Dynamical Systems on Vector Bundles
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Abstract

This paper contains our current research on techniques for the construction
of fractal objects using random transformations. Special emphasis is put on the
study of invariant probability measures on vector bundle.
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1 Introduction

We consider W and X be two measurable spaces, YW and X be the Borelian spaces
of W and X respectively. In this paper we shall refer to W as the state space and to
X as the parameters space. If f is an (W ® X, W)-measurable application and ¢ is a
probability measure on X then the quadruple (W, X, f, q) is called random dynamical
system ([12], [14]). To a random dynamical system one associates a Markov chain
¢, with an arbitrary set of states that is the space W. The asymptotic behaviour
of random dynamical system is closely related to the asymptotic behaviour of the
Markov chain &, hence to the study of &-invariant measures. In this note, we shall
define another Markov chain on R* which will be a repartee of ¢.

2 Random dynamical systems on vector bundles

Let W be a measurable space and E = W x R* be the cartesian product between W
and the k-dimensional euclidean space.

Definition 1 Suppose f : W — W is a measurable mapping on W. The pair F' =
(f,Ayp) is called vector bundle mapping (with respect to f) if

F:E—E, F(w,s)=(f(w),As(w)s); weW, s€eRF

where Ay(w) is an k X k real matrix whose elements are measurable functions of W.
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We shall denote by 7 the space of vector bundle mappings on E. We remark that
T is endowed with a measurable structure given by the measurable product structure
on F,
(F,u) > Fu, FeT, u€kE.

In the following, we consider the discrete set F = {fi, f2,..., fr} of mappings W —
W and the set A = {A;, As,..., A} of corresponding k x k matrices. Let ¢ be a
probability measure on F

aB)=> pi pi20, > pi=1 BeAX,
iEB i=1
where X = {1,2,...,r}, and X = P(X) is the set of all parts of X.

Definition 2 Let v be a probability measure on 7. A T-random variable F' whose
distribution is v is called random bundle mapping.

By definition, any random bundle mapping F' = (f, A) is generated by a random
transformation f: W x X — W. Let us introduce the well-known notations

f™=f, 0-0fy, fu€F, zeX, ie{l,2,...,n}
F™W =F, o---0F,,, F,, €T, z€X, ic{l,2,...,n},
A — Ay, - Ay,

If F(w,s) = (fo(w), Ays), where w € W, s € R¥, then we obtain F(?)(w,s) =
(fey © ferw, Ag, Ay 8) = (P (w), AP s) and, for all n > 1, we have

F(”)(w,s) = (fe, 00 fow, Ay, --- Ay, 5)
(f" (w), A™s).

We now consider Q =7 x T x ---, K be the o-algebra of Q and p = vN with v a
probability measure on 7. Then (2, K, p) is a probability space. An element of ) is a
sequence w = (Fy, F»,...), F; € T while the probability measure p is given by

n
plw: Fi(w) € ¢o, ..., Fiyn(w) € ¥n} = [[vwirs).
=0
If 0:Q — Qis a shift on Q and
Frplow) = Fry1(w),  falow) = fopr(w)
are shift mappings, then we can define the skew products 7" and 7 as follows:

T:ExQ—ExQ, T(u,w)=(F(wu,ow),
T:WXxQ->WxQ, 7(ww)=(fi(ww,ow).

If 7 : W x R¥ — W is the natural projection from E on W then from F = (f, Ay)
we have f = 7Fr~!. Therefore
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¢B)=v{FeT:nFr ! e B}
As in [9] we consider the Markov chain ¢ given by
wy, = £ (we) = 7F™ 7wy

and the transition probability

(1) P(w,A) =Y pala(fe(w)).

zeX
If Ag, 0y () = A(w,w) then Ao 7(w,w) = A(r(w,w)) and
AW (w,w) = Ao Hw,w) - Aor(w,w) - Alw,w).

Remark 1 . On the space T of random vector bundles we built the Markov chain
¢ on W with transition probabilities (1). Also, we can build a Markov chain on RF
given by the product of random matrices

Sp = An(wvw) T Al(wvw)sm
where sq € R” is fixed. This may be written as
Sp = A(n)sn—h n>1,

where A(,,) = Ay, (v) € A and transition probabilities

Q(s,G) = // T (Aq (w)s)dp() dif(w),

where p is a probability measure on X and 7 is &-invariant probability measure. In
the discrete case, we have

Qs,6) = 3 b [ Tolda(w)s)dn(w),
zeX

with G C R* and s € R*. We shall denote by ¢* this Markov chain on R*. This one
will be a repartee, on R¥, of ¢

Definition 3 . Let ;1 and a be probability measures on W and R¥ = {s € R¥/||s|| =
1}. We say that p x « is F,-invariant if

Eo(u x @) (F7 ' (B x Bp)) = (1 x o) (Ey x Ey),

where we denoted by &, the expectation over the probability measure p on X,
Fy(w,s) = (fz(w), Az (w)s), E; € W, E5 € K, K being the Borelian space of RY.

