that we cannot replace in Theorem 3.8
the hypothesis 3° with the condition ” F' is a d—directional contraction”.

Remark 3.11. I. Ekeland states in [5,p.448] that the proof of Clarke’s Theorem,
based on his variational principle, can be extended to multifunctions ”"with ad hoc
assumptions”. Theorems 3.7 and 3.8 indicate sufficient conditions for the existence
of fixed points and endpoints, respectively. Moreover, the proofs based on Brézis—
Browder principle are simple and accessible.

4 Generalizations of Caristi’s fixed point theorem

In 1976, J. Caristi [2] established the following interesting result:

Theorem 4.1. Let (X,d) be a complete metric space and ¢ : X — R be a Ls.c.
function which is bounded below. Assume that f : X — X is a function satisfying the
condition

(4.1) d(z, fr) < p(z) —(fz), v € X.
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Then f has a fized point.
Also, one knows the next two versions of this result for the case of multifunctions:

Theorem 4.2. Suppose that the metric space (X,d) and the function ¢ are as in
Theorem 4.1. Let F : X ~ X be a multifunction with nonempty values which satisfies

(4.2) d(z,y) < @(x) — p(y) for any © € X and some y € Fux.

Then F' has a fized point.

Theorem 4.3. If the hypotheses of Theorem 4.2 are fulfiled and the multifunction F
satisfies the more restrictive condition

(4.2) d(z,y) < p(z) — ¢(y) for any x € X and all y € Fz,

then F admits an endopoint.

In order to generalize the precedent theorems, one can imagine various modali-
ties. We indicate a way of generalization in the following three theorems.

Theorem 4.4. Let (X,d) be a complete metric space and ¢ : X — R be a Ls.c.
function which is bounded below. Suppose f : X — X having the property that for
each x € X there exists ¥ € X such that

(4.3) d(2,7) < (@) - p(&), and
(4.4) d(z, fz) < o(z) — (f2).
Then, the function f has a fixed point.

Theorem 4.5. Suppose (X,d) and ¢ as in the precedent theorems. Let F : X ~» X
be a multifunction with nonempty values and having the following property: for each
x € X there exists T € X such that the conditions (4.3) and

(4.5) d(z,y) < ¢(x) — ¢(y), for somey € Fi,

hold. Then F admits a fized point.

Theorem 4.6. Suppose that the hypotheses of Theorem 4.5 are fulfiled and, moreover,
F verifies the strong condition

(4.5)’ d(Z,y) < () —p(y), for ally € Fz.

Then F admits an endpoint.

We shall apply again the Brézis—Browder principle to establish Theorems 4.4—
4.6. Because the proofs are analogous, we shall prove only one of them.

Proof of Theorem 4.5. Obviously, the relation < defined by

(4.6) z <y if p(y) +d(z,y) < o(v)

is a partial order on X. Further, the function 6 given by 8(z) = —p(z), ¢ € X, is
increasing.



Applications of Brézis-Browder Principle 29

Now, let (z,) be an increasing sequence in the space X. In our hypotheses, the
sequence (¢p(z,)) is convergent. Since

or, equivalently,
d(l'n;xm) < <P(33n) - ‘P(l'm)y n < m,

it follows that (x,,) is a Cauchy sequence, hence there exists € X such that z, — z.
Passing to the limit in (4.7) as m — oo, and taking into account that ¢ is Ls.c., we
obtain

p(z) + d(z,,z) < p(z,), n €N,

ie. v, <z, n € IN. Thus, (x,) is bounded with respect to < .

Using Brézis—Browder principle, for any zo € X there exists z* € X, 2o < z*
such that

(4.8) ¥ <z = p(x) =p(x").

In view of our hypotheses, there exists Z* such that
(4.9) d(z*,z7) < p(z*) — ¢(z"), and
(4.10) d(z*,y) < p(Z*) — ¢(y), for somey € Fz*.

By (4.6), these inequalities can be written in the form z* < z* < y for some y € Fz*.
Then, by (4.8), we deduce

(4.11) p(z") = p(z*) = p(y)-

Taking into account (4.9), (4.10) and (4.11) it follows that z* = Z* = y. Because
y € FZ*, we obtain z* € Fx*, i.e. z* is a fixed point of F, q.e.d.

Remark 4.7. The next example shows that Theorems 4.4-4.6 are effective generali-
zations of the corresponding theorems from the beginning of this section.

Example 4.8. Let X = [0, +00), d be the Euclidean distance on X, and ¢ be defined
by p(t) = et, t > 0. Let f: X — X be given by

[ In(l+2), z€XnQ,
fm_{\/i reX\Q.