In the following, we shall generalize Lemma 3.1 of Morita given in [10]. In this
Lemma, Morita states that a measure g on W is &-invariant if and only if g x P is
T-invariant, where P is a product measure on XN and T.



50 S.Corbu and M.Postolache

Theorem 1 . Let u, p be probability measures on W and X respectively. Then p is
E-invariant if and only if p X a is F,-invariant, where a is a probability measure on

R, (a(Rf) =1).

Proof. Let p be a &-invariant probability measure, Fy € W, Es € K. Then we have
Ea(u % a) (F7 ' (By x By)) = / // IEle2<Fz(w,s))du(w)da(sﬂ dp(z)
X L
[[ 1.1 <Az(w>s>du<w>da(s>] dp(z)

A
/X // I, (wm)IA1E2(S)d/,L(w)da(S):| dp()
/.

// I, (we)a (AT Es) dyu(w )da(s)} dp(z)

o) [ [ [ 15, wn)dpta )] dp(w)da(s)
= a(E) [[ Plw. B)du(w)dats)
= a(E) | P Bautw) | 4ol

a(Es)u(Er)a (RY)
= (b x a)(EyL x Ey)

that is p X « is Fy-invariant.
To prove the converse, we suppose p X « is Fj-invariant. Then

p(Er) = (ux a)(Br x RY) = (u x )& F, ' (Ey x RY)

// [/ I, (wa) Iy (Az (w >s>du(w>da(s)} dp(=)
// [/ I, (we)dp(z )] dp(w)ded(s / P(w, By )dp(w)do(s)

= [ da(s /PwEld,u /PwEl)d,u()

Rk

hence p is &-invariant.
An interesting particular case is that when the matrices from A4 are triangular

a}l) (w) * k... *
(2)
0 a;’ (w) * ... *
Af(w) = d _
0 0 0 ;’” (w)

L -,k

with zeros under diagonal and a ay ) # 0. In this case the diagonal elements are
eigenvalues and the dominant eigenvalue is the spectral radius. For £ = 2 we have
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Ap(w) = ( ar(w) by(w) )

We consider p as £-invariant measure and we put

a = [[voglas@ldutwians) = 3 [ 2108 oy, (w)ldutw)

zeX
b= ([ ogles@lduwydn(s) = 3 [ potogla (w)ldu(w).
zeX
Then they are characteristic exponents.
The product matrix is
A(n) _ aj ...ap E an...ai_,_lbici_l ...C1
f - i=1
0 Cl...Cp

where a; =ay, ...af, ,bi=by, ...bs, ,ci=cp, ...cp,.

If @ < b then for p-almost any initial point wy and any non-null vector from the
Oz-axis the increasing rate of the eigenvector of product matrix is of the order e™® and
any non-null vector from the real plane is linearly independent and has the increasing
rate e"?, [9].

From the product matrix A}n) we deduce that the second vector has the form

n
’U:<E an...ai+1bici_1...cl, al...an—cl...cn>
i=1

Kaijser [7], defines the sequence of random variables on the unit sphere R* as follows

Aln) g
$p(8) = 7———, n>1
") = a2
and proves that this sequence is a Markov chain whose distribution at the mo-
ment n, p,, converges to an invariant measure of process. Moreover, there exist
lim 1log||A™s| and lim X log||A™)|| as.
n— 00 n— 00

3 Illustrations

The snowflake in Fig. 1 is obtained as invariant of just three Mobius transformations.
We remark that any Mdbius transformation may be written as

az+f

fe)=

) a)ﬂ)’y E C'

It generates a random number ¢. If ¢ € (0,0.8) then « = -3 + 5i, 8 = 0.8 — 4, and
v = —4 + 5i. If not, for ¢ € [0.8,0.86) choose « =2+ 04i, f=-0.7—4i,7v=1-2i
else a« = -4+ 4i, § = 0.7 — i, vy = 5+ 2i. Compute and plot a random orbit of zg
under f. In Fig. 1 the result is displayed after 150,000 iterations (for details, see [4]).
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Now we shall transform the points of the snowflake using some affine transforma-
tions.
To state our computer algorithm, in the following we deal with the set of affine
mappings
F={f/f(w)=Tw+b, Tiskxkmatrix, bec RF}.

By all means, the pair {R*, f(w)} represents a dynamical system.

Let us consider the set 7 = {To,T1,...,T,} of (r + 1) non-singular k X k matrices
which correspond to some affine transformations of F. If we use the method studied
in [4] we obtain the representation of this sequence

wo given,
w1 = T®wo + T® [(Ty -+ To) b + -+ (T1To) by + Ty o]
where T®) =T, T}, -+ Ty and b; € R*, i =0, ...n.
For practical reasons, let us now consider W = R?, X = 7, WV the Borelians of
W, and X the set of all parts of X. If T}, = ( Z: ZZ €T, n>1then we build
the sequence (wy,)n>0 as follows:

wp given, wi = fl(zo), wy = (f2 Ofl)(wo),----

Let us suppose, without loss of generality, that the matrices T}, are positive (the
general case is similar). For practical reasons we have to study the asymptotic be-
haviour of the following product of random matrices

T =T - - Ty To.

a b
d
as a product of a diagonal matrix and a stochastic one as follows:

a b
p=("3" 0a) ()
0 C+d c+d c+d

For this purpose, we consider a positive matrix 7" = ) and its decomposition

Therefore we have T = D - P. Using this decomposition for T(*) we have
T® = DePThy - Tp

= DpTi—1Tp—2--To
= DDy 1Py 2Ty 3---Tp

= Dy--- Dy Py

Here Dy, ..., D), are diagonal matrices, Py is a stochastic one and Tie1 = PpTh_1.
In general, if we denote by T" the product between a general matrix and a stochastic
one, that is, T'= TP, thus from the componentwise interpretation we get

(2) min ¢;; < min¢;; < maxt; < maxt;.
] ] ] ]
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If we denote
(k) plk) k)
(k) — [ @ =
T ( NORP 0 ): Dy -+ Dy ( 0 g® >,

Dik 1—pig
P = ,
¥ < L—par  p2 >

Tk — ( h ¥y R (1 = pug) >
g®) (1= pay) 9P pay; ’

then we have

Based on the inequalities (2) and taking into account the positivity of T}, it follows
that § > 0 and kg > 1 exist such that pix > 6§, par > d for all & > kg. Then we obtain

Proposition 1 In the conditions described above, there exists the limit

1
im = (k)
klgrgokloga .

By Proposition 1 it follows that if k is large enough then T'®) approaches to a
kh kg
matrix with proportional rows T*) = < zkh Zkg > , where h and ¢ are positive

random variables.
The theoretical approach given above, suggest the following procedure for finding
self-similar sets:

Algorithm 1 Let X be a general compact metric space and w;: X — X be contraction
mappings with
d(wi(z), w;i(y)) < rd(z,y), foralz,y€ X,

fori=1,2,....N, where 0 <r < 1. Let {p1,p2,...,pN} be probabilities with p; > 0
and > p; = 1. Choose xg € X and pick recursively
Ty € {wl(mnfl);UJZ(mnfl); s )wN(xnfl)y }> fOT' n = ]-7 2> RS M)

where M is a large integer and p; = P(x, = w;i(zp—1)).

In this respect, the two shadows in Fig. 2 are obtained as invariant set of the
following three affine transformations w;: R? — R? (i = 1,2,3)

wi (u,v) = ((L.12° + 0.1y)u + 3.5yv + 0.2; (0.3z + 0.7y)v + 1.2y°u + 0.3)
wa(u,v) = (0.12zv + (1.78y + 0.5)u + 1; (0.8 + 1.2y)u + 0.5yv + 0.5)
ws(u,v) = ((z + 0.2y°)u + yv; yv + (0.1z + 0.9zy)u) .

We generated vg = (zo,%0) € R? as random point, and we defined a set of points
{v, € R?/n=0,1,...,10%} recursively according to

wv, with p; = 0.86
Upt1 = wav, with ps = 0.13
w3v, with p3 = 0.01
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If those points from the set which lie in the square {(z,y)/ — 1 < z,y < 1} are

plotted the result will be similar to Fig. 2.

The resulting picture in Fig. 2 appears to be the same no matter which initial

point vy is chosen. Also, it is obvious that these sets share the self-similarity property.

The theoretical presentation in this paper is not exhaustive, so the reader is en-

couraged to consult another research works ([1], [2], [3], [5], [8], [13], [16], [17]).
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