(Q denotes the set of rational numbers.)

Caristi’s fixed point theorem can’t be applied, since the condition (4.1) is not
verified for z € [0,v/2)\ Q. On the other hand, it is routine to show that the hypotheses
of Theorem 4.4 are fulfiled. Consequently, the function f has a fixed point. As a matter
of fact, f has two fixed points: 0 and /2.
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5 Directional contractive functions
and multifunctions

The theorems in Section 3 generalize the well-known Banach’s fixed point theorem.

Our purpose now is to generalize in the same manner another remarkable fixed point

theorem, that of Edelstein concerning contractive functions on compact metric spaces.
Let us start with some definitions.

Definition 5.1. A function f : X — X is called directional contractive if for any
x € X with x # fx there exists a point y # x such that

(5.1) d(z,y) +d(y, fx) = d(z, fz), and
(5.2) d(fz, fy) < d(z,y).

Remark 5.2. Unlike the contractive functions, the directional contractive functions
are not necessarily continuous and, moreover, they can admit an infinity of fixed
points. In order to see this, we give the following

Example 5.3. Let X = [1,00) be endowed with the usual distance, and f: X - X
be defined by

f:v:{ w+%, z €[l,00)NQ
x, z €[1,00)\ Q.

It is easy to verify the following assertions: 1° f isn’t contractive, 2° f is directional
contractive, 3° f isn’t continuous, and 4° each z € X \ Q is a fixed point of f.

Definition 5.4. A multifunction F : X ~ X (with nonempty and bounded values)
is called d—directional contractive if for any x € X with = ¢ Fz there exists y # =
such that

(5.3) d(z,y) +d(y, Fz) = d(z, Fx), and
(5.4) D(Fz,Fy) < d(z,y)-

Definition 5.5. A multifunction F : X ~» X (with nonempty and bounded values)
is called d—directional contractive if for any x € X with Fa # {z} there exists y # =
such that

(5.5) d(z,y) + d(y, Fz) = §(z, Fz), and
(5.6) D(Fz,Fy) < d(z,y)-

Theorem 5.6. Let (X,d) be a compact metric space and f : X — X be continuous
and directional contractive. Then f has a fixed point.

Proof. Because X is compact and x — d(z, fz) is a continuous real-valued function,
we can apply a theorem of Weierstrass and point out an element z* € X such that

(5.7) d(z*, fa*) = zuelg( d(z, fz).

We shall prove that x* = fz*. Indeed, if 2* # fx* there exists y # z* such that

d(z”,y) +d(y, fe") = d(z", fz") and d(fz”, fy) < d(z",y).
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Then

d(y, fy) < d(y, fz*) + d(f=*, fy) < d(y, fo") +d(z",y) = d(z", fz"),
hence d(y, fy) < d(z*, fz*), which contradicts (5.7). This completes the proof.

Remark 5.7. Since the space X is compact, it is not necessary the utilization of
Brézis—Browder principle. In this case, applying a theorem of Weierstrass we obtain
a point which minimizes the function z — d(z, fx).

The proof of the next theorem utilizes Lemmas 3.5 and 3.6 and is analogous to
the proof of Theorem 5.6.

Theorem 5.8. Let (X,d) be a compact metric space. A multifunctions F : X ~ X
with nonempty and compact values, u.s.c., and d—directional contractive admits a fized
point.

Remark 5.9. R.E. Smithson observes in [7] that a contractive multifunction F' may
not be u.s.c., but if, in addition, the values of F' are compact, then it is u.s.c. The
next example shows us that a d—directional contractive multifunction with compact
values is not necessarily u.s.c.

Example 5.10. In the complex plane endowed with the usual metric we consider the
compact crown X = {z = pe'; p € [1,2], ¢ € [0,27)}. Let F : X ~ X be given by

{re“; re [1,2— 1]}, tef0,2r)NQ
F(pe') = g

) 1
{re’t; r € [14-;,2}}7 t€[0,2m) N Q.

The values of F' are compact. It is easy to see that 1° F' is not contractive, 2° F' is

d—directional contractive, 3° F' is not u.s.c., and 4° F' has an infinity of fixed points.
The existence of endpoints is given by

Theorem 5.11. Let (X, d) be a compact metric space. A multifunction F : X ~ X
with nonempty and bounded values, l.s.c., and d—directional contractive admits an
endpoint.

The proof is analogous to the proof of Theorem 5.6.
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